Announcements
"
» Project proposal due next week: Tuesday 10/24

« Still looking for people to work on deep learning
Phytolith project, join #phytolith slack channel

©2017 Kevin Jamieson

Gradient Descent

Machine Learning — CSE546
Kevin Jamieson
University of Washington

[9
October 8, 2016

©Kevin Jamieson 2017

Machine Learning Problems
" JE

= Have a bunch of iid data of the form:

= Learning a model’s parameters: ' Snlan
; i " tiw) FD e

Each /;(w) is convex. £ F H g isa
$u5-§o"o-(/(‘¢,\€ «t SC

Y
7 is a subgradient at x if
v T fly) > f(z)+g" (y—x)
f convex:

f) = flx)+ V@) (y—) Va,y

Machine Learning Problems
" JE—

= Have a bunch of iid data of the form:
{(z3,9i) Fizq Tq € R y; € R

= Learning a model’s parameters: Z ¢ (w)

Each ¢;(w) is convex. = L
1=1

Logistic Loss: £;(w) = log(1 + exp(—y; 21 w))

Squared error Loss: £;(w) = (y; — QJ;F”LU)Q U

©Kevin Jamieson 2017 25

Taylor Series Approximation
"
= Taylor series in one dimension:

f(x+9) :ﬁ) + f’(:z;)éjL 5f (a:)/d) +

» Gradient descent:

LR () E (o) € (02) § 43108

f(-260) G882 = 2¢1»

\

£+ §)

S(x)+{' 114§

(%0

Taylor Series Approximatien e
L Y PP onvex V) b0 v
= Taylor serieF I NS — ‘/”{
T+ Ha ot N2 (x)p + ..

= Gradient descent:

£+)+ VA Y

(7~ 2va) dz)- R
k‘ e
i

©Kevin Jamieson 2017

LJQ;O W, =W, +12
General case e b

In general for Newton’s

So why are ML problems overwhelmingly solved
by gradient methods?

Hint: v; is solution to : V2 f(w;)vy = —V f(wy)

©Kevin Jamieson 2017 36

General Convex case f(w:) — f(w.) <e¢
I

Newton’s method: A < E
t~log(log(l/e)) R-A%0
Gradient descent: R4 s PSD
Clean * fis smooth and strongly convex: al =< V2 f(w) < bl
converge
;ziﬁs ‘;2:1£E[C¥y (//Ck;:>
Bubeck

e fis smooth: V*f(w) < bl
b o wollod |2
{tﬁ —f Mq'ylero\l! d €
- f is potentially non-differentiable: ||V f(w)||2 < ¢
V=

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad, ...

©Kevin Jamieson 2017 37

Nocedal
+Wright,
Bubeck

Revisiting...

Logistic Regression

Machine Learning — CSE546
Kevin Jamieson
University of Washington

/¥
October 16, 2016

©Kevin Jamieson 2017

Loss function: Conditional Likelihood
" S

= Have a bunch of iid data of the form: {(:Ez,yz) ?:1 T ERd, y; € {—1,1}

1
1+ exp(—yw'z)

,fi,___i_

f(w) = arg minZlog(l + exp(—y;] w)) (+e” |+4-
i=1

~ ']
Vf(”w) — Z | + ey,o(-%xc?‘w) K e)‘ﬂ(-‘fcx‘; ws
- Z (¢ = okte) (“%7&)
o Wo 20 |
N = ez Wea = Ve~ L0l)
) =

(— Expl-v, K w)

'&}MLE :argmt?XHP(yda;i,w) P(Y = ylz,w) =
=1

Online Learning

Machine Learning — CSE546
Kevin Jamieson
University of Washington

]9
Octoberjg 2016

©Kevin Jamieson 2017

Going to the moon

Moon at armval time
@
)

~ Moon at TuU

Earth's equatonal plane

Guidance computer predicts trajectories
around moon and back with

- Noisy sensors

- Imperfect models

- Little computational power

- Big risk of failure

©Kevin Jamieson 2017

Going to the moon

Moon at arrival time
(™
(@)

~ Moon at TuU

Earth's equatonal plane

Guidance computer predicts trajectories
around moon and back with

- Noisy sensors

- Imperfect models Apollo 13
- Little computational power

- Big risk of failure Why is Tom Hanks flying erratically?

Because they didn’t have the power to
turn on the Kalman Fliter!

©Kevin Jamieson 2017 6

State Estimation
" S

- Predict current state given past state and current control input

ﬂj/n — f(wn—l) + g(un)

- Given current context, Uy, compare your prediction to noisy measurement Y,

U (Wn) = (Yn — h(wna@n))2

- Update current state to include measurement

Wy, = Wy, — K, Viply(w)|

W=Wy,

Kalman filter does optimal least squares state estimation if f, g, h are linear!

©Kevin Jamieson 2017 7

Recursive Least Squares (RLS)
" S

Least squares = special case of Kalman Filter: no dynamics, no control

Wy, = f(wn—1) + g(un)
- wn-(

U (Wn) = (Yn — Wy, Wn))? hixs) =¥y
= (L/“ - 3(: lf/z\\z
- (qm- Inrb/u‘.>1

- YN

- A=\ + 2 (qn-llh/“-,) Kjﬂly\

Wy = Wy, — KanEn(w)|w .

©Kevin Jamieson 2017

Recursive Least Squares (RLS)

Least squares = special case of Kalman Filter: no dynamics, no control

= (Yn — T Wn)" deally:
— (yn — xzwn_1)2 —argmlnz — 2l w)
W, = K, Vul,(w ! _a

Recursive Least Squares (RLS)

Ayt A1
. T\-1 _ -1 _
Sherman—Morrison: (A+uv')" =A4A R yE

|deally: n
Wy, :\ﬂg min) (yi —ajw)|

1=1

(ﬁ;‘z;% f'xn‘/«B n= (- ‘1;1‘.7). ‘zsn-f_sﬁx_"

- ‘f:“.'/\/— o l < 22:7 = e
Xé’(b(Xx7™ Ry $\ — X Ye ""*-‘ *,9,4

4 _f ~/ by
“'((W’S"- () 2. X (XX) >(XT‘/ . lujD

| +xF (xx7 ',

- = SW‘ zT gﬁ-
R = | CORE Y
N — T 7mTa s

V\
©Kevin Jamieson 2017 10

Recursive Least Squares (RLS)
" S
Wp = (é ZZT>_ éxzyz

Great, what'’s the time-complexity of this?

CILS (wq feis -veu‘ar - /119/7

Itis 2017. Not the 60’s... is limited computation still really a problem?

©Kevin Jamieson 2017

11

Digital Signal Processing

The original “Big Data”

Wifi/cell-phones are constantly solving Low power devices, high data rates

least squares to invert out multipath

©Kevin Jamieson 2017 12

Digital Signal Processing

The original “Big Data”

Wifi/cell-phones are constantly solving Low power devices, high data rates

least squares to invert out multipath
YouTube Uploads: > 300 Hours of Video per Minute

You([T)

Moyl
i | !

Gigabytes of data per second

©Kevin Jamieson 2017 13

Incremental Gradient Descent

Note: no matrix multiply
(¢, y:) arrive: /

Wil = W — 1) {Vw(yt - xfw)ﬂw:wt}

We know RLS is exact. How much worse is this?

In general convex ¢;(w) arrives:

{() is convex <= £(y) > (x) + V() (y — x) Va,y

©Kevin Jamieson 2017

] ‘4/{11 - % - ZV-Q[WeB
Incremental Gradient Descent

" S
Jwipr — wall3 = |Jwe = Ve (we) — w.l|3

= luohl® -~ 220 (k) + 2 N0l

Y - I il + 2 N0,
o)~ Jlea) £V 4, 1) (we = 14) = e = vhlls Il *

7'97_67 Yl < g 0l sl # Zloata
PR

22
[(We - W,.Ilz2 Mty tll, I ol AT, I
(274

I\

Z:é 4 ax 2
¢ Mwe-codl,” + 75 [0l

©Kevin Jamieson 2017

Incremental Gradient Descent
"

©Kevin Jamieson 2017

Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:
{(zi,yi) bia z; €RY y eR
= Learning a model’s parameters:

1 n
Each ¢;(w) is convex. o Zl li(w)
1=

©Kevin Jamieson 2017

17

Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:;

{(@s, 93) Hieq z; € RY y; € R
= Learning a model’s parameters: 1>
Each ¢;(w) is convex. o Zl li(w)
1=

Gradient Descent:

n 4
s =9 (230000 |2 u AL T AL

Wt

©Kevin Jamieson 2017 18

Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:;

{(ziyi) Hies r;€RY oy €R
= Learning a model’s parameters: 1"
Each ¢;(w) is convex. - Zl li(w)
1=

Gradient Descent:

1 n
— - w | — 67, ‘
Wi41 Wi nV <’[’L ; (’UJ)) ww,

Stochastic Gradient Descent:
I; drawn uniform at

Wit1 = Wy — NVl (w>‘w:w random from {1,...,n}

E[Ve, (w)] = 7 20 P2

©Kevin Jamieson 2017

19

Stochastic Gradient Descent
" S
Gradient Descent:
Wt41 — Wt — (Zf) ’w:wt

Stochastic Gradient Descent: Q(U)

It drawn uniform at
“rapdom from {1,...,n}

Nw—wnll,S + 75 HM(%WI

E Z’um &/v% ‘)

W41 = Wt — nV g[t

J*r

:% ”

S

-

T
%TIE g_/uef_g D (wy) =
v Uz ~ " [E (| 0LL (S

Stochastic Gradient Ascent for Logistic

Reﬁression
|

= Logistic loss as a stochastic function:

Ex [6(w,x)] = Ex [In P(y|x,w) — Al[wl|3]
= Batch gradient ascent updates:

N
wgtH) — w,gt) + 1 {—)\w,@ +]E:l xgj)[ym — P(Y = 1|x(3),w(t))]}

= Stochastic gradient ascent updates:
Online setting:

wgtﬂ) — wgt) + 1y {—)\wzw + a:z(-t> y® — Py =1|x, w(t))]}

©Sham Kakade 2016 21

