Homework \#1

CSE 546: Machine Learning

Prof. Kevin Jamieson
Due: 10/18/18 11:59 PM

1 Gaussians

Recall that for any vector $u \in \mathbb{R}^{n}$ we have $\|u\|_{2}^{2}=u^{T} u=\sum_{i=1}^{n} u_{i}^{2}$ and $\|u\|_{1}=\sum_{i=1}^{n}\left|u_{i}\right|$. For a matrix $A \in \mathbb{R}^{n \times n}$ we denote $|A|$ as the determinant of A. A multivariate Gaussian with mean $\mu \in \mathbb{R}^{n}$ and covariance $\Sigma \in \mathbb{R}^{n \times n}$ has a probability density function $p(x \mid \mu, \Sigma)=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)$ which we denote as $\mathcal{N}(\mu, \Sigma)$.

1. [4 points] Let

- $\mu_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\Sigma_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
- $\mu_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\Sigma_{2}=\left[\begin{array}{cc}2 & -1.8 \\ -1.8 & 2\end{array}\right]$
- $\mu_{3}=\left[\begin{array}{c}2 \\ -2\end{array}\right]$ and $\Sigma_{3}=\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right]$

For each $i=1,2,3$ on a separate plot:
a. Draw $n=100$ points $X_{i, 1}, \ldots, X_{i, n} \sim \mathcal{N}\left(\mu_{i}, \Sigma_{i}\right)$ and plot the points as a scatter plot with each point as a triangle marker (Hint: use numpy.random.randn to generate a mean-zero independent Gaussian vector, then use the properties of Gaussians to generate X).
b. Compute the sample mean and covariance matrices $\widehat{\mu}_{i}=\frac{1}{n} \sum_{j=1}^{n} X_{i, j}$ and $\widehat{\Sigma}_{i}=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{i, j}-\widehat{\mu}_{i}\right)^{2}$. Compute the eigenvectors of $\widehat{\Sigma}_{i}$. Plot the eigenvectors as line segments originating from $\widehat{\mu}_{i}$ and have magnitude equal to the square root of their corresponding eigenvalues.
c. If ($u_{i, 1}, \lambda_{i, 1}$) and ($u_{i, 2}, \lambda_{i, 2}$) are the eigenvector-eigenvalue pairs of the sample covariance matrix with $\lambda_{i, 1} \geq \lambda_{i, 2}$ and $\left\|u_{i, 1}\right\|_{2}=\left\|u_{i, 2}\right\|_{2}=1$, for $j=1, \ldots, n$ let $\widetilde{X}_{i, j}=\left[\begin{array}{c}\frac{1}{\sqrt{\lambda_{i, 1}}} u_{i, 1}^{T}\left(X_{i, j}-\widehat{\mu}_{i}\right) \\ \frac{1}{\sqrt{\lambda_{i, 2}}} u_{i, 2}^{T}\left(X_{i, j}-\widehat{\mu}_{i}\right)\end{array}\right]$. Plot these new points as a scatter plot with each point as a circle marker.

For each plot, make sure the limits of the plot are square around the origin (e.g., $[-c, c] \times[-c, c]$ for some $c>0$).

2 MLE and Bias Variance Tradeoff

Recall that for any vector $u \in \mathbb{R}^{n}$ we have $\|u\|_{2}^{2}=u^{T} u=\sum_{i=1}^{n} u_{i}^{2}$ and $\|u\|_{1}=\sum_{i=1}^{n}\left|u_{i}\right|$. Unless otherwise specified, if P is a probability distribution and $x_{1}, \ldots, x_{n} \sim P$ then it can be assumed each each x_{i} is iid and drawn from P.
2. [1 points] Let $x_{1}, \ldots, x_{n} \sim \operatorname{uniform}(0, \theta)$ for some θ. What is the Maximum likelihood estimate for θ ?
3. [2 points] Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be drawn at random from some population where each $x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$, and let $\widehat{w}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-w^{T} x_{i}\right)^{2}$. Suppose we have some test data $\left(\widetilde{x}_{1}, \widetilde{y}_{1}\right), \ldots,\left(\widetilde{x}_{m}, \widetilde{y}_{m}\right)$ drawn at random
from the population as the training data. If $R_{t r}(w)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w^{T} x_{i}\right)^{2}$ and $R_{t e}(w)=\frac{1}{m} \sum_{i=1}^{m}\left(\widetilde{y}_{i}-w^{T} \widetilde{x}_{i}\right)^{2}$. Prove that

$$
\mathbb{E}\left[R_{t r}(\widehat{w})\right] \leq \mathbb{E}\left[R_{t e}(\widehat{w})\right]
$$

where the expectations are over all that is random in each expression. Do not assume any model for y_{i} given x_{i} (e.g., linear plus Gaussian noise). [This is exercise 2.9 from HTF, originally from Andrew Ng.]
4. [8 points] Let random vector $X \in \mathbb{R}^{d}$ and random variable $Y \in \mathbb{R}$ have a joint distribution $P_{X Y}(X, Y)$. Assume $\mathbb{E}[X]=0$ and define $\Sigma=\operatorname{Cov}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{T}\right]$ with eigenvalues $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{d}$ and orthonormal eigenvectors v_{1}, \ldots, v_{d} such that $\Sigma=\sum_{i=1}^{d} \alpha_{i} v_{i} v_{i}^{T}$. For $(X, Y) \sim P_{X Y}$ assume that $Y=X^{T} w+\epsilon$ for $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$ such that $\mathbb{E}_{Y \mid X}[Y \mid X=x]=x^{T} w$. Let $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ where each $\left(x_{i}, y_{i}\right) \sim P_{X Y}$. For some $\lambda>0$ let

$$
\widehat{w}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

If $\mathbf{X}=\left[x_{1}, \ldots, x_{n}\right]^{T}, \mathbf{y}=\left[y_{1}, \ldots, y_{n}\right]^{T}, \boldsymbol{\epsilon}=\left[\epsilon_{1}, \ldots, \epsilon_{n}\right]^{T}$ then it can be shown that

$$
\begin{equation*}
\widehat{w}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y} \tag{1}
\end{equation*}
$$

Note teh notational difference between a random X of $(X, Y) \sim P_{X Y}$ and the $n \times d$ matrix \mathbf{X} where each row is drawn from P_{X}. Realizing that $\mathbf{X}^{T} \mathbf{X}=\sum_{i=1}^{n} x_{i} x_{i}^{T}$, by the law of large numbers we have $\frac{1}{n} \mathbf{X}^{T} \mathbf{X} \rightarrow \Sigma$ as $n \rightarrow \infty$. In your analysis assume n is large and make use of the approximation $\mathbf{X}^{T} \mathbf{X}=n \Sigma$. Justify all answers.
a. Show Equation (1).
b. Show that \widehat{w} of Equation 1 can also be written as

$$
\widehat{w}=w-\lambda\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} w+\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \boldsymbol{\epsilon}
$$

c. For general $\widehat{f_{\mathcal{D}}}(x)$ and $\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]$, we showed in class that the bias variance decomposition is stated as

$$
\mathbb{E}_{X Y, \mathcal{D}}\left[\left(Y-\widehat{f_{\mathcal{D}}}(X)\right)^{2}\right]=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X, \mathcal{D}}\left[\left(Y-\widehat{f_{\mathcal{D}}}(X)\right)^{2} \mid X=x\right]\right]
$$

where

$$
\mathbb{E}_{Y \mid X, \mathcal{D}}\left[\left(Y-\widehat{f_{\mathcal{D}}}(X)\right)^{2} \mid X=x\right]=\underbrace{\mathbb{E}_{Y \mid X}\left[(Y-\eta(x))^{2} \mid X=x\right]}_{\text {Irreducible error }}+\underbrace{\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]\right)^{2}}_{\text {Bias-squared }}+\underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right]}_{\text {Variance }} .
$$

In what follows, use our particular problem setting with ${\widehat{\mathcal{F}_{\mathcal{D}}}}^{(x)}=\widehat{w}^{T} x$.
Irreducible error: What is $\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}\left[(Y-\eta(x))^{2} \mid X=x\right]\right]$?
d. Bias-squared: Use the approximation $\mathbf{X}^{T} \mathbf{X}=n \Sigma$ to show that

$$
\mathbb{E}_{X}\left[\left(\eta(X)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(X)\right]\right)^{2}\right]=\sum_{i=1}^{d} \frac{\lambda^{2}\left(w^{T} v_{i}\right)^{2} \alpha_{i}}{\left(n \alpha_{i}+\lambda\right)^{2}} \leq \max _{j=1, \ldots, d} \frac{\lambda^{2} \alpha_{j}\|w\|_{2}^{2}}{\left(n \alpha_{j}+\lambda\right)^{2}}
$$

e. Variance: Use the approximation $\mathbf{X}^{T} \mathbf{X}=n \Sigma$ to show that

$$
\mathbb{E}_{X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(X)\right]-\widehat{f_{\mathcal{D}}}(X)\right)^{2}\right]\right]=\sum_{i=1}^{d} \frac{\sigma^{2} \alpha_{i}^{2} n}{\left(\alpha_{i} n+\lambda\right)^{2}} \leq \frac{d \sigma^{2} \alpha_{1}^{2} n}{\left(\alpha_{1} n+\lambda\right)^{2}}
$$

f. Assume $\Sigma=\alpha_{1} I$ for some $\alpha_{1}>0$. Show that for the approximation $\mathbf{X}^{T} \mathbf{X}=n \Sigma$ we have

$$
\mathbb{E}_{X Y, \mathcal{D}}\left[\left(Y-\widehat{f}_{\mathcal{D}}(X)\right)^{2}\right]=\sigma^{2}+\frac{\lambda^{2} \alpha_{1}\|w\|_{2}^{2}}{\left(\alpha_{1} n+\lambda\right)^{2}}+\frac{d \sigma^{2} \alpha_{1}^{2} n}{\left(\alpha_{1} n+\lambda\right)^{2}}
$$

What is the λ^{\star} that minimizes this expression? In a sentence each describe how varying each parameter (e.g., $\|w\|_{2}, d, \sigma^{2}$) affects the size of λ^{\star} and if this makes intuitive sense. Plug this λ^{\star} back into the expression and comment on how this result compares to the $\lambda=0$ solution. It may be helpful to use $\frac{1}{2}(a+b) \leq \max \{a, b\} \leq a+b$ for any $a, b>0$ to simplify the expression.
g. Assume that $\alpha_{1}>\alpha_{2}=\alpha_{3}=\cdots=\alpha_{d}$ and furthermore, that $w /\|w\|_{2}=v_{1}$. Show that for the approximation $\mathbf{X}^{T} \mathbf{X}=n \Sigma$ we have

$$
\mathbb{E}_{X Y, \mathcal{D}}\left[\left(Y-\widehat{f_{\mathcal{D}}}(X)\right)^{2}\right]=\sigma^{2}+\frac{\lambda^{2} \alpha_{1}\|w\|_{2}^{2}}{\left(\alpha_{1} n+\lambda\right)^{2}}+\frac{\sigma^{2} n \alpha_{1}^{2}}{\left(\alpha_{1} n+\lambda\right)^{2}}+\frac{\sigma^{2} n \alpha_{2}^{2}(d-1)}{\left(\alpha_{2} n+\lambda\right)^{2}}
$$

It can be shown that $\lambda^{\star}=\frac{\sigma^{2}+\sigma^{2}(d-1) \alpha_{1} / \alpha_{2}}{\|w\|_{2}^{2}}$ approximately minimizes this expression. In a sentence each describe if this makes intuitive sense, comparing to the solution of the last problem.
h. As λ increases, how does the bias and variance terms behave?

3 Programming: Ridge Regression on MNIST

5. [10 points] In this problem we will implement a least squares classifier for the MNIST data set. The task is to classify handwritten images of numbers between 0 to 9 .

You are NOT allowed to use any of the prebuilt classifiers in sklearn. Feel free to use any method from numpy or scipy. Remember: if you are inverting a matrix in your code, you are probably doing something wrong (Hint: look at scipy.linalg.solve).

Get the data from https://pypi.python.org/pypi/python-mnist.
Load the data as follows:

```
from mnist import MNIST
def load_dataset():
    mndata = MNIST('./data/')
    X_train, labels_train = map(np.array, mndata.load_training())
    X_test, labels_test = map(np.array, mndata.load_testing())
    X_train = X_train/255.0
    X_test = X_test/255.0
```

You can visualize a single example by reshaping it to its original 28×28 image shape.
a. In this problem we will choose a linear classifier to minimize the least squares objective:

$$
\widehat{W}=\operatorname{argmin}_{W \in \mathbb{R}^{d \times k}} \sum_{i=0}^{n}\left\|W^{T} x_{i}-y_{i}\right\|_{2}^{2}+\lambda\|W\|_{F}^{2}
$$

We adopt the notation where we have n data points in our training objective and each data point $x_{i} \in \mathbb{R}^{d}$. k denotes the number of classes which is in this case equal to 10 . Note that $\|W\|_{F}$ corresponds to the Frobenius norm of W, i.e. $\|\operatorname{vec}(W)\|_{2}^{2}$.
Derive a closed form for \widehat{W}.
b. As as first step we need to choose the vectors $y_{i} \in \mathbb{R}^{k}$ by converting the original labels (which are in $\{0, \ldots, 9\})$ to vectors. We will use the one-hot encoding of the labels, i.e. the original label $j \in\{0, \ldots, 9\}$ is mapped to the standard basis vector e_{j}. To classify a point x_{i} we will use the rule $\arg \max _{j=0, \ldots, 9} \widehat{W}^{T} x_{i}$.
c. Code up a function called train that returns \widehat{W} that takes as input $X \in \mathbb{R}^{n \times d}, y \in\{0,1\}^{n \times k}$, and $\lambda>0$. Code up a function called predict that takes as input $W \in \mathbb{R}^{d \times k}, X^{\prime} \in \mathbb{R}^{m \times d}$ and returns an m-length vector with the i th entry equal to $\arg \max _{j=0, \ldots, 9} W^{T} x_{i}^{\prime}$ where x_{i}^{\prime} is a column vector representing the i th example from X^{\prime}.

Train \widehat{W} on the MNIST training data with $\lambda=10^{-4}$ and make label predictions on the test data. What is the training and testing classification accuracy (they should both be about 85%)?
d. We just fit a classifier that was linear in the pixel intensities to the MNIST data. For classification of digits the raw pixel values are very, very bad features: it's pretty hard to separate digits with linear functions in pixel space. The standard solution to the this is to come up with some transform $h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ of the original pixel values such that the transformed points are (more easily) linearly separable. In this problem, you'll use the feature transform:

$$
h(x)=\cos (G x+b)
$$

where $G \in \mathbb{R}^{p \times d}, b \in \mathbb{R}^{p}$, and the cosine function is applied elementwise. We'll choose G to be a random matrix, with each entry sampled i.i.d. with mean $\mu=0$ and variance $\sigma^{2}=0.1$, and b to be a random vector sampled i.i.d. from the uniform distribution on $[0,2 \pi]$. The big question is: how do we choose p ? Cross-validation, of course!

Randomly partition your training set into proportions $80 / 20$ to use as a new training set and validation set, respectively. Using the train function you wrote above, train a \widehat{W}^{p} for different values of p and plot the classification training error and validation error on a single plot with p on the x-axis. Be careful, your computer may run out of memory and slow to a crawl if p is too large ($p \leq 6000$ should fit into 4 GB of memory). You can use the same value of λ as above but feel free to study the effect of using different values of λ and σ^{2} for fun.
e. Instead of reporting just the classification test error, which is an unbiased estimate of the true error, we would like to report a confidence interval around the test error that contains the true error. For any $\delta \in(0,1)$, it follows from Hoeffding's inequality that if X_{i} for all $i=1, \ldots, m$ are i.i.d. random variables with $X_{i} \in[a, b]$ and $\mathbb{E}\left[X_{i}\right]=\mu$, then with probability at least $1-\delta$

$$
\mathbb{P}\left(\left|\left(\frac{1}{m} \sum_{i=1}^{m} X_{i}\right)-\mu\right| \geq \sqrt{\frac{\log (2 / \delta)}{2 m}}\right) \leq \delta
$$

We will use the above equation to construct a confidence interval around our true classification error since the test error is just the average of indicator variables taking values in 0 or 1 corresponding to the i th test example being classified correctly or not, respectively, where an error happens with probability μ, the true classification error.
Let \widehat{p} be the value of p that approximately minimizes the validation error on the plot you just made and use $\widehat{W}^{\widehat{p}}$ to compute the classification test accuracy, which we will denote as $E_{t e s t}$. Use Hoeffding's inequality, above, to compute a confidence interval that contains $\mathbb{E}\left[E_{\text {test }}\right]$ (i.e., the true error) with probability at least 0.95 (i.e., $\delta=0.05$). Report $E_{\text {test }}$ and the confidence interval.

