
Homework #1

CSE 546: Machine Learning

Prof. Kevin Jamieson

Due: 10/18/18 11:59 PM

1 Gaussians

Recall that for any vector u ∈ Rn we have ||u||22 = uTu =
∑n
i=1 u

2
i and ||u||1 =

∑n
i=1 |ui|. For a matrix A ∈ Rn×n

we denote |A| as the determinant of A. A multivariate Gaussian with mean µ ∈ Rn and covariance Σ ∈ Rn×n
has a probability density function p(x|µ,Σ) = 1√

(2π)n|Σ|
exp(− 1

2 (x−µ)TΣ−1(x−µ)) which we denote asN (µ,Σ).

1. [4 points] Let

• µ1 =

[
1
2

]
and Σ1 =

[
1 0
0 2

]

• µ2 =

[
−1
1

]
and Σ2 =

[
2 −1.8
−1.8 2

]

• µ3 =

[
2
−2

]
and Σ3 =

[
3 1
1 2

]
For each i = 1, 2, 3 on a separate plot:

a. Draw n = 100 points Xi,1, . . . , Xi,n ∼ N (µi,Σi) and plot the points as a scatter plot with each point as
a triangle marker (Hint: use numpy.random.randn to generate a mean-zero independent Gaussian vector,
then use the properties of Gaussians to generate X).

b. Compute the sample mean and covariance matrices µ̂i = 1
n

∑n
j=1Xi,j and Σ̂i = 1

n−1

∑n
j=1(Xi,j − µ̂i)2.

Compute the eigenvectors of Σ̂i. Plot the eigenvectors as line segments originating from µ̂i and have
magnitude equal to the square root of their corresponding eigenvalues.

c. If (ui,1, λi,1) and (ui,2, λi,2) are the eigenvector-eigenvalue pairs of the sample covariance matrix with

λi,1 ≥ λi,2 and ||ui,1||2 = ||ui,2||2 = 1, for j = 1, . . . , n let X̃i,j =

 1√
λi,1

uTi,1(Xi,j − µ̂i)
1√
λi,2

uTi,2(Xi,j − µ̂i)

. Plot these new

points as a scatter plot with each point as a circle marker.

For each plot, make sure the limits of the plot are square around the origin (e.g., [−c, c]× [−c, c] for some c > 0).

2 MLE and Bias Variance Tradeoff

Recall that for any vector u ∈ Rn we have ‖u‖22 = uTu =
∑n
i=1 u

2
i and ||u||1 =

∑n
i=1 |ui|. Unless otherwise

specified, if P is a probability distribution and x1, . . . , xn ∼ P then it can be assumed each each xi is iid and
drawn from P .
2. [1 points] Let x1, . . . , xn ∼ uniform(0, θ) for some θ. What is the Maximum likelihood estimate for θ?

3. [2 points] Let (x1, y1), . . . , (xn, yn) be drawn at random from some population where each xi ∈ Rd, yi ∈ R,
and let ŵ = arg minw

∑n
i=1(yi−wTxi)2. Suppose we have some test data (x̃1, ỹ1), . . . , (x̃m, ỹm) drawn at random
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from the population as the training data. If Rtr(w) = 1
n

∑n
i=1(yi −wTxi)2 and Rte(w) = 1

m

∑m
i=1(ỹi −wT x̃i)2.

Prove that

E[Rtr(ŵ)] ≤ E[Rte(ŵ)]

where the expectations are over all that is random in each expression. Do not assume any model for yi given
xi (e.g., linear plus Gaussian noise). [This is exercise 2.9 from HTF, originally from Andrew Ng.]

4. [8 points] Let random vector X ∈ Rd and random variable Y ∈ R have a joint distribution PXY (X,Y ).
Assume E[X] = 0 and define Σ = Cov(X) = E[(X−E[X])(X−E[X])T ] with eigenvalues α1 ≥ α2 ≥ · · · ≥ αd and

orthonormal eigenvectors v1, . . . , vd such that Σ =
∑d
i=1 αiviv

T
i . For (X,Y ) ∼ PXY assume that Y = XTw + ε

for ε ∼ N (0, σ2) such that EY |X [Y |X = x] = xTw. Let D = {(xi, yi)}ni=1 where each (xi, yi) ∼ PXY . For some
λ > 0 let

ŵ = arg min
w

n∑
i=1

(yi − xTi w)2 + λ‖w‖22

If X = [x1, . . . , xn]T , y = [y1, . . . , yn]T , ε = [ε1, . . . , εn]T then it can be shown that

ŵ = (XTX + λI)−1XTy. (1)

Note teh notational difference between a random X of (X,Y ) ∼ PXY and the n× d matrix X where each row
is drawn from PX . Realizing that XTX =

∑n
i=1 xix

T
i , by the law of large numbers we have 1

nX
TX → Σ as

n→∞. In your analysis assume n is large and make use of the approximation XTX = nΣ. Justify all answers.

a. Show Equation (1).

b. Show that ŵ of Equation 1 can also be written as

ŵ = w − λ(XTX + λI)−1w + (XTX + λI)−1XT ε

c. For general f̂D(x) and η(x) = EY |X [Y |X = x], we showed in class that the bias variance decomposition is
stated as

EXY,D[(Y − f̂D(X))2] = EX
[
EY |X,D

[
(Y − f̂D(X))2|X = x

]]
where

EY |X,D
[
(Y − f̂D(X))2|X = x

]
= EY |X [(Y − η(x))2|X = x]︸ ︷︷ ︸

Irreducible error

+ (η(x)− ED[f̂D(x)])2︸ ︷︷ ︸
Bias-squared

+ED[(ED[f̂D(x)]− f̂D(x))2]︸ ︷︷ ︸
Variance

.

In what follows, use our particular problem setting with f̂D(x) = ŵTx.

Irreducible error: What is EX
[
EY |X [(Y − η(x))2|X = x]

]
?

d. Bias-squared: Use the approximation XTX = nΣ to show that

EX
[
(η(X)− ED[f̂D(X)])2

]
=

d∑
i=1

λ2(wT vi)
2αi

(nαi + λ)2
≤ max
j=1,...,d

λ2αj‖w‖22
(nαj + λ)2

e. Variance: Use the approximation XTX = nΣ to show that

EX
[
ED[(ED[f̂D(X)]− f̂D(X))2]

]
=

d∑
i=1

σ2α2
in

(αin+ λ)2
≤ dσ2α2

1n

(α1n+ λ)2
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f. Assume Σ = α1 I for some α1 > 0. Show that for the approximation XTX = nΣ we have

EXY,D[(Y − f̂D(X))2] = σ2 +
λ2α1‖w‖22
(α1n+ λ)2

+
dσ2α2

1n

(α1n+ λ)2

What is the λ? that minimizes this expression? In a sentence each describe how varying each parameter
(e.g., ‖w‖2, d, σ2) affects the size of λ? and if this makes intuitive sense. Plug this λ? back into the
expression and comment on how this result compares to the λ = 0 solution. It may be helpful to use
1
2 (a+ b) ≤ max{a, b} ≤ a+ b for any a, b > 0 to simplify the expression.

g. Assume that α1 > α2 = α3 = · · · = αd and furthermore, that w/‖w‖2 = v1. Show that for the
approximation XTX = nΣ we have

EXY,D[(Y − f̂D(X))2] = σ2 +
λ2α1‖w‖22
(α1n+ λ)2

+
σ2nα2

1

(α1n+ λ)2
+
σ2nα2

2(d− 1)

(α2n+ λ)2

It can be shown that λ? = σ2+σ2(d−1)α1/α2

‖w‖22
approximately minimizes this expression. In a sentence each

describe if this makes intuitive sense, comparing to the solution of the last problem.

h. As λ increases, how does the bias and variance terms behave?

3 Programming: Ridge Regression on MNIST

5. [10 points] In this problem we will implement a least squares classifier for the MNIST data set. The task is
to classify handwritten images of numbers between 0 to 9.

You are NOT allowed to use any of the prebuilt classifiers in sklearn. Feel free to use any method from numpy

or scipy. Remember: if you are inverting a matrix in your code, you are probably doing something wrong
(Hint: look at scipy.linalg.solve).

Get the data from https://pypi.python.org/pypi/python-mnist.
Load the data as follows:

from mnist import MNIST

def load_dataset():

mndata = MNIST(’./data/’)

X_train, labels_train = map(np.array, mndata.load_training())

X_test, labels_test = map(np.array, mndata.load_testing())

X_train = X_train/255.0

X_test = X_test/255.0

You can visualize a single example by reshaping it to its original 28× 28 image shape.

a. In this problem we will choose a linear classifier to minimize the least squares objective:

Ŵ = argminW∈Rd×k

n∑
i=0

‖WTxi − yi‖22 + λ‖W‖2F

We adopt the notation where we have n data points in our training objective and each data point xi ∈ Rd.
k denotes the number of classes which is in this case equal to 10. Note that ‖W‖F corresponds to the
Frobenius norm of W , i.e. ‖vec(W )‖22.

Derive a closed form for Ŵ .
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b. As as first step we need to choose the vectors yi ∈ Rk by converting the original labels (which are in
{0, . . . , 9}) to vectors. We will use the one-hot encoding of the labels, i.e. the original label j ∈ {0, . . . , 9}
is mapped to the standard basis vector ej . To classify a point xi we will use the rule arg maxj=0,...,9 Ŵ

Txi.

c. Code up a function called train that returns Ŵ that takes as input X ∈ Rn×d, y ∈ {0, 1}n×k, and λ > 0.
Code up a function called predict that takes as input W ∈ Rd×k, X ′ ∈ Rm×d and returns an m-length
vector with the ith entry equal to arg maxj=0,...,9W

Tx′i where x′i is a column vector representing the ith
example from X ′.

Train Ŵ on the MNIST training data with λ = 10−4 and make label predictions on the test data. What
is the training and testing classification accuracy (they should both be about 85%)?

d. We just fit a classifier that was linear in the pixel intensities to the MNIST data. For classification of digits
the raw pixel values are very, very bad features: it’s pretty hard to separate digits with linear functions
in pixel space. The standard solution to the this is to come up with some transform h : Rd → Rp of the
original pixel values such that the transformed points are (more easily) linearly separable. In this problem,
you’ll use the feature transform:

h(x) = cos(Gx+ b).

where G ∈ Rp×d, b ∈ Rp, and the cosine function is applied elementwise. We’ll choose G to be a random
matrix, with each entry sampled i.i.d. with mean µ = 0 and variance σ2 = 0.1, and b to be a random
vector sampled i.i.d. from the uniform distribution on [0, 2π]. The big question is: how do we choose p?
Cross-validation, of course!

Randomly partition your training set into proportions 80/20 to use as a new training set and validation

set, respectively. Using the train function you wrote above, train a Ŵ p for different values of p and plot
the classification training error and validation error on a single plot with p on the x-axis. Be careful, your
computer may run out of memory and slow to a crawl if p is too large (p ≤ 6000 should fit into 4 GB
of memory). You can use the same value of λ as above but feel free to study the effect of using different
values of λ and σ2 for fun.

e. Instead of reporting just the classification test error, which is an unbiased estimate of the true error, we
would like to report a confidence interval around the test error that contains the true error. For any
δ ∈ (0, 1), it follows from Hoeffding’s inequality that if Xi for all i = 1, . . . ,m are i.i.d. random variables
with Xi ∈ [a, b] and E[Xi] = µ, then with probability at least 1− δ

P

(∣∣∣∣∣
(

1

m

m∑
i=1

Xi

)
− µ

∣∣∣∣∣ ≥
√

log(2/δ)

2m

)
≤ δ

We will use the above equation to construct a confidence interval around our true classification error since
the test error is just the average of indicator variables taking values in 0 or 1 corresponding to the ith
test example being classified correctly or not, respectively, where an error happens with probability µ, the
true classification error.

Let p̂ be the value of p that approximately minimizes the validation error on the plot you just made and use
Ŵ p̂ to compute the classification test accuracy, which we will denote as Etest. Use Hoeffding’s inequality,
above, to compute a confidence interval that contains E[Etest] (i.e., the true error) with probability at
least 0.95 (i.e., δ = 0.05). Report Etest and the confidence interval.
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