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THUS FAR, REGRESSION:  
PREDICT A CONTINUOUS VALUE GIVEN 
SOME INPUTS
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Weather prediction revisted
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Temperature 
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Reading Your Brain, Simple Example

AnimalPerson

Pairwise classification accuracy: 85%
[Mitchell et al.]
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Classification

■ Learn: f:X —>Y 
X – features 
Y – target classes 

■ Conditional probability: P(Y|X) 

■ Suppose you know P(Y|X) exactly, how should 
you classify? 

Bayes optimal classifier: 

■ How do we estimate P(Y|X)?
6
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Link Functions

■ Estimating P(Y|X): Why not use standard linear 
regression? 

■ Combining regression and probability? 
Need a mapping from real values to [0,1] 
A link function!

7
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Logistic Regression
Logistic 
function 
(or Sigmoid):

■ Learn P(Y|X) directly 
Assume a particular functional form for link 
function 
Sigmoid applied to a linear function of the input 
features:

Z

Features can be discrete or continuous!
8



©Kevin Jamieson 2017

Understanding the sigmoid
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Very convenient!

implies
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Very convenient!

implies
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Logistic Regression –  
a Linear classifier
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

13

P (Y = 1|x,w) = exp(wTx)

1 + exp(wTx)

P (Y = �1|x,w) = 1

1 + exp(wTx)

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)

■ This is equivalent to:

■ So we can compute the maximum likelihood estimator:

bwMLE = argmax
w

nY

i=1

P (yi|xi, w)
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

14

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

15

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))



©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

16

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2 (MLE for Gaussian noise)
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

17

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))= J(w)

What does J(w) look like? Is it convex?
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

18

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))= J(w)

Good news: J(w) is convex function of w, no local optima problems

Bad news: no closed-form solution to maximize J(w)

Good news: convex functions easy to optimize (next time)
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Linear Separability

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w)) When is this loss small?
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Large parameters → Overfitting

■ If data is linearly separable, weights go to infinity 

In general, leads to overfitting: 
■ Penalizing high weights can prevent overfitting…
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Regularized Conditional Log Likelihood

■ Add regularization penalty, e.g., L2: 

■ Practical note about w0:

21

argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w)) + �||w||22
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Gradient Descent

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 16, 2016
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Machine Learning Problems

23

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.
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Machine Learning Problems

24

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.

x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2f(x) � `I 8x

f `-strongly convex:

f (�x+ (1� �)y)  �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

g is a subgradient at x if f(y) � f(x) + gT (y � x)

g is a subgradient at x if f(y) � f(x) + gT (y � x)



©Kevin Jamieson 2017

Machine Learning Problems

25

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.
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Least squares

26

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

1
2 ||Xw � y||22How does software solve:
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Least squares

27

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

How does software solve:

…its complicated: Do you need high precision?
Is X column/row sparse?
Is bwLS sparse?
Is XTX “well-conditioned”?
Can XTX fit in cache/memory?

(LAPACK, BLAS, MKL…)

1
2 ||Xw � y||22
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Taylor Series Approximation

28

■ Taylor series in one dimension:

f(x+ �) = f(x) + f 0(x)� + 1
2f

00(x)�2 + . . .

■ Gradient descent:
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Taylor Series Approximation

29

■ Taylor series in d dimensions:
f(x+ v) = f(x) +rf(x)T v + 1

2v
Tr2f(x)v + . . .

■ Gradient descent:
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Gradient Descent

30

wt+1 = wt � ⌘rf(wt)

rf(w) =

f(w) = 1
2 ||Xw � y||22
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Gradient Descent

31

wt+1 = wt � ⌘rf(wt)

Example: X =


10�3 0
0 1

�
y =


10�3

1

�
w⇤ =

(wt+1 � w⇤) = (I � ⌘XTX)(wt � w⇤)

= (I � ⌘XTX)t+1(w0 � w⇤)

w0 =


0
0

�

f(w) = 1
2 ||Xw � y||22
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Taylor Series Approximation

32

■ Taylor series in one dimension:

f(x+ �) = f(x) + f 0(x)� + 1
2f

00(x)�2 + . . .

■ Newton’s method:
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Taylor Series Approximation

33

■ Taylor series in d dimensions:
f(x+ v) = f(x) +rf(x)T v + 1

2v
Tr2f(x)v + . . .

■ Newton’s method:
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Newton’s Method

34

rf(w) =

r2f(w) =

wt+1 = wt + ⌘vt

vt is solution to : r2f(wt)vt = �rf(wt)

f(w) = 1
2 ||Xw � y||22
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Newton’s Method

35

rf(w) =

r2f(w) =

wt+1 = wt + ⌘vt

vt is solution to : r2f(wt)vt = �rf(wt)

f(w) = 1
2 ||Xw � y||22

w1 = w0 � ⌘(XTX)�1XT (Xw0 � y) = w⇤

For quadratics, Newton’s method converges in one step! (Not a surprise, why?)

XT (Xw � y)

XTX
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General case

36

In general for Newton’s method to achieve f(wt)� f(w⇤)  ✏:

So why are ML problems overwhelmingly solved 
by gradient methods?

vt is solution to : r2f(wt)vt = �rf(wt)Hint:
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General Convex case

37

f(wt)� f(w⇤)  ✏

Newton’s method:

t ⇡ log(log(1/✏))

Gradient descent: 
• f is smooth and strongly convex:                      :  
 

• f is smooth:  
 

• f is potentially non-differentiable:

r2f(w) � bI

aI � r2f(w) � bI

||rf(w)||2  c

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,…
Nocedal  
+Wright, 
Bubeck

Clean 
converge
nce 
proofs: 
Bubeck
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Revisiting… 
Logistic Regression

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

39

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))f(w)

rf(w) =
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Stochastic Gradient 
Descent: A  Learning 
perspective
Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 16, 2016
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Learning Problems as Expectations

■ Minimizing loss in training data: 
Given dataset: 
■ Sampled iid from some distribution p(x) on features: 

Loss function, e.g., hinge loss, logistic loss,… 
We often minimize loss in training data: 

■ However, we should really minimize expected loss on all data: 

■ So, we are approximating the integral by the average on the training data
41
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Gradient ascent in Terms of Expectations

■ “True” objective function: 

■ Taking the gradient: 

■ “True” gradient ascent rule: 

■ How do we estimate expected gradient?

42
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SGD: Stochastic Gradient Ascent (or Descent)

■ “True” gradient: 

■ Sample based approximation: 

■ What if we estimate gradient with just one sample??? 
Unbiased estimate of gradient 
Very noisy! 
Called stochastic gradient ascent (or descent) 
■ Among many other names 

VERY useful in practice!!!

43
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Stochastic Gradient Ascent for Logistic 
Regression

■ Logistic loss as a stochastic function: 

■ Batch gradient ascent updates: 

■ Stochastic gradient ascent updates: 
Online setting:

44


