Announcements

- Project proposal due tonight!

Stochastic Gradient Descent

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)
$$

Stochastic Gradient Descent

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)
$$

Gradient Descent:

$$
\begin{aligned}
& \text { Descent: } \\
& w_{t+1}=w_{t}-\left.\eta \nabla_{w}\left(\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)\right)\right|_{w=w_{t}}
\end{aligned}
$$

Stochastic Gradient Descent

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.
Gradient Descent:

Stochastic Gradient Descent:

$$
\begin{aligned}
& w_{t+1}=w_{t}-\eta \nabla_{w} \ell_{I_{t}}(w){ }^{0}=\begin{array}{l}
I_{t} \text { drawn uniform at } \\
\text { random from }\{1, \ldots, n\}
\end{array} \\
& \mathbb{E}\left[\nabla \ell_{I_{t}}(w)\right]=\mathbb{E}\left[f\left(\bar{w}_{\tau}\right)\right]-f\left(w_{*}\right) \leq \frac{c}{\sqrt{T}}
\end{aligned}
$$

Stochastic Gradient Descent: A Learning perspective

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 24, 2017

Learning Problems as Expectations

- Minimizing loss in training data:
\square Given dataset:

$$
D=\left\{\left(x_{i}, y_{i}\right]_{i=1}^{n}\right.
$$

- Sampled iid from some distribution $p(\mathbf{x})$ on features:
\square Loss function, e.g., hinge loss, logistic loss,...
\square We often minimize loss in training data:

$$
\ell_{\underline{\mathcal{D}}}(\mathbf{w})=\frac{1}{N} \sum_{j=1}^{N} \ell\left(\mathbf{w}, \mathbf{x}^{j}\right)
$$

- However, we should really minimize expected loss on all data:

$$
\ell(\mathbf{w})=E_{\mathbf{x}}[\ell(\mathbf{w}, \mathbf{x})]=\int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d \mathbf{x}
$$

- So, we are approximating the integral by the average on the training data

Gradient descent in Terms of Expectations

- "True" objective function:

$$
E_{\mathbf{x}}[\ell(\mathbf{w}, \mathbf{x})]
$$

- Taking the gradient:

$$
\nabla \mathbb{E}_{x}[\ell(w, x)]=\mathbb{E}[\nabla l(w, x)]
$$

- "True" gradient descent rule:

$$
W_{t+1}=w_{t}-\sum \mathbb{E}_{x}[\nabla \ell(\omega, x)]
$$

- How do we estimate expected gradient?

$$
w_{t+1}=w_{t}-\sum_{\text {Kevin amieson 2016 }} D l_{i}\left(w, x_{i}\right)
$$

SGD: Stochastic Gradient Descent

- "True" gradient: $\quad \nabla \ell(\mathbf{w})=E_{\mathbf{x}}[\nabla \ell(\mathbf{w}, \mathbf{x})]$
- One iid sample estimate:
- How many id samples do we have?

$$
\begin{aligned}
& \text { In id samples (not infinite) } \\
& \text { so we canst get infinite stream of cid }
\end{aligned}
$$

See [Hardt, Recht, Singer 2016] for resolution based on stability

$$
\ell_{i}\left(\omega_{1} x_{i}\right)=\left(y_{i}-\omega^{\top} x_{i}\right)^{2}
$$

Perceptron

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 24, 2017

Online learning

- Click prediction for ads is a streaming data task:
- User enters query, and ad must be selected
\square Observe $\mathbf{x}^{\mathbf{j}}$, and must predict y^{j}
\square User either clicks or doesn't click on ad
- Label yj is revealed afterwards
- Google gets a reward if user clicks on ad
- Update model for next time

Online classification

New point arrives at time k

The Perceptron Algorithm

- Classification setting: y in $\{-1,+1\}$
- Linear model

Prediction: $y_{k} \approx \operatorname{sign}\left(x_{n}^{T} \omega+b\right)$

- Training:Initialize weight vector: $\omega_{0}=0,1_{2}=0$At each time step:
- Observe features:
- Make prediction:
- Observe true class:
- Update

$$
\begin{aligned}
& \quad Y_{h} \\
& \text { model: If } y_{a}=\hat{y}_{n} \text { then } w_{n+1}=w_{n} \\
& \text { rediction is not equal to truth } \\
& b_{n+1}=b_{n} \\
& \binom{w_{n+1}}{b_{n+1}}=\binom{w_{n}}{b_{n}}+y_{n}\binom{x_{n}}{1}
\end{aligned}
$$

The Perceptron Algorithm

- Classification setting: y in $\{-1,+1\}$
- Linear model
- Prediction: $\quad \operatorname{sign}\left(w^{T} x_{i}+b\right)$
- Training:

Initialize weight vector: $w_{0}=0, b_{0}=0$

- At each time step:
- Observe features: x_{k}
- Make prediction:
- Observe true class:

$$
\operatorname{sign}\left(x_{k}^{T} w_{k}+b_{k}\right)
$$

$$
y_{k}
$$

- Update model:
- If prediction is not equal to truth

$$
\left[\begin{array}{c}
w_{k+1} \\
b_{k+1}
\end{array}\right]=\left[\begin{array}{c}
w_{k} \\
b_{k}
\end{array}\right]+y_{k}\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]
$$

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:

Given a sequence of labeled examples: $\left(x_{0}, y_{i}\right) \quad c^{\prime}=1,2, \ldots$
Each feature vector has bounded norm: $\left\|X_{i}\right\|_{2} \leq R$
If dataset is linearly separable: $\exists \omega_{N_{i}} b_{x} \quad \operatorname{sign}\left(\omega_{\pi}^{T} x_{i}+b_{n}\right)=y_{i} \quad \forall i$

- Then the number of mistakes made by the online perceptron on any such sequence is bounded by

$$
\gamma=\text { "ma xis" }
$$

Gap between classes

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
\square No assumption about data distribution!
- Could be generated by an oblivious adversary, no need to be iid
- Makes a fixed number of mistakes, and it's done for ever!
- Even if you see infinite data

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
\square No assumption about data distribution!
- Could be generated by an oblivious adversary, no need to be iid
- Makes a fixed number of mistakes, and it's done for ever!
- Even if you see infinite data
- Perceptron is useless in practice!
- Real world not linearly separable
- If data not separable, cycles forever and hard to detect
- Even if separable may not give good generalization accuracy (small margin)

What is the Perceptron Doing???

- When we discussed logistic regression:
\square Started from maximizing conditional log-likelihood
- When we discussed the Perceptron:
\square Started from description of an algorithm
- What is the Perceptron optimizing????

$$
\begin{aligned}
& \left(x_{i}, y_{i}\right) \text { arrives } w / \text { loss max }\left\{0-\left(-\left(c_{i}^{\top} w+b\right) y_{i}\right\}\right. \\
& W_{k+1}=\omega_{n}-\nabla \ell_{k}\left(\omega n_{n}\right) \text { where } \ell_{n}=\max \left\{0_{0}-y_{i}\left(x_{i}^{T}+b\right)\right\}
\end{aligned}
$$

Support Vector Machines

Machine Learning - CSE446
Kevin Jamieson
University of Washington
October 24, 2017

Linear classifiers - Which line is better?

Pick the one with the largest margin!

Pick the one with the largest margin!

$$
\begin{gathered}
\langle x, y\rangle=\sum_{i d, i}^{d} x_{i} y_{i}=x^{i} y \\
\text { Pick the one with largest margin! }
\end{gathered}
$$

Pick the one with the largest margin!

What if the data is still not linearly separable?

$$
x^{T} w+b=0
$$

$$
=\frac{1}{\|w\|_{2}}
$$

- If data is linearly separable

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1 \quad \forall i
\end{aligned}
$$

$$
\frac{1}{\|w\|_{2}}
$$

What if the data is still not linearly separable?

$$
x^{T} w+b=0
$$

$$
x^{T} w+b=0 \text {. }
$$

- If data is linearly separable

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1 \quad \forall i
\end{aligned}
$$

- If data is not linearly separable, some points don't satisfy margin constraint:

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1-\xi_{i} \quad \forall i \\
& \xi_{i} \geq 0, \sum_{j=1}^{n} \xi_{j} \leq \nu
\end{aligned}
$$

What if the data is still not linearly separable?

$$
x^{T} w+b=0
$$

$$
x^{T} w+b=0
$$

$$
\cdots \frac{1}{\|w\|_{2}}
$$

- If data is linearly separable

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1 \quad \forall i
\end{aligned}
$$

- If data is not linearly separable, some points don't satisfy margin constraint:

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1-\xi_{i} \quad \forall i \\
& \xi_{i} \geq 0, \sum_{j=1}^{n} \xi_{j} \leq \nu
\end{aligned}
$$

- What are "support vectors?"

SVM as penalization method

- Original quadratic program with linear constraints:

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1-\xi_{i} \quad \forall i \\
& \xi_{i} \geq 0, \sum_{j=1}^{n} \xi_{j} \leq \nu
\end{aligned}
$$

SVM as penalization method

- Original quadratic program with linear constraints:

$$
\begin{array}{ll}
\min _{w, b}\|w\|_{2}^{2}+\boldsymbol{C \nu} \\
y_{i}\left(x_{i}^{T} w+b\right) \geq 1-\xi_{i} & \forall i \\
\xi_{i} \geq 0, \sum_{j=1}^{n} \xi_{j} \leq \nu & \text { for some } c>0
\end{array}
$$

- Using same constrained convex optimization trick as for lasso:

For any $\nu \geq 0$ there exists a $\lambda \geq 0$ such that the solution the following solution is equivalent:

$$
\sum_{i=1}^{n} \max \left\{0, \underline{1-y_{i}\left(b+x_{i}^{T} w\right)}\right\}+\underline{\longleftrightarrow}
$$

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Hinge Loss: $\ell_{i}(w)=\max \left\{0,1-y_{i} x_{i}^{T} w\right\}$
Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$

How do we solve for w ? The last two lectures!

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?
- For classification loss, logistic and svm are comparable
- Multiclass setting:
\square Softmax naturally generalizes logistic regression
\square SVMs have
- What about good old least squares?

What about multiple classes?

