Homework #1

CSE 546: Machine Learning Prof. Kevin Jamieson Due: 10/18/18 11:59 PM

1 Gaussians

Recall that for any vector $u \in \mathbb{R}^n$ we have $||u||_2^2 = u^T u = \sum_{i=1}^n u_i^2$ and $||u||_1 = \sum_{i=1}^n |u_i|$. For a matrix $A \in \mathbb{R}^{n \times n}$ we denote |A| as the determinant of A. A multivariate Gaussian with mean $\mu \in \mathbb{R}^n$ and covariance $\Sigma \in \mathbb{R}^{n \times n}$ has a probability density function $p(x|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$ which we denote as $\mathcal{N}(\mu, \Sigma)$.

1. [4 points] Let

•
$$\mu_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
• $\mu_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\Sigma_2 = \begin{bmatrix} 2 & -1.8 \\ -1.8 & 2 \end{bmatrix}$
• $\mu_3 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$ and $\Sigma_3 = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$

For each i = 1, 2, 3 on a separate plot:

- a. Draw n = 100 points $X_{i,1}, \ldots, X_{i,n} \sim \mathcal{N}(\mu_i, \Sigma_i)$ and plot the points as a scatter plot with each point as a triangle marker (Hint: use numpy.random.randn to generate a mean-zero independent Gaussian vector, then use the properties of Gaussians to generate X).
- b. Compute the sample mean and covariance matrices $\hat{\mu}_i = \frac{1}{n} \sum_{j=1}^n X_{i,j}$ and $\hat{\Sigma}_i = \frac{1}{n-1} \sum_{j=1}^n (X_{i,j} \hat{\mu}_i)^2$. Compute the eigenvectors of $\hat{\Sigma}_i$. Plot the eigenvectors as line segments originating from $\hat{\mu}_i$ and have magnitude equal to the square root of their corresponding eigenvalues.
- c. If $(u_{i,1}, \lambda_{i,1})$ and $(u_{i,2}, \lambda_{i,2})$ are the eigenvector-eigenvalue pairs of the sample covariance matrix with $\lambda_{i,1} \ge \lambda_{i,2}$ and $||u_{i,1}||_2 = ||u_{i,2}||_2 = 1$, for $j = 1, \ldots, n$ let $\widetilde{X}_{i,j} = \begin{bmatrix} \frac{1}{\sqrt{\lambda_{i,1}}} u_{i,1}^T (X_{i,j} \widehat{\mu}_i) \\ \frac{1}{\sqrt{\lambda_{i,2}}} u_{i,2}^T (X_{i,j} \widehat{\mu}_i) \end{bmatrix}$. Plot these new

points as a scatter plot with each point as a circle marker.

For each plot, make sure the limits of the plot are square around the origin (e.g., $[-c, c] \times [-c, c]$ for some c > 0).

2 MLE and Bias Variance Tradeoff

Recall that for any vector $u \in \mathbb{R}^n$ we have $||u||_2^2 = u^T u = \sum_{i=1}^n u_i^2$ and $||u||_1 = \sum_{i=1}^n |u_i|$. Unless otherwise specified, if P is a probability distribution and $x_1, \ldots, x_n \sim P$ then it can be assumed each each x_i is iid and drawn from P.

2. [1 points] Let $x_1, \ldots, x_n \sim \text{uniform}(0, \theta)$ for some θ . What is the Maximum likelihood estimate for θ ?

3. [2 points] Let $(x_1, y_1), \ldots, (x_n, y_n)$ be drawn at random from some population where each $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$, and let $\widehat{w} = \arg\min_w \sum_{i=1}^n (y_i - w^T x_i)^2$. Suppose we have some test data $(\widetilde{x}_1, \widetilde{y}_1), \ldots, (\widetilde{x}_m, \widetilde{y}_m)$ drawn at random

from the population as the training data. If $R_{tr}(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)^2$ and $R_{te}(w) = \frac{1}{m} \sum_{i=1}^{m} (\tilde{y}_i - w^T \tilde{x}_i)^2$. Prove that

$$\mathbb{E}[R_{tr}(\widehat{w})] \le \mathbb{E}[R_{te}(\widehat{w})]$$

where the expectations are over all that is random in each expression. Do not assume any model for y_i given x_i (e.g., linear plus Gaussian noise). [This is exercise 2.9 from HTF, originally from Andrew Ng.]

4. [8 points] Let random vector $X \in \mathbb{R}^d$ and random variable $Y \in \mathbb{R}$ have a joint distribution $P_{XY}(X,Y)$. Assume $\mathbb{E}[X] = 0$ and define $\Sigma = \operatorname{Cov}(X) = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$ with eigenvalues $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_d$ and orthonormal eigenvectors v_1, \ldots, v_d such that $\Sigma = \sum_{i=1}^d \alpha_i v_i v_i^T$. For $(X,Y) \sim P_{XY}$ assume that $Y = X^T w + \epsilon$ for $\epsilon \sim \mathcal{N}(0, \sigma^2)$ such that $\mathbb{E}_{Y|X}[Y|X = x] = x^T w$. Let $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ where each $(x_i, y_i) \sim P_{XY}$. For some $\lambda > 0$ let

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

If $\mathbf{X} = [x_1, \dots, x_n]^T$, $\mathbf{y} = [y_1, \dots, y_n]^T$, $\boldsymbol{\epsilon} = [\epsilon_1, \dots, \epsilon_n]^T$ then it can be shown that

$$\widehat{w} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}.$$
(1)

Note the notational difference between a random X of $(X, Y) \sim P_{XY}$ and the $n \times d$ matrix **X** where each row is drawn from P_X . Realizing that $\mathbf{X}^T \mathbf{X} = \sum_{i=1}^n x_i x_i^T$, by the law of large numbers we have $\frac{1}{n} \mathbf{X}^T \mathbf{X} \to \Sigma$ as $n \to \infty$. In your analysis assume n is large and make use of the approximation $\mathbf{X}^T \mathbf{X} = n\Sigma$. Justify all answers.

- a. Show Equation (1).
- b. Show that \hat{w} of Equation 1 can also be written as

$$\widehat{w} = w - \lambda (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} w + (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \boldsymbol{\epsilon}$$

c. For general $\hat{f}_{\mathcal{D}}(x)$ and $\eta(x) = \mathbb{E}_{Y|X}[Y|X=x]$, we showed in class that the bias variance decomposition is stated as

$$\mathbb{E}_{XY,\mathcal{D}}[(Y - \widehat{f}_{\mathcal{D}}(X))^2] = \mathbb{E}_X\left[\mathbb{E}_{Y|X,\mathcal{D}}\left[(Y - \widehat{f}_{\mathcal{D}}(X))^2|X = x\right]\right]$$

where

$$\mathbb{E}_{Y|X,\mathcal{D}}\left[(Y - \hat{f}_{\mathcal{D}}(X))^2 | X = x\right] = \underbrace{\mathbb{E}_{Y|X}\left[(Y - \eta(x))^2 | X = x\right]}_{\text{Irreducible error}} + \underbrace{(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^2}_{\text{Bias-squared}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^2\right]}_{\text{Variance}}$$

In what follows, use our particular problem setting with $\widehat{f}_{\mathcal{D}}(x) = \widehat{w}^T x$. Irreducible error: What is $\mathbb{E}_X \Big[\mathbb{E}_{Y|X} [(Y - \eta(x))^2 | X = x] \Big]$?

d. Bias-squared: Use the approximation $\mathbf{X}^T \mathbf{X} = n\Sigma$ to show that

$$\mathbb{E}_X\left[(\eta(X) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(X)])^2\right] = \sum_{i=1}^d \frac{\lambda^2 (w^T v_i)^2 \alpha_i}{(n\alpha_i + \lambda)^2} \le \max_{j=1,\dots,d} \frac{\lambda^2 \alpha_j \|w\|_2^2}{(n\alpha_j + \lambda)^2}$$

e. Variance: Use the approximation $\mathbf{X}^T \mathbf{X} = n\Sigma$ to show that

$$\mathbb{E}_X \left[\mathbb{E}_{\mathcal{D}} \left[\left(\mathbb{E}_{\mathcal{D}} [\widehat{f}_{\mathcal{D}}(X)] - \widehat{f}_{\mathcal{D}}(X) \right)^2 \right] \right] = \sum_{i=1}^d \frac{\sigma^2 \alpha_i^2 n}{(\alpha_i n + \lambda)^2} \le \frac{d\sigma^2 \alpha_1^2 n}{(\alpha_i n + \lambda)^2}$$

f. Assume $\Sigma = \alpha_1 I$ for some $\alpha_1 > 0$. Show that for the approximation $\mathbf{X}^T \mathbf{X} = n\Sigma$ we have

$$\mathbb{E}_{XY,\mathcal{D}}[(Y - \widehat{f}_{\mathcal{D}}(X))^2] = \sigma^2 + \frac{\lambda^2 \alpha_1 \|w\|_2^2}{(\alpha_1 n + \lambda)^2} + \frac{d\sigma^2 \alpha_1^2 n}{(\alpha_1 n + \lambda)^2}$$

What is the λ^* that minimizes this expression? In a sentence each describe how varying each parameter (e.g., $||w||_2$, d, σ^2) affects the size of λ^* and if this makes intuitive sense. Plug this λ^* back into the expression and comment on how this result compares to the $\lambda = 0$ solution. It may be helpful to use $\frac{1}{2}(a+b) \leq \max\{a,b\} \leq a+b$ for any a,b > 0 to simplify the expression.

g. Assume that $\alpha_1 > \alpha_2 = \alpha_3 = \cdots = \alpha_d$ and furthermore, that $w/||w||_2 = v_1$. Show that for the approximation $\mathbf{X}^T \mathbf{X} = n\Sigma$ we have

$$\mathbb{E}_{XY,\mathcal{D}}[(Y - \hat{f}_{\mathcal{D}}(X))^2] = \sigma^2 + \frac{\lambda^2 \alpha_1 \|w\|_2^2}{(\alpha_1 n + \lambda)^2} + \frac{\sigma^2 n \alpha_1^2}{(\alpha_1 n + \lambda)^2} + \frac{\sigma^2 n \alpha_2^2 (d - 1)}{(\alpha_2 n + \lambda)^2}$$

It can be shown that $\lambda^{\star} = \frac{\sigma^2 + \sigma^2 (d-1)\alpha_1/\alpha_2}{\|w\|_2^2}$ approximately minimizes this expression. In a sentence each describe if this makes intuitive sense, comparing to the solution of the last problem.

h. As λ increases, how does the bias and variance terms behave?

3 Programming: Ridge Regression on MNIST

5. [10 points] In this problem we will implement a least squares classifier for the MNIST data set. The task is to classify handwritten images of numbers between 0 to 9.

You are **NOT** allowed to use any of the prebuilt classifiers in **sklearn**. Feel free to use any method from **numpy** or **scipy**. Remember: if you are inverting a matrix in your code, you are probably doing something wrong (Hint: look at **scipy.linalg.solve**).

Get the data from https://pypi.python.org/pypi/python-mnist. Load the data as follows:

```
from mnist import MNIST
```

```
def load_dataset():
    mndata = MNIST('./data/')
    X_train, labels_train = map(np.array, mndata.load_training())
    X_test, labels_test = map(np.array, mndata.load_testing())
    X_train = X_train/255.0
    X_test = X_test/255.0
```

You can visualize a single example by reshaping it to its original 28×28 image shape.

a. In this problem we will choose a linear classifier to minimize the least squares objective:

$$\widehat{W} = \operatorname{argmin}_{W \in \mathbb{R}^{d \times k}} \sum_{i=0}^{n} \|W^{T} x_{i} - y_{i}\|_{2}^{2} + \lambda \|W\|_{F}^{2}$$

We adopt the notation where we have n data points in our training objective and each data point $x_i \in \mathbb{R}^d$. k denotes the number of classes which is in this case equal to 10. Note that $||W||_F$ corresponds to the Frobenius norm of W, i.e. $||\operatorname{vec}(W)||_2^2$.

Derive a closed form for \widehat{W} .

- b. As as first step we need to choose the vectors $y_i \in \mathbb{R}^k$ by converting the original labels (which are in $\{0, \ldots, 9\}$) to vectors. We will use the one-hot encoding of the labels, i.e. the original label $j \in \{0, \ldots, 9\}$ is mapped to the standard basis vector e_j . To classify a point x_i we will use the rule $\arg \max_{j=0,\ldots,9} \widehat{W}^T x_i$.
- c. Code up a function called **train** that returns \widehat{W} that takes as input $X \in \mathbb{R}^{n \times d}$, $y \in \{0, 1\}^{n \times k}$, and $\lambda > 0$. Code up a function called **predict** that takes as input $W \in \mathbb{R}^{d \times k}$, $X' \in \mathbb{R}^{m \times d}$ and returns an *m*-length vector with the *i*th entry equal to $\arg \max_{j=0,\ldots,9} W^T x'_i$ where x'_i is a column vector representing the *i*th example from X'.

Train \widehat{W} on the MNIST training data with $\lambda = 10^{-4}$ and make label predictions on the test data. What is the training and testing classification accuracy (they should both be about 85%)?

d. We just fit a classifier that was linear in the pixel intensities to the MNIST data. For classification of digits the raw pixel values are very, very bad features: it's pretty hard to separate digits with linear functions in pixel space. The standard solution to the this is to come up with some transform $h : \mathbb{R}^d \to \mathbb{R}^p$ of the original pixel values such that the transformed points are (more easily) linearly separable. In this problem, you'll use the feature transform:

$$h(x) = \cos(Gx + b).$$

where $G \in \mathbb{R}^{p \times d}$, $b \in \mathbb{R}^p$, and the cosine function is applied elementwise. We'll choose G to be a random matrix, with each entry sampled i.i.d. with mean $\mu = 0$ and variance $\sigma^2 = 0.1$, and b to be a random vector sampled i.i.d. from the uniform distribution on $[0, 2\pi]$. The big question is: how do we choose p? Cross-validation, of course!

Randomly partition your training set into proportions 80/20 to use as a new training set and validation set, respectively. Using the **train** function you wrote above, train a \widehat{W}^p for different values of p and plot the classification training error and validation error on a single plot with p on the x-axis. Be careful, your computer may run out of memory and slow to a crawl if p is too large ($p \leq 6000$ should fit into 4 GB of memory). You can use the same value of λ as above but feel free to study the effect of using different values of λ and σ^2 for fun.

e. Instead of reporting just the classification test error, which is an unbiased estimate of the *true* error, we would like to report a *confidence interval* around the test error that contains the true error. For any $\delta \in (0, 1)$, it follows from Hoeffding's inequality that if X_i for all $i = 1, \ldots, m$ are i.i.d. random variables with $X_i \in [a, b]$ and $\mathbb{E}[X_i] = \mu$, then with probability at least $1 - \delta$

$$\mathbb{P}\left(\left| \left(\frac{1}{m} \sum_{i=1}^{m} X_i \right) - \mu \right| \ge \sqrt{\frac{\log(2/\delta)}{2m}} \right) \le \delta$$

We will use the above equation to construct a confidence interval around our true classification error since the test error is just the average of indicator variables taking values in 0 or 1 corresponding to the *i*th test example being classified correctly or not, respectively, where an error happens with probability μ , the *true* classification error.

Let \hat{p} be the value of p that approximately minimizes the validation error on the plot you just made and use $\widehat{W}^{\hat{p}}$ to compute the classification test accuracy, which we will denote as E_{test} . Use Hoeffding's inequality, above, to compute a confidence interval that contains $\mathbb{E}[E_{test}]$ (i.e., the *true* error) with probability at least 0.95 (i.e., $\delta = 0.05$). Report E_{test} and the confidence interval.