
Homework #0

CSE 546: Machine Learning

Prof. Kevin Jamieson

Due: 10/4/18 11:59 PM

1 Analysis

1. [1 points] A set A ⊆ Rn is convex if λx + (1 − λ)y ∈ A for all x, y ∈ A and λ ∈ [0, 1]. A norm ‖ · ‖ over
Rn is defined by the properties: i) non-negative: ‖x‖ ≥ 0 for all x ∈ Rn with equality if and only if x = 0, ii)
absolute scalability: ‖a x‖ = |a| ‖x‖ for all a ∈ R and x ∈ Rn, iii) triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖ for
all x, y ∈ Rn.

a. Using just the definitions above, show that the set {x ∈ Rn : ‖x‖ ≤ 1} is convex for any norm ‖ · ‖.

b. Show that
(∑n

i=1 |xi|1/2
)2

is or is not a norm.

2. [1 points] For any x ∈ Rn, define the following norms: ‖x‖1 =
∑n

i=1 |xi|, ‖x‖2 =
√∑n

i=1 |xi|2, ‖x‖∞ =
maxi=1,...,n |xi|. Show that ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1.

3. [1 points] For possibly non-symmetric A,B ∈ Rn×n and c ∈ R, let f(x, y) = xTAx + yTBx + c. Define

∇zf(x, y) =
[
∂f(x,y)

∂z1

∂f(x,y)
∂z2

. . . ∂f(x,y)
∂zn

]T
. What is ∇xf(x, y) and ∇yf(x, y)?

4. [1 points] Let A and B be two Rn×n symmetric matrices. Suppose A and B have the exact same set of
eigenvectors u1,u2, · · · ,un with the corresponding eigenvalues α1, α2, · · · , αn for A, and β1, β2, · · · , βn for B.
Please write down the eigenvectors and their corresponding eigenvalues for the following matrices:

a. C = A + B

b. D = A−B

c. E = AB

d. F = A−1B (assume A is invertible)

5. [1 points] A symmetric matrix A ∈ Rn×n is positive-semidefinite (PSD) if xTAx ≥ 0 for all x ∈ Rn.

a. For any y ∈ Rn, show that yyT is PSD.

b. Let X be a random vector in Rn with covariance matrix Σ = E[(X − E[X])(X − E[X])T]. Show that Σ
is PSD.

c. Assume A is a symmetric matrix so that A = Udiag(α)UT where diag(α) is an all zeros matrix with the
entries of α on the diagonal and UTU = I. Show that A is PSD if and only if mini αi ≥ 0. (Hint: compute
xTAx and consider values of x proportional to the columns of U , i.e., the orthonormal eigenvectors).

6. [1 points] Let X and Y be real independent random variables with PDFs given by f and g, respectively. Let
h be the PDF of the random variable Z = X + Y .

a. Derive a general expression for h in terms of f and g

b. If X and Y are both independent and uniformly distributed on [0, 1] (i.e. f(x) = g(x) = 1 for x ∈ [0, 1]
and 0 otherwise) what is h, the PDF of Z = X + Y ?

c. For these given explicit distributions, what is P(X ≤ 1/2|X + Y ≥ 5/4)?
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7. [1 points] A random variable X ∼ N (µ, σ2) is Gaussian distributed with mean µ and variance σ2. Given
that for any a, b ∈ R, we have that Y = aX + b is also Gaussian, find a, b such that Y ∼ N (0, 1).

8. [1 points] If f(x) is a PDF, we define the cumulative distribution function (CDF) as F (x) =
∫ x

−∞ f(y)dy.
For any function g : R → R and random variable X with PDF f(x), define the expected value of g(X) as
E[g(X)] =

∫∞
−∞ g(y)f(y)dy. For a boolean event A, define 1{A} as 1 if A is true, and 0 otherwise. Thus,

1{x ≤ a} is 1 whenever x ≤ a and 0 whenever x > a. Note that F (x) = E[1{X ≤ x}]. Let X1, . . . , Xn be

independent and identically distributed random variables with CDF F (x). Define F̂n(x) = 1
n

∑n
i=1 1{Xi ≤ x}.

a. For any x, what is E[F̂n(x)]?

b. For any x, show that E[(F̂n(x)− F (x))2] = F (x)(1−F (x))
n

c. Using part b., show that sup
x∈R

E[(F̂n(x)− F (x))2] ≤ 1
4n .

2 Programming

9. [2 points] Two random variables X and Y have equal distributions if their CDFs, FX and FY , respectively,
are equal: supx |FX(x)−FY (x)| = 0. The central limit theorem says that the sum of k independent, zero-mean,
variance-1/k random variables converges to a Gaussian distribution as k goes off to infinity. We will study this

phenomenon empirically (you will use the Python packages Numpy and Matplotlib). Define Y (k) = 1√
k

∑k
i=1Bi

where each Bi is equal to −1 and 1 with equal probability. It is easy to verify (you should) that 1√
k
Bi is

zero-mean and has variance 1/k.

a. For i = 1, . . . , n let Zi ∼ N (0, 1). If F (x) is the true CDF from which each Zi is drawn (i.e., Gaussian)

and F̂n(x) = 1
n

∑n
i=1 1{Zi ≤ x), use the homework problem above to choose n large enough such that

supx

√
E[(F̂n(x)− F (x))2] ≤ 0.0025, and plot F̂n(x) from −3 to 3. (Hint: use Z=numpy.random.randn(n)

to generate the random variables, and import matplotlib.pyplot as plt;
plt.step(sorted(Z), np.arange(1,n+1)/float(n)) to plot).

b. For each k ∈ {1, 8, 64, 512} generate n independent copies Y (k) and plot their empirical CDF on the same
plot as part a. (Hint: you can use np.sum(np.sign(np.random.randn(n, k))*np.sqrt(1./k), axis=1)

to generate n of the Y (k) random variables.)

Be sure to always label your axes. Your plot should look something like the following (Tip: checkout seaborn

for instantly better looking plots.)
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