Announcements

Project proposal due tonight!

©2017 Kevin Jamieson

Stochastic Gradient Descent

Have a bunch of iid data of the form:

$$\{(x_i, y_i)\}_{i=1}^n$$

$$x_i \in \mathbb{R}^d$$

$$y_i \in \mathbb{R}$$

Learning a model's parameters:

Each
$$\ell_i(w)$$
 is convex.

$$\frac{1}{n} \sum_{i=1}^{n} \ell_i(w)$$

Stochastic Gradient Descent

$$\{(x_i, y_i)\}_{i=1}^n$$

$$x_i \in \mathbb{R}^d$$
 $y_i \in \mathbb{R}$

$$y_i \in \mathbb{R}$$

Learning a model's parameters:

Each
$$\ell_i(w)$$
 is convex.

$$\frac{1}{n} \sum_{i=1}^{n} \ell_i(w)$$

Gradient Descent:

w_{t+1} =
$$w_t - \eta \nabla_w \left(\frac{1}{n} \sum_{i=1}^n \ell_i(w) \right) \Big|_{w=w_t}$$

Stochastic Gradient Descent

$$\{(x_i, y_i)\}_{i=1}^n$$

$$x_i \in \mathbb{R}^d$$
 $y_i \in \mathbb{R}$

$$y_i \in \mathbb{R}$$

Learning a model's parameters:

Each
$$\ell_i(w)$$
 is convex.

$$\frac{1}{n} \sum_{i=1}^{n} \ell_i(w)$$

Gradient Descent:

$$w_{t+1} = w_t - \eta \nabla_w \left(\frac{1}{n} \sum_{i=1}^n \ell_i(w) \right) \Big|_{w = w_t}$$

Stochastic Gradient Descent:

$$w_{t+1} = w_t - \eta \nabla_w \ell_{I_t}(w) \Big|_{w = w_t}$$

 I_t drawn uniform at random from $\{1, \ldots, n\}$

$$\mathbb{E}[\nabla \ell_{I_t}(w)] =$$

Stochastic Gradient Descent: A Learning perspective

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 24, 2017

Learning Problems as Expectations

- Given dataset:
 - Sampled iid from some distribution p(x) on features:
- Loss function, e.g., hinge loss, logistic loss,...
- We often minimize loss in training data:

$$\ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ell(\mathbf{w}, \mathbf{x}^j)$$

However, we should really minimize expected loss on all data:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

So, we are approximating the integral by the average on the training data

©Kevin Jamieson 2016 6

Gradient descent in Terms of Expectations

"True" objective function:

$$E_{\mathbf{x}}\left[\ell(\mathbf{w}, \mathbf{x})\right]$$

Taking the gradient:

"True" gradient descent rule:

How do we estimate expected gradient?

SGD: Stochastic Gradient Descent

$$\nabla \ell(\mathbf{w}) = E_{\mathbf{x}} \left[\nabla \ell(\mathbf{w}, \mathbf{x}) \right]$$

One iid sample estimate:

How many iid samples do we have?

See [Hardt, Recht, Singer 2016] for resolution based on stability

Perceptron

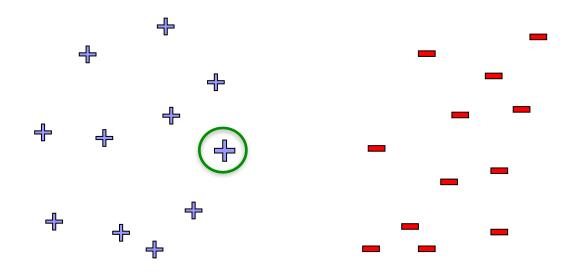
Machine Learning – CSE546 Kevin Jamieson University of Washington

October 24, 2017

Online learning

- Click prediction for ads is a streaming data task:
 - User enters query, and ad must be selected
 - Observe x^j, and must predict y^j
 - User either clicks or doesn't click on ad
 - Label y^j is revealed afterwards
 - Google gets a reward if user clicks on ad
 - Update model for next time

Online classification



New point arrives at time k

The Perceptron Algorithm [Rosenblatt '58, '62]

- Classification setting: y in {-1,+1}
- Linear model
 - Prediction:
- **Training:**
 - Initialize weight vector:
 - At each time step:
 - Observe features:
 - Make prediction:
 - Observe true class:
 - Update model:
 - If prediction is not equal to truth

The Perceptron Algorithm [Rosenblatt '58, '62]

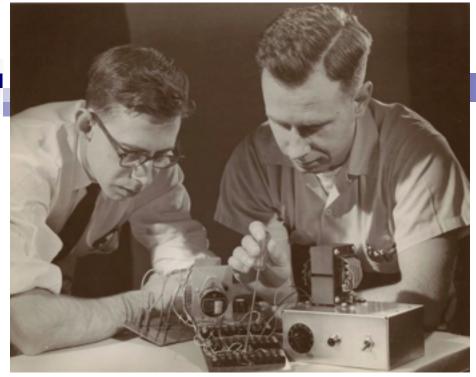


- Linear model
 - Prediction: $sign(w^T x_i + b)$
- Training:
 - Initialize weight vector: $w_0 = 0, b_0 = 0$
 - At each time step:
 - Observe features: \mathcal{X}_k
 - $\operatorname{sign}(x_k^T w_k + b_k)$ Make prediction:
 - Observe true class:

$$y_k$$

- Update model:
 - If prediction is not equal to truth

$$\begin{bmatrix} w_{k+1} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} w_k \\ b_k \end{bmatrix} + y_k \begin{bmatrix} x_k \\ 1 \end{bmatrix}$$

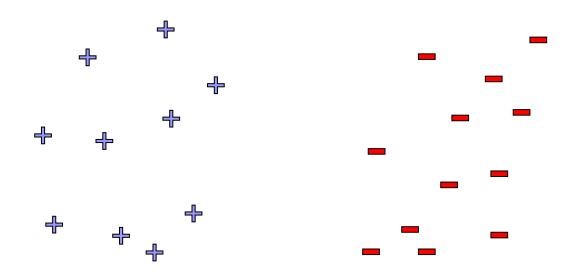


Rosenblatt 1957

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

Linear Separability



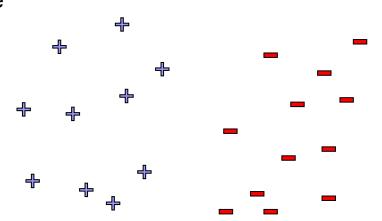
- Perceptron guaranteed to converge if
 - Data linearly separable:

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
 - Given a sequence of labeled examples:
 - Each feature vector has bounded norm:
 - If dataset is linearly separable:
- Then the number of mistakes made by the online perceptron on any such sequence is bounded by

Beyond Linearly Separable Case

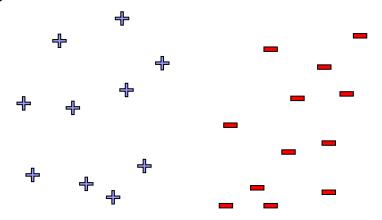
- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data



©Kevin Jamieson 2016 17

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data
- Perceptron is useless in practice!
 - Real world not linearly separable
 - If data not separable, cycles forever and hard to detect
 - Even if separable may not give good generalization accuracy (small margin)



18

What is the Perceptron Doing???

- When we discussed logistic regression:
 - Started from maximizing conditional log-likelihood

- When we discussed the Perceptron:
 - Started from description of an algorithm

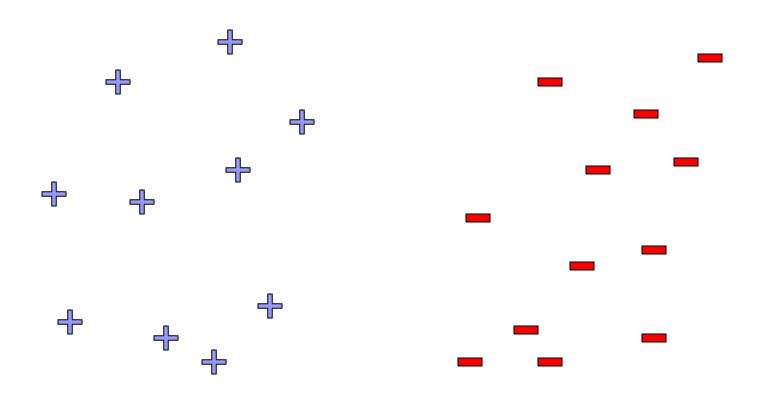
• What is the Perceptron optimizing????

Support Vector Machines

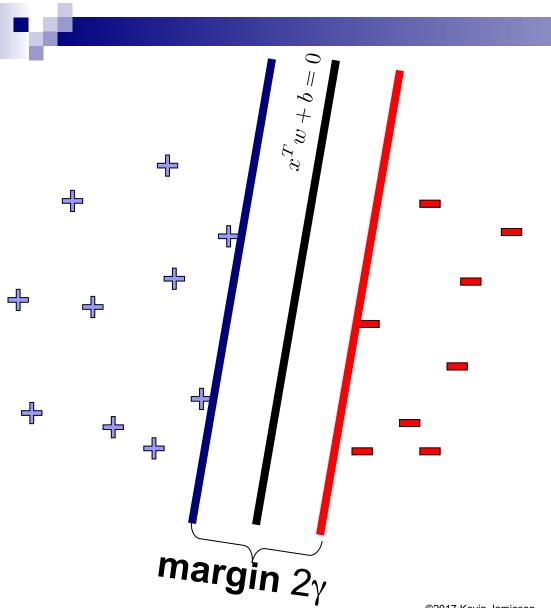
Machine Learning – CSE446 Kevin Jamieson University of Washington

October 24, 2017

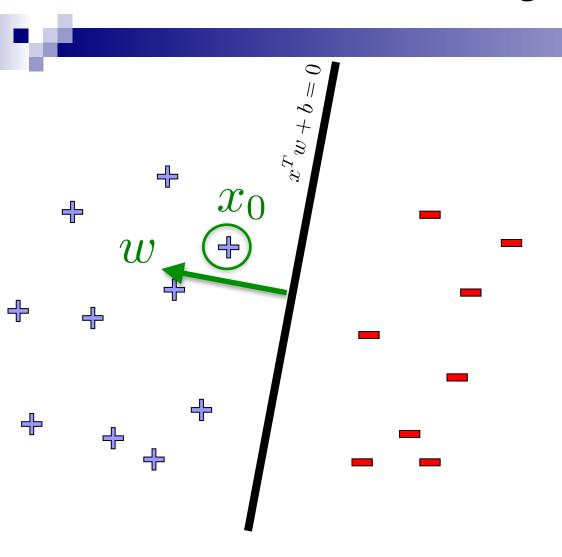
Linear classifiers – Which line is better?



©2017 Kevin Jamieson 21

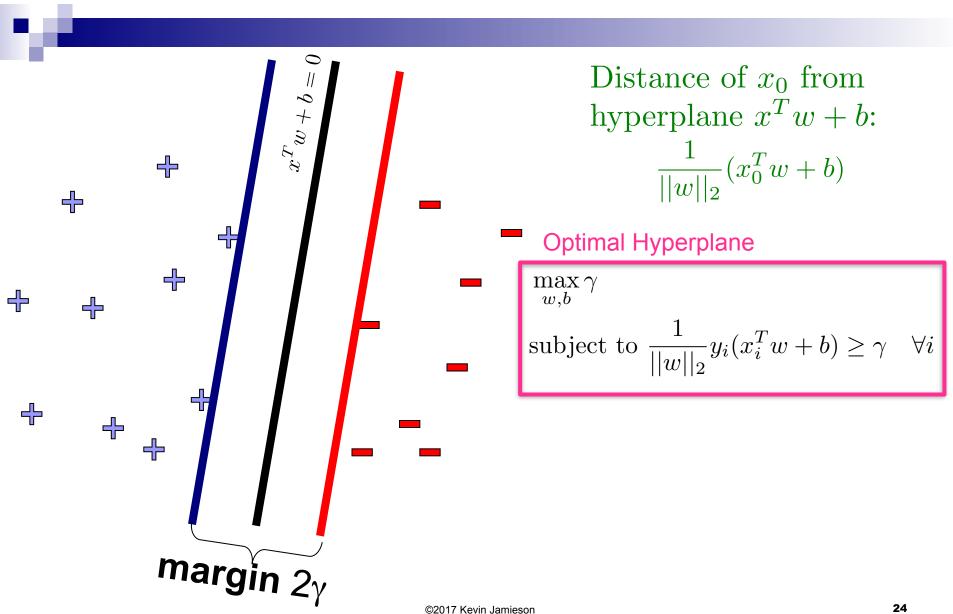


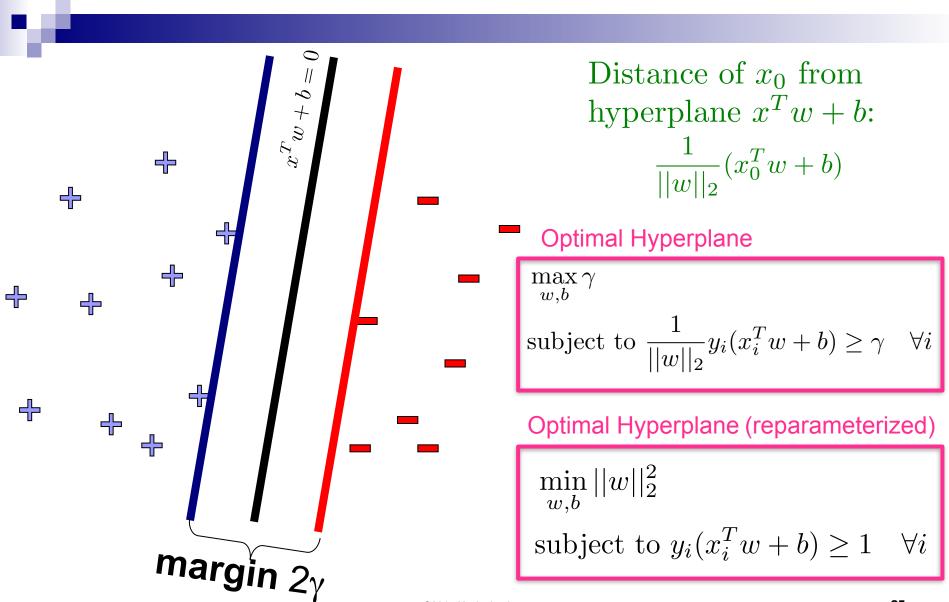
22



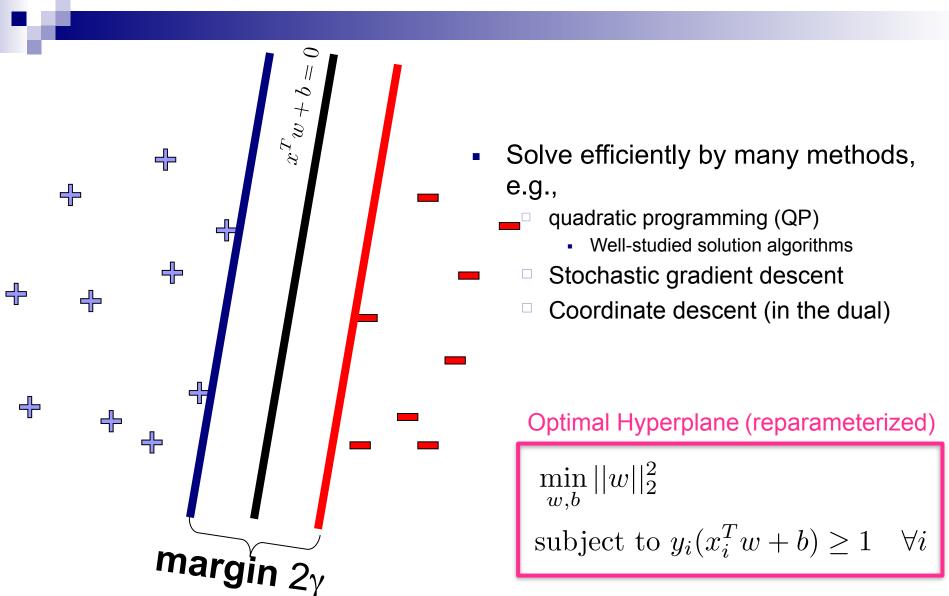
Distance of x_0 from hyperplane $x^T w + b$:

$$\frac{1}{||w||_2}(x_0^T w + b)$$



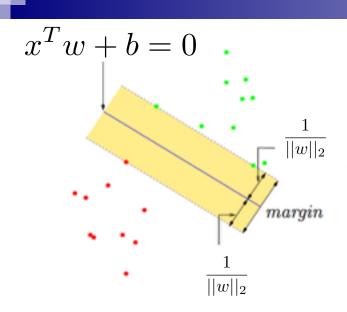


©2017 Kevin Jamieson 25



©2017 Kevin Jamieson 26

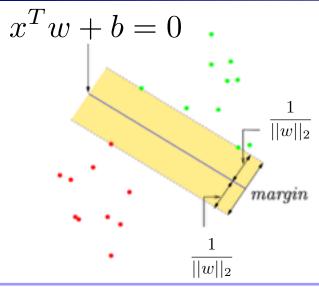
What if the data is still not linearly separable?

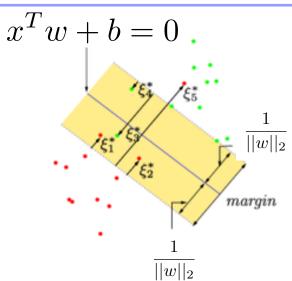


If data is linearly separable

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

What if the data is still not linearly separable?





If data is linearly separable

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

• If data is not linearly separable, some points don't satisfy margin constraint:

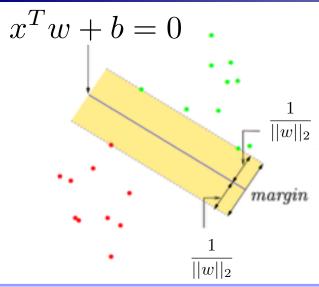
$$\min_{w,b} ||w||_2^2$$

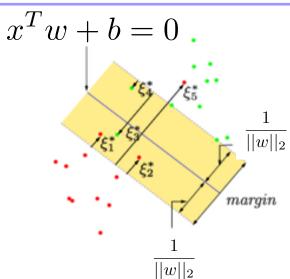
$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

©2017 Kevin Jamieson 28

What if the data is still not linearly separable?





If data is linearly separable

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

 If data is not linearly separable, some points don't satisfy margin constraint:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

What are "support vectors?"

©2017 Kevin Jamieson 29

SVM as penalization method

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

SVM as penalization method

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

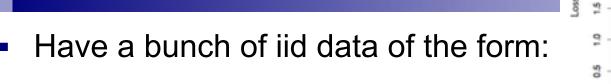
$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

Using same constrained convex optimization trick as for lasso:

For any $\nu \geq 0$ there exists a $\lambda \geq 0$ such that the solution the following solution is equivalent:

$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2$$

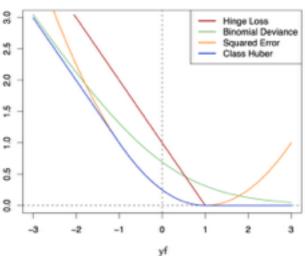
Machine Learning Problems



$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d$$

$$x_i \in \mathbb{R}^d$$

$$y_i \in \mathbb{R}$$



Learning a model's parameters:

Each $\ell_i(w)$ is convex.

$$\sum_{i=1}^{n} \ell_i(w)$$

Hinge Loss: $\ell_i(w) = \max\{0, 1 - y_i x_i^T w\}$

Logistic Loss: $\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$

Squared error Loss: $\ell_i(w) = (y_i - x_i^T w)^2$

How do we solve for w? The last two lectures!

32 ©Kevin Jamieson 2017

SVMs vs logistic regression

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?

- For classification loss, logistic and svm are comparable
- Multiclass setting:
 - Softmax naturally generalizes logistic regression
 - □ SVMs have
- What about good old least squares?

What about multiple classes?

