Homework #0

CSE 546: Machine Learning Prof. Kevin Jamieson Due: 10/4/18 11:59 PM

1 Analysis

1. [1 points] A set $A \subseteq \mathbb{R}^n$ is convex if $\lambda x + (1 - \lambda)y \in A$ for all $x, y \in A$ and $\lambda \in [0, 1]$. A norm $\|\cdot\|$ over \mathbb{R}^n is defined by the properties: i) non-negative: $||x|| \geq 0$ for all $x \in \mathbb{R}^n$ with equality if and only if $x = 0$, ii) absolute scalability: $||a x|| = |a| ||x||$ for all $a \in \mathbb{R}$ and $x \in \mathbb{R}^n$, iii) triangle inequality: $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$.

a. Using just the definitions above, show that the set $\{x \in \mathbb{R}^n : ||x|| \leq 1\}$ is convex for any norm $|| \cdot ||$.

b. Show that $\left(\sum_{i=1}^n |x_i|^{1/2}\right)^2$ is or is not a norm.

2. [1 points] For any $x \in \mathbb{R}^n$, define the following norms: $||x||_1 = \sum_{i=1}^n |x_i|$, $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$, $||x||_{\infty} =$ $\max_{i=1,\dots,n} |x_i|$. Show that $||x||_{\infty} \leq ||x||_2 \leq ||x||_1$.

3. [1 points] For possibly non-symmetric $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}$, let $f(x, y) = x^T A x + y^T B x + c$. Define $\nabla_z f(x,y) = \left[\frac{\partial f(x,y)}{\partial z_1}\right]$ ∂z_1 $\partial f(x,y)$ $\frac{\partial f(x,y)}{\partial z_2}$... $\frac{\partial f(x,y)}{\partial z_n}$ $\frac{f(x,y)}{\partial z_n}$ ^T. What is $\nabla_x f(x,y)$ and $\nabla_y f(x,y)$?

4. [1 points] Let **A** and **B** be two $\mathbb{R}^{n \times n}$ symmetric matrices. Suppose **A** and **B** have the exact same set of eigenvectors u_1, u_2, \dots, u_n with the corresponding eigenvalues $\alpha_1, \alpha_2, \dots, \alpha_n$ for \mathbf{A} , and $\beta_1, \beta_2, \dots, \beta_n$ for \mathbf{B} . Please write down the eigenvectors and their corresponding eigenvalues for the following matrices:

- a. $C = A + B$
- b. $D = A B$
- c. $E = AB$
- d. $\mathbf{F} = \mathbf{A}^{-1} \mathbf{B}$ (assume \mathbf{A} is invertible)

5. [1 points] A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive-semidefinite (PSD) if $x^T \mathbf{A} x \geq 0$ for all $x \in \mathbb{R}^n$.

- a. For any $y \in \mathbb{R}^n$, show that yy^T is PSD.
- b. Let X be a random vector in \mathbb{R}^n with covariance matrix $\Sigma = \mathbb{E}[(X \mathbb{E}[X])(X \mathbb{E}[X])^T]$. Show that Σ is PSD.
- c. Assume A is a symmetric matrix so that $A = U \text{diag}(\alpha) U^T$ where $\text{diag}(\alpha)$ is an all zeros matrix with the entries of α on the diagonal and $U^T U = I$. Show that **A** is PSD if and only if min_i $\alpha_i \geq 0$. (Hint: compute $x^T A x$ and consider values of x proportional to the columns of U, i.e., the orthonormal eigenvectors).
- 6. *[1 points]* Let X and Y be real independent random variables with PDFs given by f and q, respectively. Let h be the PDF of the random variable $Z = X + Y$.
	- a. Derive a general expression for h in terms of f and q
	- b. If X and Y are both independent and uniformly distributed on [0,1] (i.e. $f(x) = g(x) = 1$ for $x \in [0,1]$ and 0 otherwise) what is h, the PDF of $Z = X + Y$?
	- c. For these given explicit distributions, what is $\mathbb{P}(X \leq 1/2|X + Y \geq 5/4)$?

7. [1 points] A random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ is Gaussian distributed with mean μ and variance σ^2 . Given that for any $a, b \in \mathbb{R}$, we have that $Y = aX + b$ is also Gaussian, find a, b such that $Y \sim \mathcal{N}(0, 1)$.

8. [1 points] If $f(x)$ is a PDF, we define the cumulative distribution function (CDF) as $F(x) = \int_{-\infty}^{x} f(y) dy$. For any function $g : \mathbb{R} \to \mathbb{R}$ and random variable X with PDF $f(x)$, define the expected value of $g(X)$ as $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(y)f(y)dy$. For a boolean event A, define $1\{A\}$ as 1 if A is true, and 0 otherwise. Thus, $1\{x \leq a\}$ is 1 whenever $x \leq a$ and 0 whenever $x > a$. Note that $F(x) = \mathbb{E}[1\{X \leq x\}]$. Let X_1, \ldots, X_n be independent and identically distributed random variables with CDF $F(x)$. Define $\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{X_i \leq x\}$.

- a. For any x, what is $\mathbb{E}[\widehat{F}_n(x)]$?
- b. For any x, show that $\mathbb{E}[(\widehat{F}_n(x) F(x))^2] = \frac{F(x)(1-F(x))}{n}$
- c. Using part b., show that $\sup_{x \in \mathbb{R}} \mathbb{E}[(\widehat{F}_n(x) F(x))^2] \leq \frac{1}{4n}$.

2 Programming

9. [2 points] Two random variables X and Y have equal distributions if their CDFs, F_X and F_Y , respectively, are equal: $\sup_x |F_X(x) - F_Y(x)| = 0$. The central limit theorem says that the sum of k independent, zero-mean, variance- $1/k$ random variables converges to a Gaussian distribution as k goes off to infinity. We will study this phenomenon empirically (you will use the Python packages Numpy and Matplotlib). Define $Y^{(k)} = \frac{1}{\sqrt{k}}$ $\sum_{i=1}^k B_i$ where each B_i is equal to -1 and 1 with equal probability. It is easy to verify (you should) that $\frac{1}{\sqrt{2}}$ $\frac{1}{k}B_i$ is zero-mean and has variance $1/k$.

- a. For $i = 1, \ldots, n$ let $Z_i \sim \mathcal{N}(0, 1)$. If $F(x)$ is the true CDF from which each Z_i is drawn (i.e., Gaussian) and $\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{Z_i \leq x\}}$, use the homework problem above to choose n large enough such that $\sup_x \sqrt{\mathbb{E}[(\widehat{F}_n(x) - F(x))^2]} \leq 0.0025$, and plot $\widehat{F}_n(x)$ from -3 to 3. (Hint: use Z=numpy.random.randn(n) to generate the random variables, and import matplotlib.pyplot as plt; plt.step(sorted(Z), np.arange(1,n+1)/float(n)) to plot).
- b. For each $k \in \{1, 8, 64, 512\}$ generate n independent copies $Y^{(k)}$ and plot their empirical CDF on the same plot as part a. (Hint: you can use np.sum(np.sign(np.random.randn(n, k))*np.sqrt(1./k), axis=1) to generate *n* of the $Y^{(k)}$ random variables.)

Be sure to always label your axes. Your plot should look something like the following (Tip: checkout seaborn for instantly better looking plots.)

