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You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a feature vector X:  
{ email-address, age of account, anonymous PO box, price of items, copies 
of purchased item, etc. }  
and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Your job is to build a (possibly randomized) decision function �(x) 2 {0, 1}
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Bayesian Hypothesis Testing:

Assume P(Y = 1) = ⇡
argmin

�
PXY (Y 6= �(X))

P(X = x) = ⇡P1(x) + (1� ⇡)P0(x)

Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Your job is to build a (possibly randomized) decision function �(x) 2 {0, 1}
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Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Your job is to build a (possibly randomized) decision function �(x) 2 {0, 1}

Minimax Hypothesis Testing:
argmin

�
max{P(�(X) = 0|Y = 1),P(�(X) = 1|Y = 0)}
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Neyman-Pearson Hypothesis Testing:

argmax
�

P(�(X) = 1|Y = 1), subject to P(�(X) = 1|Y = 0)  ↵}

Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Your job is to build a (possibly randomized) decision function �(x) 2 {0, 1}



©Kevin Jamieson 2018

Neyman-Pearson Testing

 7

Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Neyman-Pearson Hypothesis Testing:

argmax
�

P(�(X) = 1|Y = 1), subject to P(�(X) = 1|Y = 0)  ↵}

P(�⇤(X) = 1) =

8
><

>:

1 if P1(x)
P0(x)

> ⌘

� if P1(x)
P0(x)

= ⌘

0 if P1(x)
P0(x)

< ⌘

Theorem: The optimal test �⇤ has the form

and satisfies P(�⇤(X) = 1|Y = 0) = ↵
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Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Neyman-Pearson Hypothesis Testing:

argmax
�

P(�(X) = 1|Y = 1), subject to P(�(X) = 1|Y = 0)  ↵}

Example:
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Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Prob of False Alarm

Prob of Detection

argmin
�

max{P(�(X) = 0|Y = 1),P(�(X) = 1|Y = 0)}

P(�(X) = 1|Y = 1)

0
0

1

1
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You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a feature vector X:  
{ email-address, age of account, anonymous PO box, price of items, copies 
of purchased item, etc. }  
and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Your job is to build a (possibly randomized) decision function �(x) 2 {0, 1}

Natural to have model for P0 (regular purchases).
But what if we have no model for P1 since people are strategic?
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Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Your job is to build a (possibly randomized) decision function �(x) 2 {0, 1}

Definition p-value: probability of finding the observed, or more extreme, re-

sults when the null hypothesis H0 is true (e.g., X ⇠ P0)

WARNING: A small p-value is NOT evidence that H1 is true.

Definition p-value: a uniformly distributed random variable under the null
hypothesis (e.g., X ⇠ P0)
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Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Your job is to build a (possibly randomized) decision function �(x) 2 {0, 1}

P0(x) = N (x;µ0,�
2)

p-value for ith gene given observation xi: pi = P0(X � xi) =
R1
x=xi

1p
2⇡�2

e�(x�µ0)
2/2�2

dx

Observe: xi 2 R
p-value:

p-value for ith gene given observation xi: pi = P0(X � xi) =
R1
x=xi

1p
2⇡�2

e�(x�µ0)
2/2�2

dx

Definition p-value: a uniformly distributed random variable under the null
hypothesis (e.g., X ⇠ P0)
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Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Your job is to build a (possibly randomized) decision function �(x) 2 {0, 1}

p-value for ith gene given observation xi: pi = P0(X � xi) =
R1
x=xi

1p
2⇡�2

e�(x�µ0)
2/2�2

dx

Observe: xi 2 R
p-value:

Set: ↵ = .05

Test: If pi  ↵ then reject the null hypothesis H0

Definition p-value: a uniformly distributed random variable under the null
hypothesis (e.g., X ⇠ P0)
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Hypothesis testing:
H0: X ⇠ P0

X ⇠ P1H1: 

Pk = P(X = x|Y = k)

Your job is to build a (possibly randomized) decision function �(x) 2 {0, 1}

p-value for ith gene given observation xi: pi = P0(X � xi) =
R1
x=xi

1p
2⇡�2

e�(x�µ0)
2/2�2

dx

Observe: xi 2 R
p-value:

Set: ↵ = .05

Test: If pi  ↵ then reject the null hypothesis H0

If pi > ↵ repeat the experiment with new xi until pi  ↵BAD

Definition p-value: a uniformly distributed random variable under the null
hypothesis (e.g., X ⇠ P0)
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Each day i=1,2,… you measure an iid xi ⇠ N (µ, 1)

H0: µ = 0

Under H0 the statistic Zi =
1p
i

Pi
j=1 xj ⇠ N (0, 1)

pi =
1
2⇡

Z 1

z=zi

e�z2/2dz
1

0
.05

days i
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Case study in adaptive sampling tradeoffs
“Drosophila RNAi screen identifies host genes important for influenza virus 
replication,” Nature 2008.

Wild type strain
with 13,071 genes

genomic RNA-containing viral ribonucleoprotein complexes
(vRNPs), vRNP import into the nucleus, mRNA synthesis from the
negative-strand viral RNA genome, mRNA export to the cytoplasm
and translation.

For high-throughput, functional genomics analysis of influenza
virus replication in Drosophila cells, we engineered Flu-VSV-G-
R.Luc (FVG-R), in which VSV-G and Renilla luciferase genes
replaced the viral HA and NA open reading frames (Fig. 1b). FVG-
R virions were then used with an RNAi library (Ambion) against
13,071 Drosophila genes (,90% of all genes) to identify host genes
affecting influenza-virus-directed Renilla luciferase expression
(Fig. 1c). Two independent tests of the entire library were performed
(Supplementary Table 1). For 176 genes for which dsRNAs inhibited
FVG-R-directed luciferase expression in both replicates, repeated
secondary tests using alternate dsRNAs to control for possible off-
target effects confirmed the effects of 110 genes (Supplementary
Tables 2 and 3). This confirmation rate is comparable to that in a
Drosophila screen with a natural Drosophila-infecting virus5.
Cell viability testing identified six genes with potentially significant

cytotoxic effects; these were excluded from further consideration
(Supplementary Information and Supplementary Table 3).
Secondary tests of candidate genes for which dsRNAs increased
FVG-R-directed luciferase expression produced a much lower con-
firmation rate, suggesting a higher rate of off-target or other false-
positive effects in this class (Supplementary Information and
Supplementary Table 4).

Among the over 100 candidate genes found to be important for
influenza virus replication inDrosophila cells, we selected the human
homologues of several encoding components in host pathways/
machineries that are known to be involved in the life cycle of influ-
enza virus, for example,ATP6V0D1 (endocytosis pathway),COX6A1
(mitochondrial function) and NXF1 (mRNA nuclear export
machinery), for further analysis in mammalian cells to assess the
relevance of our Drosophila results13–17. ATP6V0D1 encodes subunit
D of vacuolar (H1)-ATPase (V-ATPase), a proton pump that func-
tions in the endocytosis pathway (that is, the acidification and fusion
of intracellular compartments18).COX6A1 encodes a subunit of cyto-
chrome c oxidase (COX), an enzyme of the mitochondrial electron
transport chain that catalyses electron transfer from cytochrome c to
oxygen19.NXF1 encodes a nuclear export factor critical for exporting
most cellular mRNAs containing exon–exon junctions20,21.

As a first test for the possible contribution of these gene products
to influenza virus replication in mammalian cells, we treated human
HEK 293 cells twice at 24-h intervals with short interfering RNAs
(siRNAs; siGENOME, Dharmacon) against the human homologue
of each selectedDrosophilia gene. Twenty-four hours after the second
siRNA treatment, the cells were infected with FVG-R virus and, two
days later, Renilla luciferase activity was measured to assess viral
replication and gene expression. siRNA against ATP6V0D1 or
COX6A1 markedly decreased Renilla luciferase activity (Fig. 2a),
but not cell viability (Supplementary Fig. 5a), suggesting that these
genes have important roles in influenza virus replication in mam-
malian cells, as in Drosophila cells. Inhibition was not caused by off-
target effects because, for each gene, each of four distinct siRNAs
inhibited FVG-R-directed expression of Renilla luciferase
(Supplementary Table 6). Because COX6A1 encodes a subunit of
mitochondrial electron transport chain complex IV, COX, we used
specific inhibitors to test whether in HEK293 cells influenza virus
also required other complexes in this chain (Fig. 2c). Inhibitors of
complexes III, IV and V selectively inhibited FVG-R-directed Renilla
luciferase expression by 50- to 100-fold, whereas complex I and II
inhibitors had little or no effect. Thus, in mammalian cells, influenza
virus depends on multiple late stages but not early stages in the
mitochondrial electron transport chain.

Treatment for four days with siRNA against NXF1 decreased
mammalian cell viability (data not shown), as predicted by the criti-
cal role of NXF1 in general host cell metabolism. Accordingly, the
total incubation timewith siRNA againstNXF1was shortened to 36 h
by transfecting cells with the siRNA twice at a 12-h interval, infecting
with FVG-R virus 12 h later, and assaying forRenilla luciferase at 12-h
post-infection. Under these conditions, cell viability was not detect-
ably affected (Supplementary Fig. 5b) whereas Renilla luciferase
activity was reduced by nearly fivefold (Fig. 2b). Whereas recent
results indicated that influenza virus protein NS1 binds to NXF1 to
inhibit host mRNA export17, these results imply that influenza virus
RNAs and/or proteins are transported by an NXF1-dependent path-
way (see also Supplementary Information).

To test the effects of these genes on authentic influenza viruses, we
infected siRNA-treatedHEK293 cells withWSN virus orH5N1 influ-
enza A/Indonesia/7/05 (Indonesia 7; isolated from a patient) or with
VSVor vaccinia virus as controls. Progeny viruses were collected from
the medium at 24 h (Indonesia 7, VSV or vaccinia virus) or 48 h
(WSN) post-infection and were titrated. Depleting ATP6V0D1 and
COX6A1 did not affect VSV or vaccinia virus replication, but
decreased theWSN and Indonesia 7 virus yields by,10-fold or more
(Fig. 3a). Thus, ATP6V0D1 and COX6A1 are required for replication

Incorporation signal of HA segment

Incorporation signal of NA segment

Incorporation signal of HA segment

Incorporation signal of NA segment

HA
NA

VSV-G
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VSV-G

Luciferase

Add dsRNA of the Drosophila RNAi library
(targeting to 13,071 Drosophila genes) to
each well of 384-well microplates

Add DL1 cells to the plates

Infect with FVG-R virus

Measure Renilla luciferase activity
to assess the efficiency of virus
replication
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Figure 1 | Overview of genome-wide RNAi screen to identify host factors
involved in influenza virus replication in Drosophila cells. a, b, Schematic
diagrams showing recombinant influenza viruses. Shown are FVG-G, in
which genes encoding the HA and NA proteins were replaced with the VSV-
G and eGFP genes, respectively (a), and FVG-R, in which the genes encoding
the HA and NA were replaced with the VSV-G and Renilla luciferase genes,
respectively (b). c, Schematic diagram of the systematic analysis of host
genes affecting influenza virus replication and gene expression inDrosophila
cells. Experimental details are given in Methods.
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infect with fluorescing virus 
(indicating gene’s influence)

microwell 
array

Inhibit a single gene

Each gene i=1,2,…,n you measure an 
H0(i): 

xi ⇠ N (µi, 1)

µi = 0

p-value for ith gene given observation xi: pi = P0(X � xi) =
R1
x=xi

1p
2⇡�2

e�(x�µ0)
2/2�2

dx

Observe: xi 2 R
p-value:

Set: ↵ = .05

Test: If pi  ↵ then reject the null hypothesis H0

Consider procedure for individual hypothesis testing:

Under H0, how many genes do we expect to reject the null hypothesis?
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If we make n rejections individually at level ↵ we expect n↵
hypotheses to be rejected even if all hypotheses were H0

That’s a lot of false alarms!

I0 = {i : H0(i) is true}

E[
X

i2I0

1{pi  ↵}] =
X

i2I0

P(pi  ↵) = |I0|↵
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Family-wise error rate FWER= P(reject any true null)

I0 = {i : H0(i) is true}

Bonferroni rule: Reject i if pi  ↵/n

FWER = P
 
[

I0

{pi  ↵/n}
!

=
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I0 = {i : H0(i) is true}

False discovery rate FDR= E
h
|I0\R|
|R|

i

Benjamini-Hochberg procedure:

Sort p-values such that p(1)  p(2)  · · ·  p(n)

imax = max{i : p(i)  i
n↵}

R = {i : i  imax}

Theorem: BH(↵) satisfies FDR ↵
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MLE Recap - coin flips

■ Data: sequence D= (HHTHT…), k heads out of n flips
■ Hypothesis: P(Heads) = θ,  P(Tails) = 1-θ 
 

■ Maximum likelihood estimation (MLE): Choose θ that 
maximizes the probability of observed data:

P (D|✓) = ✓k(1� ✓)n�k

b✓MLE = argmax
✓

P (D|✓)

= argmax
✓

logP (D|✓)
b✓MLE =

k

n
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What about prior 

■ Billionaire: Wait, I know that the coin is “close” to 
50-50. What can you do for me now? 

■ You say: I can learn it the Bayesian way…
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Bayesian Learning

■ Use Bayes rule: 

■ Or equivalently:



 26©2017 Kevin Jamieson

Bayesian Learning for Coins

■ Likelihood function is simply Binomial: 

■ What about prior? 
Represent expert knowledge 

■ Conjugate priors: 
Closed-form representation of posterior 
For Binomial, conjugate prior is Beta distribution
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Beta prior distribution – P(θ)

■ Likelihood function: 
■ Posterior:

Mean: 

Mode: 

Beta(2,3) Beta(20,30)
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Posterior distribution

■ Prior: 
■ Data: αH heads and αT tails 

■ Posterior distribution: 

Beta(2,3) Beta(20,30)
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Using Bayesian posterior

■ Posterior distribution:  

■ Bayesian inference: 
Estimate mean  
 

Estimate arbitrary function f 

For arbitrary f integral is often hard to compute

E[✓] =

Z 1

0
✓P (✓|D)d✓
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MAP: Maximum a posteriori 
approximation

■ As more data is observed, Beta is more certain 

■ MAP: use most likely parameter:
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MAP for Beta distribution

■ MAP: use most likely parameter:
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MAP for Beta distribution

■ MAP: use most likely parameter: 

■ Beta prior equivalent to extra coin flips 
■ As N → 1, prior is “forgotten” 
■ But, for small sample size, prior is important!

�H + ↵H � 1

�H + �T + ↵H + ↵T � 2
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Bayesian vs Frequentist

■   
■ Frequentists treat unknown θ as fixed and the  

data D as random. 

■ Bayesian treat the data D as fixed and the 
unknown θ as random

Data: D Estimator: b✓ = t(D) loss: `(t(D), ✓)
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Bayesians are optimists:  
• “If we model it correctly, we output most likely answer”  
• Assumes one can accurately model: 

• Observations and link to unknown parameter θ: 

• Distribution, structure of unknown θ: 

Frequentist are pessimists: 
• “All models are wrong, prove to me your estimate is good” 
• Makes very few assumptions, e.g.                       and constructs an 

estimator (e.g., median of means of disjoint subsets of data) 
• Must analyze each estimate

p(x|✓)
p(✓)

E[X2] < 1


