Announcements

- Project proposal due next week: Tuesday 10/24
- Still looking for people to work on deep learning Phytolith project, join \#phytolith slack channel

Gradient Descent

Machine Learning - CSE546 Kevin Jamieson University of Washington October 19, 2016

Machine Learning Problems

- Have a bunch of fid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w) \begin{aligned}
& f(x) \text { is a minimum } \\
& \text { of } f \text { if } g \text { is a } \\
& \text { sub-sradient at } x
\end{aligned}
$$

f convex:

$$
\begin{array}{lrr}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) & \forall x, y, \lambda \in[0,1] \\
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) & \forall x, y &
\end{array}
$$

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$

Taylor Series Approximation

- Taylor series in one dimension:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+\frac{1}{2} f^{\prime \prime}(x) \delta^{2}+\ldots
$$

- Gradient descent:

Taylor Series Approximation \qquad

- Taylor series in ot dimensions.

General case

$$
\begin{aligned}
& w_{0}=0 \\
& w_{t+1}=w_{t}-\xi \nabla f\left(w_{t}\right)
\end{aligned}
$$

$$
w_{t+1}=w_{c}+2_{p}
$$

In general for Newton's method to achieve $f\left(w_{t}\right)-f\left(w_{*}\right) \leq \epsilon$:

$$
t \simeq O(\log (\log (1 / \varepsilon)))
$$

So why are ML problems overwhelmingly solved by gradient methods?
Hint: v_{t} is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$

General Convex case $f\left(w_{t}\right)-f\left(w_{*}\right) \leq \epsilon$

Newton's method:

$A \leq B$

$$
t \approx \log (\log (1 / \epsilon))
$$

Gradient descent:

$$
\underbrace{B-A \succeq 0}_{B-A \text { is PSD }}
$$

- f is smooth and strongly convex: $a I \preceq \nabla^{2} f(w:) \preceq b I$

$$
t \approx \frac{b}{a} \log (1 / \varepsilon)
$$

- f is smooth: $\nabla^{2} f(w) \preceq b I$

$$
t \simeq \frac{b}{\varepsilon} \text { Nesterou's methad } \sqrt{\frac{b}{\varepsilon}}
$$

- f is potentially non-differentiable: $\|\nabla f(w)\|_{2} \leq c$

$$
1 / \varepsilon^{2}
$$

Nocedal +Wright, Bubeck

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,...

Revisiting... Logistic Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 16, 2016

Loss function: Conditional Likelihood

- Have a bunch of fid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
& \widehat{w}_{M L E}=\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& f(w)=\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right) \quad \frac{e^{a}}{1+e^{a}}=1-\frac{1}{1+\varepsilon^{t}} \\
& \nabla f(w)=\sum_{i=1}^{n} \frac{1}{1+\exp \left(-y_{i} x_{i}^{T} \omega\right)}-y_{i} x_{i} \exp \left(-y_{i} x_{i}^{\top} \omega\right) \\
&=\sum_{i=1}^{n}\left(1-0_{i}^{l}(w)\right)\left(-y_{i} x_{i}\right) \\
& O_{c}^{\prime}(\omega)=\frac{1}{1+\exp \left(-y_{i} x_{i}^{T} \omega\right)} \quad \omega_{0}=0 \\
& W_{t+1}=\omega_{t}-\xi \nabla f\left(\omega_{t}\right)
\end{aligned}
$$

Online Learning

Machine Learning - CSE546 Kevin Jamieson University of Washington 14
October 18, 2016

Going to the moon

Guidance computer predicts trajectories around moon and back with

- Noisy sensors
- Imperfect models
- Little computational power
- Big risk of failure

Going to the moon

Guidance computer predicts trajectories around moon and back with

- Noisy sensors
- Imperfect models
- Little computational power
- Big risk of failure

Why is Tom Hanks flying erratically?
Because they didn't have the power to turn on the Kalman Fllter!

State Estimation

- Predict current state given past state and current control input

$$
\widetilde{w}_{n}=f\left(w_{n-1}\right)+g\left(u_{n}\right)
$$

- Given current context, x_{n} compare your prediction to noisy measurement y_{n}

$$
\ell_{n}\left(\widetilde{w}_{n}\right)=\left(y_{n}-h\left(x_{n}, \widetilde{w}_{n}\right)\right)^{2}
$$

- Update current state to include measurement

$$
w_{n}=\widetilde{w}_{n}-\left.K_{n} \nabla_{w} \ell_{n}(w)\right|_{w=\widetilde{w}_{n}}
$$

Kalman filter does optimal least squares state estimation if f, g, h are linear!

Recursive Least Squares (RLS)

Least squares $=$ special case of Kalman Filter: no dynamics, no control

$$
\begin{aligned}
\widetilde{w}_{n} & =f\left(w_{n-1}\right)+g\left(u_{n}\right) \\
& =w_{n-1} \\
\ell_{n}\left(\widetilde{w}_{n}\right) & =\left(y_{n}-h\left(x_{n}, \widetilde{w}_{n}\right)\right)^{2} \quad h(x, g):=x^{\top} y \\
& =\left(y_{n}-x_{n}^{\top} \widetilde{w}_{n}\right)^{2} \\
& =\left(y_{n}-x_{n}^{\top} w_{n-1}\right)^{2} \\
w_{n} & =\widetilde{w}_{n}-\left.K_{n} \nabla_{w} \ell_{n}(w)\right|_{w=\widetilde{w}_{n}} \\
& =w_{n-1}+2\left(y_{n}-x_{n}^{\top} w_{n-1}\right) \operatorname{hr}_{n} x_{n}
\end{aligned}
$$

Recursive Least Squares (RLS)

Least squares $=$ special case of Kalman Filter: no dynamics, no control

$$
\begin{aligned}
\widetilde{w}_{n} & =f\left(w_{n-1}\right)+g\left(u_{n}\right) \\
& =w_{n-1} \\
& \begin{aligned}
& \ell_{n}\left(\widetilde{w}_{n}\right)=\left(y_{n}-h\left(x_{n}, \widetilde{w}_{n}\right)\right)^{2} \\
&=\left(y_{n}-x_{n}^{T} \widetilde{w}_{n}\right)^{2} \quad \begin{array}{l}
\text { Ideally: } \\
w_{n}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \\
\\
\\
\\
\\
w_{n}
\end{array} \\
&=\left(y_{n}-x_{n}^{T} w_{n-1}\right)^{2} \quad \widetilde{w}_{n}-\left.K_{n} \nabla_{w} \ell_{n}(w)\right|_{w=\widetilde{w}_{n}} \\
&=w_{n-1}+2\left(y_{n}-x_{n}^{T} w_{n-1}\right) K_{n} x_{n}
\end{aligned}
\end{aligned}
$$

Recursive Least Squares (RLS)
Sherman-Morrison: $\left(A+u v^{T}\right)^{-1}=A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}$.

$$
\begin{aligned}
& w_{n}=\left(\sum_{\left.\sum_{n=1}^{n} x_{i} x_{i}^{T}\right)^{-1} \sum_{i=1}^{n} x_{i} y_{i} b_{n}}^{n-1} \begin{array}{l}
\text { Ideally: } \\
w_{n}=\frac{\arg \min }{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& b_{n}=\sum_{i=1}^{n} x_{i} y_{i}=b_{n-1}+x_{n} y_{n} \\
& =\left(\left(x x^{\top}\right)^{-1}-\frac{\left(x x^{r}\right)^{-1} x_{n} x_{n}^{\top}\left(x x^{-}\right)^{-1}}{1+x_{n}^{\top}\left(x x^{-}\right)^{-1} x_{n}}\right)\left(x^{\top} y+x_{n} y_{n}\right) \\
& =\left(S_{n-1}-\frac{S_{n-1}-x_{n} x_{n}^{r} x_{n-1}^{r}}{1+x_{n} r S_{n-1} x_{n}}\right)\left(b_{n-1}+x_{n} y_{n}\right) \\
& =S_{n} b_{n}
\end{aligned}
$$

Recursive Least Squares (RLS)

$$
w_{n}=\left(\sum_{i=1}^{n} x_{i} x_{i}^{T}\right)^{-1} \sum_{i=1}^{n} x_{i} y_{i}
$$

Great, what's the time-complexity of this?
dis (mari x-vector multiply

It is 2017. Not the 60's... is limited computation still really a problem?

Digital Signal Processing

The original "Big Data"

Wifi/cell-phones are constantly solving least squares to invert out multipath

Low power devices, high data rates

Digital Signal Processing

The original "Big Data"

Wifi/cell-phones are constantly solving least squares to invert out multipath

Gigabytes of data per second

Low power devices, high data rates

YouTube Uploads: $\mathbf{>} \mathbf{3 0 0}$ Hours of Video per Minute

Incremental Gradient Descent

$\left(x_{t}, y_{t}\right)$ arrive:
Note: no matrix multiply

$$
w_{t+1}=w_{t}-\eta\left[\left.\nabla_{w}\left(y_{t}-x_{t}^{T} w\right)^{2}\right|_{w=w_{t}}\right]
$$

We know RLS is exact. How much worse is this?

In general convex $\ell_{t}(w)$ arrives:

$\ell(\cdot)$ is convex $\Longleftrightarrow \ell(y) \geq \ell(x)+\nabla \ell(x)^{T}(y-x) \forall x, y$

Incremental Gradient Descent

$$
\begin{aligned}
& \left\|\underline{w_{t+1}}-w_{*}\right\|_{2}^{2}=\left\|w_{t}-\underline{\eta \nabla \ell_{t}}\left(w_{t}\right)-w_{*}\right\|_{2}^{2} \\
& =\left\|\omega_{t}-\omega_{*}\right\|_{2}^{2}-2 \sum \nabla \ell_{t}\left(\omega_{t}\right)^{\dagger}\left(\omega_{t}-\omega_{n}\right)+2^{2}\left\|\nabla l_{d}\left(w_{t}\right)\right\|_{2}^{2} \\
& \ell\left(w_{t}\right)-\ell_{t}\left(w_{t}\right) \leqslant \nabla \ell_{t}\left(w_{t}\right)^{\top}\left(w_{t}-w_{k}\right)=\frac{\left\|w_{t}-w_{\theta}\right\|_{2}^{2}-\left\|w_{t_{t}-1}-w_{s}\right\|_{2}^{2}+\tau^{2}\left\|\nabla \ell_{t}\left(w_{t}\right)\right\|_{2}^{2}}{2 \tau} \\
& \frac{1}{t} \sum_{s=0}^{t} l\left(\omega_{t}\right)-l_{t}\left(\omega_{n}\right) \leq \frac{\sum_{s=0}^{0} \|\left(w_{s}-\omega_{o l}\left\|_{2}^{2}-\right\| \omega_{s+1}-\omega_{d}\left\|_{2}^{2}+q^{2} \sum_{s=0}^{t}\right\| \nabla \ell_{s}\left(\omega_{s}\right) \|^{s}\right.}{2 \sum^{2}} \\
& \leq \frac{\left\|w_{0}-w_{x}\right\|_{2}^{2}-\frac{\left\|w_{0 \pi}-w_{a n}\right\|_{2}^{2}+t 2_{i \leq s \leq 土}^{2}}{2 \eta t}\left\|\operatorname{mos}_{s}\right\|_{s}\left(w_{s}\right) \|_{2}^{2}}{2 \eta} \\
& \sum=\frac{1}{\sqrt{t}} \leq \frac{\left\|w_{0}-w_{A}\right\|_{2}^{2}+\max _{s}^{\max }\left\|\operatorname{De}_{1}\left(u_{s}\right)\right\|_{2}^{2}}{2 \sqrt{t}}
\end{aligned}
$$

Incremental Gradient Descent

Stochastic Gradient Descent

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)
$$

Stochastic Gradient Descent

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)
$$

Gradient Descent:

$$
\begin{aligned}
& \text { Descent: } \\
& w_{t+1}=w_{t}-\left.\eta \nabla_{w}\left(\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)\right)\right|_{w=w_{t}}=\omega_{l} \sum_{n}^{n} \sum_{i=1}^{n} \nabla_{\omega} \ell_{i}(\omega)
\end{aligned}
$$

Stochastic Gradient Descent

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)
$$

Gradient Descent:

$$
\begin{aligned}
& \text { Descent: } \\
& w_{t+1}=w_{t}-\left.\eta \nabla_{w}\left(\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)\right)\right|_{w=w_{t}}
\end{aligned}
$$

Stochastic Gradient Descent:

$$
\begin{array}{cl}
w_{t+1}=w_{t}-\left.\eta \nabla_{w} \ell_{I_{t}}(w)\right|_{w=w_{t}} & \begin{array}{l}
I_{t} \text { drawn uniform at } \\
\text { random from }\{1, \ldots, n\}
\end{array} \\
\mathbb{E}\left[\nabla \ell_{I_{t}}(w)\right]=\frac{1}{n} \sum_{i=1}^{n} \nabla \ell_{i}(w) &
\end{array}
$$

Stochastic Gradient Descent

Gradient Descent:

$$
\begin{aligned}
& \text { Descent: } \\
& w_{t+1}=w_{t}-\left.\eta \nabla_{w}\left(\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)\right)\right|_{w=w_{t}} \\
& \ell(\omega)
\end{aligned}
$$

Stochastic Gradient Descent: $\quad \ell(\omega)$

$$
\begin{aligned}
& w_{t+1}=w_{t}-\left.\eta \nabla_{w} \ell_{I_{t}}(w)\right|_{w=w_{t}} \quad \frac{I_{t} \text { drawn uniform at }}{\text { random from }\{1, \ldots, n\}} \\
& \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(w_{t}\right)-l_{t}\left(\omega_{N}\right)\right] \leq\left[\frac{\left\|\omega_{0}-\omega_{v}\right\|_{2}^{2}+\max _{s}\left\|\nabla \ell_{s}\left(\omega_{s}\right)\right\|_{2}^{2}}{2 \sqrt{T}}\right] \\
& \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[l\left(w_{t}\right)\right]-l\left(w_{*}\right)=\quad \bar{\omega}=\frac{1}{T} \sum_{t=1}^{t} \omega_{t} \\
& l\left(\bar{\omega}_{T}\right)-\ell\left(\omega_{\#}\right) \leq \frac{\|\left(\omega_{0}-\omega_{\#}\left\|_{2}^{2}+\max _{د} \mathbb{E}\right\| \nabla \ell\left(\omega_{0}\right) \|_{2}^{2}\right.}{2 \sqrt{T}}
\end{aligned}
$$

Stochastic Gradient Ascent for Logistic Regression

- Logistic loss as a stochastic function:

$$
E_{\mathbf{x}}[\ell(\mathbf{w}, \mathbf{x})]=E_{\mathbf{x}}\left[\ln P(y \mid \mathbf{x}, \mathbf{w})-\lambda\|\mathbf{w}\|_{2}^{2}\right]
$$

- Batch gradient ascent updates:

$$
w_{i}^{(t+1)} \leftarrow w_{i}^{(t)}+\eta\left\{-\lambda w_{i}^{(t)}+\frac{1}{N} \sum_{j=1}^{N} x_{i}^{(j)}\left[y^{(j)}-P\left(Y=1 \mid \mathbf{x}^{(j)}, \mathbf{w}^{(t)}\right)\right]\right\}
$$

- Stochastic gradient ascent updates:
- Online setting:
$w_{i}^{(t+1)} \leftarrow w_{i}^{(t)}+\eta_{t}\left\{-\lambda w_{i}^{(t)}+x_{i}^{(t)}\left[y^{(t)}-P\left(Y=1 \mid \mathbf{x}^{(t)}, \mathbf{w}^{(t)}\right)\right]\right\}$

