
©Kevin Jamieson 2018

Announcements

■ Proposals graded

 1

©2018 Kevin Jamieson 2

Bayesian Methods

Machine Learning – CSE546
Kevin Jamieson
University of Washington

November 1, 2018

 3©2018 Kevin Jamieson

MLE Recap - coin flips

■ Data: sequence D= (HHTHT…), k heads out of n flips
■ Hypothesis: P(Heads) = θ, P(Tails) = 1-θ 
 

■ Maximum likelihood estimation (MLE): Choose θ that
maximizes the probability of observed data:

P (D|✓) = ✓k(1� ✓)n�k

b✓MLE = argmax
✓

P (D|✓)

= argmax
✓

logP (D|✓)
b✓MLE =

k

n

 4©2018 Kevin Jamieson

What about prior

■ Billionaire: Wait, I know that the coin is “close” to
50-50. What can you do for me now?

■ You say: I can learn it the Bayesian way…

 5©2018 Kevin Jamieson

Bayesian Learning

■ Use Bayes rule:

■ Or equivalently:

 6©2018 Kevin Jamieson

Bayesian Learning for Coins

■ Likelihood function is simply Binomial:

■ What about prior?
Represent expert knowledge

■ Conjugate priors:
Closed-form representation of posterior
For Binomial, conjugate prior is Beta distribution

P (D|✓) = ✓k(1� ✓)n�k

 7©2018 Kevin Jamieson

Beta prior distribution – P(θ)

■ Likelihood function:
■ Posterior:

Mean:

Mode:

Beta(2,3) Beta(20,30)

P (D|✓) = ✓k(1� ✓)n�k

 8©2018 Kevin Jamieson

Posterior distribution

■ Prior:
■ Data: k heads and (n-k) tails

■ Posterior distribution:

P (✓|D) = Beta(k + �H , (n� k) + �T)

�H = 1,�t = 1 �H = 10,�t = 10 �H = 50,�t = 50

k = 23, n = 25

Prior P (✓)

Posterior P (✓|D)

 9©2018 Kevin Jamieson

Using Bayesian posterior

■ Posterior distribution:

■ Bayesian inference:
Estimate mean  
 

Estimate arbitrary function f

For arbitrary f integral is often hard to compute

E[✓] =

Z 1

0
✓P (✓|D)d✓

P (✓|D) = Beta(k + �H , (n� k) + �T)

 10©2018 Kevin Jamieson

MAP: Maximum a posteriori
approximation

■ As more data is observed, Beta is more certain

■ MAP: use most likely parameter:

P (✓|D) = Beta(k + �H , (n� k) + �T)

 11©2018 Kevin Jamieson

MAP for Beta distribution

■ MAP: use most likely parameter:

P (✓|D) / ✓k+�H�1(1� ✓)n�k+�T�1

■ MAP: use most likely parameter:

■ Beta prior equivalent to extra coin flips
■ As N → 1, prior is “forgotten”
■ But, for small sample size, prior is important!

 12©2018 Kevin Jamieson

MAP for Beta distribution

P (✓|D) / ✓k+�H�1(1� ✓)n�k+�T�1

k + �H � 1

n� k + �T � 1

 13©2018 Kevin Jamieson

Bayesian vs Frequentist

■
■ Frequentists treat unknown θ as fixed and the  

data D as random.

■ Bayesian treat the data D as fixed and the
unknown θ as random

Data: D Estimator: b✓ = t(D) loss: `(t(D), ✓)

Data: D Estimator: b✓ = t(D) loss: `(t(D), ✓)

P (✓|D)

Recap for Bayesian learning

 14©2018 Kevin Jamieson

Bayesians are optimists:
• “If we model it correctly, we quantify uncertainty exactly”
• Answers all questions “simultaneously” with posterior probability
• Assumes one can accurately model:

• Observations and link to unknown parameter θ:

• Distribution, structure of unknown θ:

Frequentist are pessimists:
• “All models are wrong, prove to me your estimate is good”
• Answers each question with a separately analyzed estimator
• Makes very few assumptions, e.g. and constructs an

estimator (e.g., median of means of disjoint subsets of data)

p(x|✓)
p(✓)

E[X2] < 1

©2018 Kevin Jamieson 15

Nearest Neighbor

Machine Learning – CSE546
Kevin Jamieson
University of Washington

November 1, 2018

©2018 Kevin Jamieson 16

Some data, Bayes Classifier

Training data:

True label: +1

True label: -1

Optimal “Bayes” classifier:

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al

P(Y = 1|X = x) =
1

2

©2018 Kevin Jamieson 17

Linear Decision Boundary

Training data:

True label: +1

True label: -1

Learned:
Linear Decision boundary

Predicted label: +1

Predicted label: -1

xTw + b = 0

Figures stolen from Hastie et al

©2018 Kevin Jamieson 18

15 Nearest Neighbor Boundary

Training data:

True label: +1

True label: -1

Learned:
15 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

©2018 Kevin Jamieson 19

1 Nearest Neighbor Boundary

Training data:

True label: +1

True label: -1

Learned:
1 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

©2018 Kevin Jamieson 20

k-Nearest Neighbor Error

Bias-Variance tradeoff

Best possible

As k->infinity?

As k->1?

Bias:

Variance:

Bias:

Variance:

Kevin Jamieson 2018 21

Notable distance metrics  
(and their level sets)

L1 norm (taxi-cab)

L-infinity (max) norm

Mahalanobis

L2 norm

Kevin Jamieson 2018 22

1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2

©2018 Kevin Jamieson 23

1 nearest neighbor guarantee

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {1, . . . , k}
As n ! 1 assume the xi’s become dense in Rd and P(Y = j|X = x) is smooth

As xa ! xb we have P(Ya = j) ! P(Yb = j) for all j

©2018 Kevin Jamieson 24

1 nearest neighbor guarantee

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {1, . . . , k}

If p` = P(Ya = `) = P(Yb = `) and `⇤ = arg max
`=1,...,k

p` then

As n ! 1 assume the xi’s become dense in Rd and P(Y = j|X = x) is smooth

As xa ! xb we have P(Ya = j) ! P(Yb = j) for all j

Bayes Error = 1� p`⇤

©2018 Kevin Jamieson 25

1 nearest neighbor guarantee

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {1, . . . , k}

P(Ya 6= Yb) =
kX

`=1

P(Ya = `, Yb 6= `)1-nearest neighbor error =

If p` = P(Ya = `) = P(Yb = `) and `⇤ = arg max
`=1,...,k

p` then

As n ! 1 assume the xi’s become dense in Rd and P(Y = j|X = x) is smooth

As xa ! xb we have P(Ya = j) ! P(Yb = j) for all j

Bayes Error = 1� p`⇤

©2018 Kevin Jamieson 26

1 nearest neighbor guarantee

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {1, . . . , k}

P(Ya 6= Yb) =
kX

`=1

P(Ya = `, Yb 6= `)1-nearest neighbor error =

If p` = P(Ya = `) = P(Yb = `) and `⇤ = arg max
`=1,...,k

p` then

=
kX

`=1

p`(1� p`) 2(1� p`⇤)�
k

k � 1
(1� p`⇤)

2

As n->infinity, then 1-NN rule error is at most twice the Bayes error!

[Cover, Hart, 1967]

As n ! 1 assume the xi’s become dense in Rd and P(Y = j|X = x) is smooth

As xa ! xb we have P(Ya = j) ! P(Yb = j) for all j

Bayes Error = 1� p`⇤

©2018 Kevin Jamieson 27

Curse of dimensionality Ex. 1

side length r

X is uniformly distributed over [0, 1]p. What is P(X 2 [0, r]p)?

©2018 Kevin Jamieson 28

Curse of dimensionality Ex. 2

{Xi}ni=1 are uniformly distributed over [�.5, .5]p.

What is the median distance from a point at origin to its 1NN?

Kevin Jamieson 2018 29

Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi

Kevin Jamieson 2018 30

Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi

Why are far-away neighbors
weighted same as close neighbors!

Kernel smoothing: K(x, y)

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Kevin Jamieson 2018 31

Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Kevin Jamieson 2018 32

Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?

Kevin Jamieson 2018 33

Nearest neighbor regression
{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

bf(x0) = b(x0) + w(x0)
Tx0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ wTxi))
2

Local Linear Regression

©2018 Kevin Jamieson 34

Nearest Neighbor Overview

■ Very simple to explain and implement
■ No training! But finding nearest neighbors in large dataset

at test can be computationally demanding (kD-trees help)

©2018 Kevin Jamieson 35

Nearest Neighbor Overview

■ Very simple to explain and implement
■ No training! But finding nearest neighbors in large dataset

at test can be computationally demanding (kD-trees help)
■ You can use other forms of distance (not just Euclidean)
■ Smoothing with Kernels and local linear regression can

improve performance (at the cost of higher variance)

©2018 Kevin Jamieson 36

Nearest Neighbor Overview

■ Very simple to explain and implement
■ No training! But finding nearest neighbors in large dataset

at test can be computationally demanding (kD-trees help)
■ You can use other forms of distance (not just Euclidean)
■ Smoothing with Kernels and local linear regression can

improve performance (at the cost of higher variance)
■ With a lot of data, “local methods” have strong, simple

theoretical guarantees.
■ Without a lot of data, neighborhoods aren’t “local” and

methods suffer.

©2018 Kevin Jamieson 37

Kernels

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 26, 2018

©Kevin Jamieson 2018 38

■ Have a bunch of iid data of the form:

{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

Hinge Loss: `i(w) = max{0, 1� yixT
i w}

Machine Learning Problems

All in terms of inner products! Even nearest neighbor can use inner products!

©2018 Kevin Jamieson 39

What if the data is not linearly separable?

Use features of features
of features of features….

Feature space can get really large really quickly!

�(x) : Rd ! Rp

©2017 Kevin Jamieson 40

Dot-product of polynomials

exactly d

d = 1 : �(u) =

u1

u2

�
h�(u),�(v)i = u1v1 + u2v2

©2017 Kevin Jamieson 41

Dot-product of polynomials

exactly d

d = 1 : �(u) =

u1

u2

�
h�(u),�(v)i = u1v1 + u2v2

d = 2 : �(u) =

2

664

u2
1

u2
2

u1u2

u2u1

3

775 h�(u),�(v)i = u2
1v

2
1 + u2

2v
2
2 + 2u1u2v1v2

©2017 Kevin Jamieson 42

Dot-product of polynomials

exactly d

d = 1 : �(u) =

u1

u2

�
h�(u),�(v)i = u1v1 + u2v2

d = 2 : �(u) =

2

664

u2
1

u2
2

u1u2

u2u1

3

775 h�(u),�(v)i = u2
1v

2
1 + u2

2v
2
2 + 2u1u2v1v2

General d :

Dimension of �(u) is roughly pd if u 2 Rp

©2017 Kevin Jamieson 43

Kernel Trick

There exists an ↵ 2 Rn: bw =
nX

i=1

↵ixi Why?

bw = argmin
w

nX

i=1

(yi � xT
i w)

2 + �||w||2w

b↵ = argmin
↵

nX

i=1

(yi �
nX

j=1

↵jhxj , xii)2 + �
nX

i=1

nX

j=1

↵i↵jhxi, xji

©2017 Kevin Jamieson 44

Kernel Trick

There exists an ↵ 2 Rn: bw =
nX

i=1

↵ixi Why?

bw = argmin
w

nX

i=1

(yi � xT
i w)

2 + �||w||2w

b↵ = argmin
↵

nX

i=1

(yi �
nX

j=1

↵jhxj , xii)2 + �
nX

i=1

nX

j=1

↵i↵jhxi, xji

= argmin
↵

nX

i=1

(yi �
nX

j=1

↵jK(xi, xj))
2 + �

nX

i=1

nX

j=1

↵i↵jK(xi, xj)

= argmin
↵

||y �K↵||22 + �↵TK↵

K(xi, xj) = h�(xi),�(xj)i

©2017 Kevin Jamieson 45

Why regularization?

b↵ = argmin
↵

||y �K↵||22 + �↵TK↵

Typically, K � 0. What if � = 0?

©2017 Kevin Jamieson 46

Why regularization?

b↵ = argmin
↵

||y �K↵||22 + �↵TK↵

Unregularized kernel least squares can (over) fit any data!

Typically, K � 0. What if � = 0?

b↵ = K�1y

©2017 Kevin Jamieson 47

Common kernels

■ Polynomials of degree exactly d

■ Polynomials of degree up to d

■ Gaussian (squared exponential) kernel

■ Sigmoid
K(u,v) = exp

✓
� ||u� v||22

2�2

◆

©2017 Kevin Jamieson 48

Mercer’s Theorem

■ When do we have a valid Kernel K(x,x’)?
■ Definition 1: when it is an inner product

■ Mercer’s Theorem:
K(x,x’) is a valid kernel if and only if K is a positive
semi-definite.
PSD in the following sense:

Z

x,x0
h(x)K(x, x0)h(x0)dxdx0 � 0 8h : Rd ! R,

Z

x
|h(x)|2dx 1

©2017 Kevin Jamieson 49

RBF Kernel

■ Note that this is like weighting “bumps” on each point like kernel
smoothing but now we learn the weights

K(u,v) = exp

✓
� ||u� v||22

2�2

◆

©2017 Kevin Jamieson 50

RBF Kernel K(u,v) = exp

✓
� ||u� v||22

2�2

◆

The bandwidth sigma has an enormous effect on fit:
� = 10�2 � = 10�1 � = 10�0� = 10�4 � = 10�4 � = 10�4

bf(x) =
nX

i=1

b↵iK(xi, x)

©2017 Kevin Jamieson 51

RBF Kernel K(u,v) = exp

✓
� ||u� v||22

2�2

◆

The bandwidth sigma has an enormous effect on fit:
� = 10�2 � = 10�1 � = 10�0� = 10�4 � = 10�4 � = 10�4

� = 10�1 � = 10�0� = 10�3 � = 10�4

bf(x) =
nX

i=1

b↵iK(xi, x)

©2017 Kevin Jamieson 52

RBF kernel and random features
2 cos(↵) cos(�) = cos(↵+ �) + cos(↵� �)

ejz = cos(z) + sin(z)

Recall HW1 where we used the feature map:

wk ⇠ N (0, 2� I)

bk ⇠ uniform(0,⇡)
�(x) =

2

64

p
2 cos(wT

1 x+ b1)
...p

2 cos(wT
p x+ bp)

3

75

E[1
p
�(x)T�(y)] =

1

p

pX

k=1

E[2 cos(wT
k x+ bk) cos(w

T
k y + bk)]

= Ew,b[2 cos(w
Tx+ b) cos(wT y + b)]

©2017 Kevin Jamieson 53

RBF kernel and random features
2 cos(↵) cos(�) = cos(↵+ �) + cos(↵� �)

ejz = cos(z) + sin(z)

Recall HW1 where we used the feature map:

wk ⇠ N (0, 2� I)

bk ⇠ uniform(0,⇡)
�(x) =

2

64

p
2 cos(wT

1 x+ b1)
...p

2 cos(wT
p x+ bp)

3

75

E[1
p
�(x)T�(y)] =

1

p

pX

k=1

E[2 cos(wT
k x+ bk) cos(w

T
k y + bk)]

= Ew,b[2 cos(w
Tx+ b) cos(wT y + b)]

[Rahimi, Recht NIPS 2007]
“NIPS Test of Time Award, 2018”

= e��||x�y||22

©2017 Kevin Jamieson 54

RBF Classification

bw =

min
↵,b

nX

i=1

max{0, 1� yi(b+
nX

j=1

↵jhxi, xji)}+ �
nX

i,j=1

↵i↵jhxi, xji

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22

©2018 Kevin Jamieson 55

Wait, infinite dimensions?

■ Isn’t everything separable there? How are we not
overfitting?

■ Regularization! Fat shattering (R/margin)^2

©2017 Kevin Jamieson 56

String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

x1

x2

All subsequences of length 3 (of possible 20 amino acids)

