
Announcements

1©2017 Kevin Jamieson

• Project proposal due next week: Tuesday 10/24

• Still looking for people to work on deep learning
Phytolith project, join #phytolith slack channel

©Kevin Jamieson 2017
22

Gradient Descent

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 16, 2016

©Kevin Jamieson 2017

Machine Learning Problems

24

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd

yi 2 R
nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.

x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2
f(x) � `I 8x

f `-strongly convex:

f (�x+ (1� �)y)  �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

g is a subgradient at x if f(y) � f(x) + g

T (y � x)

g is a subgradient at x if f(y) � f(x) + g

T (y � x)

©Kevin Jamieson 2017

Machine Learning Problems

25

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi x
T
i w))

Squared error Loss: `i(w) = (yi � x

T
i w)

2

xi 2 Rd
yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)
Each `i(w) is convex.

©Kevin Jamieson 2017

Taylor Series Approximation

28

■ Taylor series in one dimension:

f(x+ �) = f(x) + f

0(x)� + 1
2f

00(x)�2 + . . .

■ Gradient descent:

©Kevin Jamieson 2017

Taylor Series Approximation

29

■ Taylor series in d dimensions:

f(x+ v) = f(x) +rf(x)T v + 1
2v

Tr2
f(x)v + . . .

■ Gradient descent:

©Kevin Jamieson 2017

General case

36

In general for Newton’s method to achieve f(wt)� f(w⇤)  ✏:

So why are ML problems overwhelmingly solved
by gradient methods?

vt is solution to : r2f(wt)vt = �rf(wt)Hint:

©Kevin Jamieson 2017

General Convex case

37

f(wt)� f(w⇤)  ✏

Newton’s method:

t ⇡ log(log(1/✏))

Gradient descent:
• f is smooth and strongly convex: :  
 

• f is smooth:  
 

• f is potentially non-differentiable:

r2f(w) � bI

aI � r2f(w) � bI

||rf(w)||2  c

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,…
Nocedal
+Wright,
Bubeck

Clean
converge
nce
proofs:
Bubeck

©Kevin Jamieson 2017
2

Revisiting… 
Logistic Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 16, 2016

©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

3

{(xi, yi)}ni=1 xi 2 Rd
, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y w

T
x)

bwMLE = argmax

w

nY

i=1

P (yi|xi, w)

= argmin

w

nX

i=1

log(1 + exp(�yi x
T
i w))f(w)

rf(w) =

©Kevin Jamieson 2017
4

Online Learning

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2016

©Kevin Jamieson 2017

Going to the moon

5

Guidance computer predicts trajectories
around moon and back with
- Noisy sensors
- Imperfect models
- Little computational power
- Big risk of failure

©Kevin Jamieson 2017

Going to the moon

6

Guidance computer predicts trajectories
around moon and back with
- Noisy sensors
- Imperfect models
- Little computational power
- Big risk of failure Why is Tom Hanks flying erratically?

Because they didn’t have the power to
turn on the Kalman FIlter!

Apollo 13

©Kevin Jamieson 2017

State Estimation

7

- Predict current state given past state and current control input 
 
 
 

- Given current context, compare your prediction to noisy measurement 
 
 
 

- Update current state to include measurement

xn yn

wn = ewn �Knrw`n(w)
��
w= ewn

`n(ewn) = (yn � h(xn, ewn))
2

Kalman filter does optimal least squares state estimation if f, g, h are linear!

ewn = f(wn�1) + g(un)

©Kevin Jamieson 2017

Recursive Least Squares (RLS)

8

Least squares = special case of Kalman Filter: no dynamics, no control

ewn = f(wn�1) + g(un)

`n(ewn) = (yn � h(xn, ewn))
2

wn = ewn �Knrw`n(w)
��
w= ewn

©Kevin Jamieson 2017

Recursive Least Squares (RLS)

9

ewn = f(wn�1) + g(un)
= wn�1

`n(ewn) = (yn � h(xn, ewn))
2

wn = ewn �Knrw`n(w)
��
w= ewn

= (yn � x

T
n ewn)

2

= (yn � x

T
nwn�1)

2

= wn�1 + 2(yn � x

T
nwn�1)Knxn

Ideally:
wn = argmin

w

nX

i=1

(yi � x

T
i w)

2

Least squares = special case of Kalman Filter: no dynamics, no control

©Kevin Jamieson 2017

Recursive Least Squares (RLS)

10

wn =

nX

i=1

xix
T
i

!�1 nX

i=1

xiyi

Sherman–Morrison:

Ideally:
wn = argmin

w

nX

i=1

(yi � x

T
i w)

2

©Kevin Jamieson 2017

Recursive Least Squares (RLS)

11

wn =

nX

i=1

xix
T
i

!�1 nX

i=1

xiyi

Great, what’s the time-complexity of this?

It is 2017. Not the 60’s… is limited computation still really a problem?

©Kevin Jamieson 2017

Digital Signal Processing

12

The original “Big Data”

Low power devices, high data ratesWifi/cell-phones are constantly solving
least squares to invert out multipath

©Kevin Jamieson 2017

Digital Signal Processing

13

The original “Big Data”

Low power devices, high data ratesWifi/cell-phones are constantly solving
least squares to invert out multipath

Gigabytes of data per second

©Kevin Jamieson 2017

Incremental Gradient Descent

14

wt+1 = wt � ⌘

h
rw(yt � x

T
t w)

2
��
w=wt

i
(xt, yt) arrive:

In general convex `t(w) arrives:

`(·) is convex () `(y) � `(x) +r`(x)

T
(y � x) 8x, y

Note: no matrix multiply

We know RLS is exact. How much worse is this?

©Kevin Jamieson 2017

Incremental Gradient Descent

15

||wt+1 � w⇤||22 = ||wt � ⌘r`t(wt)� w⇤||22

©Kevin Jamieson 2017

Incremental Gradient Descent

16

©Kevin Jamieson 2017

Stochastic Gradient Descent

17

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd

yi 2 R
■ Learning a model’s parameters:

Each `i(w) is convex.
1

n

nX

i=1

`i(w)

©Kevin Jamieson 2017

Stochastic Gradient Descent

18

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd

yi 2 R
■ Learning a model’s parameters:

Each `i(w) is convex.
1

n

nX

i=1

`i(w)

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

©Kevin Jamieson 2017

Stochastic Gradient Descent

19

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd

yi 2 R
■ Learning a model’s parameters:

Each `i(w) is convex.
1

n

nX

i=1

`i(w)

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

Stochastic Gradient Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at

random from {1, . . . , n}

E[r`It(w)] =

©Kevin Jamieson 2017

Stochastic Gradient Descent

20

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

Stochastic Gradient Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at

random from {1, . . . , n}

©Sham Kakade 2016

Stochastic Gradient Ascent for Logistic
Regression

■ Logistic loss as a stochastic function:

■ Batch gradient ascent updates:

■ Stochastic gradient ascent updates:
Online setting:

21

