Announcements
"
» Project proposal due next week: Tuesday 10/24

« Still looking for people to work on deep learning
Phytolith project, join #phytolith slack channel
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Machine Learning Problems
" JE

= Have a bunch of iid data of the form:

= Learning a model’s parameters: ' Snlan
; i " tiw) FD e

Each /;(w) is convex. £ F H g isa
$u5-§o"o-(/(‘¢,\€ «t SC

Y
7 is a subgradient at x if
v T fly) > f(z)+g" (y—x)
f convex:

f) = flx)+ V@) (y— ) Va,y



Machine Learning Problems
" JE—

= Have a bunch of iid data of the form:
{(z3,9i) Fizq Tq € R y; € R

= Learning a model’s parameters: Z ¢ (w)

Each ¢;(w) is convex. = L
1=1

Logistic Loss: £;(w) = log(1 + exp(—y; 21 w))

Squared error Loss: £;(w) = (y; — QJ;F”LU)Q U
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Taylor Series Approximation
"
= Taylor series in one dimension:

f(x+9) :ﬁ) + f’(:z;)éjL 5f (a:)/d) +

» Gradient descent:

LR () E (o) € (02) § 43108

f(-260) G882 = 2¢1»

\

£+ §)

S(x)+{' 114§
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Taylor Series Approximatien e
L Y PP onvex V) b0 v
= Taylor serieF I NS — ‘/”{
T+ Ha ot N2 (x)p + ..

= Gradient descent:

£+ )+ VA Y

(7~ 2va) dz)- R
k‘ e
i
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LJQ;O W, =W, +12
General case e b

In general for Newton’s

So why are ML problems overwhelmingly solved
by gradient methods?

Hint: v; is solution to : V2 f(w;)vy = —V f(wy)
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General Convex case f(w:) — f(w.) <e¢
I

Newton’s method: A < E
t~log(log(l/e))  R-A%0
Gradient descent: R4 s PSD
Clean * fis smooth and strongly convex: al =< V2 f(w) < bl
converge
;ziﬁs ‘;2:1£E[C¥y (//Ck;:>
Bubeck

e fis smooth: V*f(w) < bl
b o wollod |2
{tﬁ —f Mq'ylero\l! d €
- f is potentially non-differentiable: ||V f(w)||2 < ¢
V=

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad, ...
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Revisiting...

Logistic Regression
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Loss function: Conditional Likelihood
" S

= Have a bunch of iid data of the form: {(:Ez,yz) ?:1 T ERd, y; € {—1,1}

1
1+ exp(—yw'z)

,fi,___i_

f(w) = arg minZlog(l + exp(—y; ] w)) (+e” |+4-
i=1

~ ' ]
Vf(”w) — Z | + ey,o(-%xc?‘w) K e)‘ﬂ(-‘fcx‘; ws
- Z (¢ = okte) (“%7&)
o Wo 20 |
N = ez Wea = Ve~ L0l )
) =

( — Expl-v, K w)

'&}MLE :argmt?XHP(yda;i,w) P(Y = ylz,w) =
=1




Online Learning
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Going to the moon

Moon at armval time
@
)

~ Moon at TuU

Earth's equatonal plane

Guidance computer predicts trajectories
around moon and back with

- Noisy sensors

- Imperfect models

- Little computational power

- Big risk of failure
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Going to the moon

Moon at arrival time
( ™
(@)

~ Moon at TuU

Earth's equatonal plane

Guidance computer predicts trajectories
around moon and back with

- Noisy sensors

- Imperfect models Apollo 13
- Little computational power

- Big risk of failure Why is Tom Hanks flying erratically?

Because they didn’t have the power to
turn on the Kalman Fliter!
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State Estimation
" S

- Predict current state given past state and current control input

ﬂj/n — f(wn—l) + g(un)

- Given current context, Uy, compare your prediction to noisy measurement Y,

U (Wn) = (Yn — h(wna@n))2

- Update current state to include measurement

Wy, = Wy, — K, Viply(w)|

W=Wy,

Kalman filter does optimal least squares state estimation if f, g, h are linear!
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Recursive Least Squares (RLS)
" S

Least squares = special case of Kalman Filter: no dynamics, no control

Wy, = f(wn—1) + g(un)
- wn-(

U (Wn) = (Yn — Wy, Wn))? hixs) =¥y
= (L/“ - 3(: lf/z\\z
- (qm- Inrb/u‘.>1

- YN

- A=\ + 2 (qn-llh/“-,) Kjﬂly\

Wy = Wy, — KanEn(w)|w .
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Recursive Least Squares (RLS)

Least squares = special case of Kalman Filter: no dynamics, no control

= (Yn — T Wn)" deally:
— (yn — xzwn_1)2 —argmlnz — 2l w)
W, = K, Vul,(w ! _a



Recursive Least Squares (RLS)

Ayt A1
. T\-1 _ -1 _
Sherman—Morrison: (A+uv' )" =A4A R yE

|deally: n
Wy, :\ﬂg min ) (yi —ajw)|

1=1

(ﬁ;‘z;% f'xn‘/«B n= ( - ‘1;1‘.7). ‘zsn-f_sﬁx_"

- ‘f:“.'/\/— o l < 22:7 = e
Xé’(b( Xx7™ Ry $\ — X Ye ""*-‘ *,9,4

4 _f ~/ by
“'((W’S"- () 2. X (XX) >(XT‘/ . lujD

| +xF (xx7 ',

- = SW‘ zT gﬁ-
R = | CORE Y
N — T 7mTa s

V\
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Recursive Least Squares (RLS)
" S
Wp = (é $Z$ZT>_ éxzyz

Great, what'’s the time-complexity of this?

CILS (wq feis -veu‘ar - /119/7

Itis 2017. Not the 60’s... is limited computation still really a problem?
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Digital Signal Processing

The original “Big Data”

Wifi/cell-phones are constantly solving Low power devices, high data rates

least squares to invert out multipath
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Digital Signal Processing

The original “Big Data”

Wifi/cell-phones are constantly solving Low power devices, high data rates

least squares to invert out multipath
YouTube Uploads: > 300 Hours of Video per Minute

You([T)

Moyl
i | !

Gigabytes of data per second
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Incremental Gradient Descent

Note: no matrix multiply
(¢, y:) arrive: /

Wil = W — 1) {Vw(yt - xfw)ﬂw:wt}

We know RLS is exact. How much worse is this?

In general convex ¢;(w) arrives:

{() is convex <= £(y) > (x) + V() (y — x) Va,y
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] ‘4/{11 - % - ZV-Q[WeB
Incremental Gradient Descent

" S
Jwipr — wall3 = |Jwe = Ve (we) — w.l|3

= luohl® -~ 220 (k) + 2 N0l

Y - I il + 2 N0,
o)~ Jlea) £V 4, 1) (we = 14 ) = e = vhlls Il *

7'97_67 Yl < g 0l sl # Zloata
PR

22
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Z:é 4 ax 2
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Incremental Gradient Descent
"

©Kevin Jamieson 2017



Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:
{(zi,yi) bia z; €RY y eR
= Learning a model’s parameters:

1 n
Each ¢;(w) is convex. o Zl li(w)
1=
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Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:;

{(@s, 93) Hieq z; € RY y; € R
= Learning a model’s parameters: 1>
Each ¢;(w) is convex. o Zl li(w)
1=

Gradient Descent:

n 4
s =9 (230000 |2 u AL T AL

Wt
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Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:;

{(ziyi) Hies r;€RY oy €R
= Learning a model’s parameters: 1"
Each ¢;(w) is convex. - Zl li(w)
1=

Gradient Descent:

1 n
— - w | — 67, ‘
Wi41 Wi nV <’[’L ; (’UJ)) ww,

Stochastic Gradient Descent:
I; drawn uniform at

Wit1 = Wy — NVl (w>‘w:w random from {1,...,n}

E[Ve, (w)] = 7 20 P2
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Stochastic Gradient Descent
" S
Gradient Descent:
Wt41 — Wt — ( Zf ) ’w:wt

Stochastic Gradient Descent: Q(U)

It drawn uniform at
“rapdom from {1,...,n}

Nw—wnll,S + 75 HM(%WI

E Z’um &/v% ‘ )

W41 = Wt — nV g[t

J*r

:% ”

S

-

T
%TIE g_/uef_g D (wy) =
v Uz ~ " [E (| 0LL (S




Stochastic Gradient Ascent for Logistic

Reﬁression
|

= Logistic loss as a stochastic function:

Ex [6(w,x)] = Ex [In P(y|x,w) — Al[wl|3]
= Batch gradient ascent updates:

N
wgtH) — w,gt) + 1 {—)\w,@ + ]E:l xgj)[ym — P(Y = 1|x(3),w(t))]}

= Stochastic gradient ascent updates:
Online setting:

wgtﬂ) — wgt) + 1y {—)\wzw + a:z(-t> y® — Py =1|x, w(t))]}
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