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• Project proposal due tonight! 
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Stochastic Gradient Descent
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■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd

yi 2 R
■ Learning a model’s parameters:

Each `i(w) is convex.
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perspective
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Learning Problems as Expectations

■ Minimizing loss in training data: 
Given dataset: 
■ Sampled iid from some distribution p(x) on features: 

Loss function, e.g., hinge loss, logistic loss,… 
We often minimize loss in training data: 

■ However, we should really minimize expected loss on all data: 

■ So, we are approximating the integral by the average on the training data
6
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Gradient descent in Terms of Expectations

■ “True” objective function: 

■ Taking the gradient: 

■ “True” gradient descent rule: 

■ How do we estimate expected gradient?

7
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SGD: Stochastic Gradient Descent

■ “True” gradient: 

■ One iid sample estimate: 

■ How many iid samples do we have?  
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See [Hardt, Recht, Singer 2016] for resolution based on stability
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Perceptron
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Online learning

■ Click prediction for ads is a streaming data task: 
User enters query, and ad must be selected 

Observe xj, and must predict yj 

User either clicks or doesn’t click on ad 
■ Label yj is revealed afterwards 

Google gets a reward if user clicks on ad 

Update model for next time

10
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Online classification

New point arrives at time k
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The Perceptron Algorithm [Rosenblatt ‘58, ‘62]

■ Classification setting: y in {-1,+1} 
■ Linear model 

Prediction:  

■ Training:  
Initialize weight vector:  
At each time step: 
■ Observe features: 
■ Make prediction: 
■ Observe true class: 

■ Update model:  
If prediction is not equal to truth

12
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Rosenblatt 1957

14

"the embryo of an electronic computer that [the Navy] expects will be able to walk, 
talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958
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Linear Separability

■ Perceptron guaranteed to converge if 
■ Data linearly separable:
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Perceptron Analysis: Linearly Separable Case

■ Theorem [Block, Novikoff]:  
Given a sequence of labeled examples: 
Each feature vector has bounded norm: 
If dataset is linearly separable: 

■ Then the number of mistakes made by the online perceptron on any such sequence is 
bounded by

16
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Beyond Linearly Separable Case
■ Perceptron algorithm is super cool! 

No assumption about data distribution!  
■ Could be generated by an oblivious adversary, no 

need to be iid 
Makes a fixed number of mistakes, and it’s done 
for ever! 

■ Even if you see infinite data

17
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Beyond Linearly Separable Case
■ Perceptron algorithm is super cool! 

No assumption about data distribution!  
■ Could be generated by an oblivious adversary, no 

need to be iid 
Makes a fixed number of mistakes, and it’s done 
for ever! 

■ Even if you see infinite data 

■ Perceptron is useless in practice! 
Real world not linearly separable 
If data not separable, cycles forever and hard to 
detect 
Even if separable may not give good 
generalization accuracy (small margin)

18
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What is the Perceptron Doing???

■ When we discussed logistic regression: 
Started from maximizing conditional log-likelihood 

■ When we discussed the Perceptron: 
Started from description of an algorithm 

■ What is the Perceptron optimizing????

19
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Support Vector 
Machines

Machine Learning – CSE446 
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Linear classifiers – Which line is better?
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margin 2γ
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Pick the one with the largest margin!
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■ Solve efficiently by many methods, 
e.g., 

quadratic programming (QP) 
■ Well-studied solution algorithms 

Stochastic gradient descent 
Coordinate descent (in the dual) 
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What if the data is still not linearly 
separable?
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■ If data is linearly separable
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■ If data is linearly separable

■ What are “support vectors?”
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SVM as penalization method

■ Original quadratic program with linear constraints:

30

min
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SVM as penalization method

■ Original quadratic program with linear constraints: 

■ Using same constrained convex optimization trick as for lasso:

31

For any ⌫ � 0 there exists a � � 0 such that the solution

the following solution is equivalent:

min
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■ Have a bunch of iid data of the form:

{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi x
T
i w))

Squared error Loss: `i(w) = (yi � x

T
i w)

2

xi 2 Rd
yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)
Each `i(w) is convex.

Hinge Loss: `i(w) = max{0, 1� yix
T
i w}

How do we solve for w? The last two lectures!

Machine Learning Problems
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SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here?
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SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here? 
■ No! Perform isotonic regression or non-parametric bootstrap 

for probability calibration. Predictor gives some score, how 
do we transform that score to a probability?
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SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here? 
■ No! Perform isotonic regression or non-parametric bootstrap 

for probability calibration. Predictor gives some score, how 
do we transform that score to a probability? 

■ For classification loss, logistic and svm are comparable 
■ Multiclass setting: 

Softmax naturally generalizes logistic regression 
SVMs have 

■ What about good old least squares?
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What about multiple classes?


