Announcements

- Proposals graded

Bayesian Methods

Machine Learning - CSE546 Kevin Jamieson University of Washington

November 1, 2018

MLE Recap - coin flips

- Data: sequence $D=(H H T H T . .$.$) , \mathbf{k}$ heads out of \mathbf{n} flips
- Hypothesis: $P($ Heads $)=\theta, P($ Tails $)=1-\theta$

$$
P(\mathcal{D} \mid \theta)=\theta^{k}(1-\theta)^{n-k}
$$

- Maximum likelihood estimation (MLE): Choose θ that maximizes the probability of observed data:

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(\mathcal{D} \mid \theta) \quad \hat{\theta}_{M L E}=\frac{k}{n} \\
& =\arg \max _{\theta} \log P(\mathcal{D} \mid \theta)
\end{aligned}
$$

What about prior

- Billionaire: Wait, I know that the coin is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...

Bayesian Learning

- Use Bayes rule:

$$
P(\theta \mid \mathcal{D})=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}
$$

- Or equivalently:

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

Bayesian Learning for Coins

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

- Likelihood function is simply Binomial:

$$
P(\mathcal{D} \mid \theta)=\theta^{k}(1-\theta)^{n-k}
$$

- What about prior?
\square Represent expert knowledge
- Conjugate priors:
\square Closed-form representation of posterior
\square For Binomial, conjugate prior is Beta distribution

Beta prior distribution - $\mathrm{P}(\theta)$

$P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right) \quad$ Mean: \quad Mode:

- Likelihood function: $P(\mathcal{D} \mid \theta)=\theta^{k}(1-\theta)^{n-k}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

Posterior distribution

- Prior: Beta $\left(\beta_{H}, \beta_{T}\right)$
- Data: k heads and ($n-k$) tails
- Posterior distribution:

$$
P(\theta \mid \mathcal{D})=\operatorname{Beta}\left(k+\beta_{H},(n-k)+\beta_{T}\right)
$$

Prior $P(\theta)$
Posterior $P(\theta \mid \mathcal{D})$
$k=23, n=25$

Using Bayesian posterior

- Posterior distribution:

$$
P(\theta \mid \mathcal{D})=\operatorname{Beta}\left(k+\beta_{H},(n-k)+\beta_{T}\right)
$$

- Bayesian inference:
\square Estimate mean

$$
E[\theta]=\int_{0}^{1} \theta P(\theta \mid \mathcal{D}) d \theta
$$

\square Estimate arbitrary function f

$$
E[f(\theta)]=\int_{0}^{1} f(\theta) P(\theta \mid \mathcal{D}) d \theta
$$

\square For arbitrary f integral is often hard to compute

MAP: Maximum a posteriori approximation

$$
\begin{aligned}
& P(\theta \mid \mathcal{D})=\operatorname{Beta}\left(k+\beta_{H},(n-k)+\beta_{T}\right) \\
& E[f(\theta)]=\int_{0}^{1} f(\theta) P(\theta \mid \mathcal{D}) d \theta
\end{aligned}
$$

- As more data is observed, Beta is more certain
- MAP: use most likely parameter:

$$
\hat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D}) \quad E[f(\theta)] \approx f(\hat{\theta})
$$

MAP for Beta distribution

$$
P(\theta \mid \mathcal{D}) \propto \theta^{k+\beta_{H}-1}(1-\theta)^{n-k+\beta_{T}-1}
$$

- MAP: use most likely parameter:
$\hat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D})=$

MAP for Beta distribution

$$
P(\theta \mid \mathcal{D}) \propto \theta^{k+\beta_{H}-1}(1-\theta)^{n-k+\beta_{T}-1}
$$

- MAP: use most likely parameter:
$\hat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D})=\frac{k+\beta_{H}-1}{n-k+\beta_{T}-1}$
- Beta prior equivalent to extra coin flips
- As $N \rightarrow 1$, prior is "forgotten"
- But, for small sample size, prior is important!

Bayesian vs Frequentist

- Data: D
- Frequentists treat unknown θ as fixed and the data D as random. $\widehat{\theta}=t(\mathcal{D})$
- Bayesian treat the data D as fixed and the unknown θ as random $P(\theta \mid \mathcal{D})$

Recap for Bayesian learning

Bayesians are optimists:

- "If we model it correctly, we quantify uncertainty exactly"
- Answers all questions "simultaneously" with posterior probability
- Assumes one can accurately model:
- Observations and link to unknown parameter $\theta: p(x \mid \theta)$
- Distribution, structure of unknown $\theta: p(\theta)$

Frequentist are pessimists:

- "All models are wrong, prove to me your estimate is good"
- Answers each question with a separately analyzed estimator
- Makes very few assumptions, e.g. $\mathbb{E}\left[X^{2}\right]<\infty$ and constructs an estimator (e.g., median of means of disjoint subsets of data)

Nearest Neighbor

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 1, 2018

Some data, Bayes Classifier

Training data:

True label: +1
(True label: -1

Optimal "Bayes" classifier:
$\mathbb{P}(Y=1 \mid X=x)=\frac{1}{2}$
\square Predicted label: +1
\square Predicted label: -1

Figures stolen from Hastie et al

Linear Decision Boundary

Training data:
True label: +1
(True label: -1

Learned:

Linear Decision boundary
$x^{T} w+b=0$
\square Predicted label: +1
\square Predicted label: -1

Figures stolen from Hastie et al

15 Nearest Neighbor Boundary

Training data:
True label: +1
(True label: - 1

Learned:

15 nearest neighbor decision boundary (majority vote)
\square Predicted label: +1
\square Predicted label: -1

1 Nearest Neighbor Boundary

Training data:

True label: +1
(True label: -1

Learned:
1 nearest neighbor decision boundary (majority vote)
\square Predicted label: +1
\square Predicted label: -1

k-Nearest Neighbor Error

k - Number of Nearest Neighbors

Bias-Variance tradeoff

As k->infinity?

Bias:

Variance:

As $\mathrm{k}->1$?
Bias:

Variance:

Notable distance metrics
 (and their level sets)

Mahalanobis
L_{1} norm (taxi-cab)

L-infinity (max) norm

1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

The relative scalings in the distance metric affect region shapes

1 nearest neighbor guarantee

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, k\}
$$

As $n \rightarrow \infty$ assume the x_{i} 's become dense in \mathbb{R}^{d} and $\mathbb{P}(Y=j \mid X=x)$ is smooth

$$
\text { As } x_{a} \rightarrow x_{b} \text { we have } \mathbb{P}\left(Y_{a}=j\right) \rightarrow \mathbb{P}\left(Y_{b}=j\right) \text { for all } j
$$

1 nearest neighbor guarantee

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, k\}
$$

As $n \rightarrow \infty$ assume the x_{i} 's become dense in \mathbb{R}^{d} and $\mathbb{P}(Y=j \mid X=x)$ is smooth

$$
\text { As } x_{a} \rightarrow x_{b} \text { we have } \mathbb{P}\left(Y_{a}=j\right) \rightarrow \mathbb{P}\left(Y_{b}=j\right) \text { for all } j
$$

$$
\text { If } p_{\ell}=\mathbb{P}\left(Y_{a}=\ell\right)=\mathbb{P}\left(Y_{b}=\ell\right) \text { and } \ell^{*}=\arg \max _{\ell=1, \ldots, k} p_{\ell} \text { then }
$$

Bayes Error $=1-p_{\ell^{*}}$

1 nearest neighbor guarantee

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, k\}
$$

As $n \rightarrow \infty$ assume the x_{i} 's become dense in \mathbb{R}^{d} and $\mathbb{P}(Y=j \mid X=x)$ is smooth

$$
\text { As } x_{a} \rightarrow x_{b} \text { we have } \mathbb{P}\left(Y_{a}=j\right) \rightarrow \mathbb{P}\left(Y_{b}=j\right) \text { for all } j
$$

If $p_{\ell}=\mathbb{P}\left(Y_{a}=\ell\right)=\mathbb{P}\left(Y_{b}=\ell\right)$ and $\ell^{*}=\arg \max _{\ell=1, \ldots, k} p_{\ell}$ then
Bayes Error $=1-p_{\ell^{*}}$
1-nearest neighbor error $=\mathbb{P}\left(Y_{a} \neq Y_{b}\right)=\sum_{\ell=1}^{k} \mathbb{P}\left(Y_{a}=\ell, Y_{b} \neq \ell\right)$

1 nearest neighbor guarantee

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{1, \ldots, k\}
$$

As $n \rightarrow \infty$ assume the x_{i} 's become dense in \mathbb{R}^{d} and $\mathbb{P}(Y=j \mid X=x)$ is smooth

$$
\text { As } x_{a} \rightarrow x_{b} \text { we have } \mathbb{P}\left(Y_{a}=j\right) \rightarrow \mathbb{P}\left(Y_{b}=j\right) \text { for all } j
$$

$$
\text { If } p_{\ell}=\mathbb{P}\left(Y_{a}=\ell\right)=\mathbb{P}\left(Y_{b}=\ell\right) \text { and } \ell^{*}=\arg \max _{\ell=1, \ldots, k} p_{\ell} \text { then }
$$

$$
\text { Bayes Error }=1-p_{\ell^{*}}
$$

$\begin{aligned} \text { 1-nearest neighbor error } & =\mathbb{P}\left(Y_{a} \neq Y_{b}\right)=\sum_{\ell=1}^{k} \mathbb{P}\left(Y_{a}=\ell, Y_{b} \neq \ell\right) \\ & =\sum_{\ell=1}^{k} p_{\ell}\left(1-p_{\ell}\right) \leq 2\left(1-p_{\ell^{*}}\right)-\frac{k}{k-1}\left(1-p_{\ell^{*}}\right)^{2}\end{aligned}$
As n->infinity, then 1-NN rule error is at most twice the Bayes error!
[Cover, Hart, 1967]

Curse of dimensionality Ex. 1

X is uniformly distributed over $[0,1]^{p}$. What is $\mathbb{P}\left(X \in[0, r]^{p}\right)$?

Curse of dimensionality Ex. 2

$\left\{X_{i}\right\}_{i=1}^{n}$ are uniformly distributed over $[-.5, .5]^{p}$.

What is the median distance from a point at origin to its 1NN?

Nearest neighbor regression

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neighbors of x_{0}

$$
\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right)} \frac{1}{k} y_{i}
$$

Nearest neighbor regression

Why are far-away neighbors

 weighted same as close neighbors!Kernel smoothing: $K(x, y)$

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neiohbors of x_{0}

$$
\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right)} \frac{1}{k} y_{i}
$$

$$
\widehat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)}
$$

Nearest neighbor regression

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neighbors of x_{0}

$$
\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right)} \frac{1}{k} y_{i} \quad \widehat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)}
$$

Nearest neighbor regression

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neighbors of x_{0}

$$
\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right)} \frac{1}{k} y_{i}
$$

Why just average them?

$$
\widehat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K\left(x_{0}, x^{i}\right) y_{i}}{\sum_{i=1}^{n} K\left(x_{0}, x_{\imath}\right.}
$$

Nearest neighbor regression

$$
\left.\left\{\left(x_{i}, y_{i}\right)\right\}\right)_{i=1}^{n}
$$

$\mathcal{N}_{k}\left(x_{0}\right)=k$-nearest neighbors of x_{0}

$$
\widehat{f}\left(x_{0}\right)=\sum_{x_{i} \in \mathcal{N}_{k}\left(x_{0}\right)} \frac{1}{k} y_{i}
$$

$\widehat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)}$

$$
w\left(x_{0}\right), b\left(x_{0}\right)=\arg \min _{w, b} \sum_{i=1}^{n} K\left(x_{0}, x_{i}\right)\left(y_{i}-\left(b+w^{T} x_{i}\right)\right)^{2}
$$

Local Linear Regression

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing with Kernels and local linear regression can improve performance (at the cost of higher variance)

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing with Kernels and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees.
- Without a lot of data, neighborhoods aren't "local" and methods suffer.

Kernels

Machine Learning - CSE546
 Kevin Jamieson
 University of Washington

October 26, 2018

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Hinge Loss: $\ell_{i}(w)=\max \left\{0,1-y_{i} x_{i}^{T} w\right\}$
Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$

All in terms of inner products! Even nearest neighbor can use inner products!

What if the data is not linearly separable?

$$
\begin{array}{rlr}
& & \text { Use features of features } \\
+{ }^{+}+ & = & \text {of features of features..... }
\end{array}
$$

Feature space can get really large really quickly!

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d
$d=1: \phi(u)=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2}$

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d

$$
\begin{aligned}
& d=1: \phi(u)=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2} \\
& d=2: \phi(u)=\left[\begin{array}{c}
u_{1}^{2} \\
u_{2}^{2} \\
u_{1} u_{2} \\
u_{2} u_{1}
\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2}+2 u_{1} u_{2} v_{1} v_{2}
\end{aligned}
$$

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d
$d=1: \phi(u)=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2}$
$d=2: \phi(u)=\left[\begin{array}{c}u_{1}^{2} \\ u_{2}^{2} \\ u_{1} u_{2} \\ u_{2} u_{1}\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2}+2 u_{1} u_{2} v_{1} v_{2}$

General d :

Dimension of $\phi(u)$ is roughly p^{d} if $u \in \mathbb{R}^{p}$

Kernel Trick

$$
\widehat{w}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{w}^{2}
$$

There exists an $\alpha \in \mathbb{R}^{n}: \widehat{w}=\sum_{i=1}^{n} \alpha_{i} x_{i} \quad$ Why?
$\widehat{\alpha}=\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle\right)^{2}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle$

Kernel Trick

$$
\widehat{w}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{w}^{2}
$$

There exists an $\alpha \in \mathbb{R}^{n}: \widehat{w}=\sum_{i=1}^{n} \alpha_{i} x_{i} \quad$ Why?

$$
\begin{aligned}
\widehat{\alpha} & =\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle\right)^{2}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle \\
& =\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j} K\left(x_{i}, x_{j}\right)\right)^{2}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) \\
& =\arg \min _{\alpha}\|\mathbf{y}-\mathbf{K} \alpha\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha
\end{aligned}
$$

$$
K\left(x_{i}, x_{j}\right)=\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle
$$

Why regularization?

Typically, $\mathbf{K} \succ 0$. What if $\lambda=0$?

$$
\widehat{\alpha}=\arg \min _{\alpha}\|\mathbf{y}-\mathbf{K} \alpha\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha
$$

Why regularization?

Typically, $\mathbf{K} \succ 0$. What if $\lambda=0$?

$$
\widehat{\alpha}=\arg \min _{\alpha}\|\mathbf{y}-\mathbf{K} \alpha\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha
$$

Unregularized kernel least squares can (over) fit any data!

$$
\widehat{\alpha}=\mathbf{K}^{-1} \mathbf{y}
$$

Common kernels

- Polynomials of degree exactly d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomials of degree up to d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}
$$

- Gaussian (squared exponential) kernel

$$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid

$$
K(\mathbf{u}, \mathbf{v})=\tanh (\eta \mathbf{u} \cdot \mathbf{v}+\nu)
$$

Mercer's Theorem

- When do we have a valid Kernel $\mathrm{K}(\mathrm{x}, \mathrm{x}$ ') ?
- Definition 1: when it is an inner product
- Mercer's Theorem:
$\square K\left(x, x^{\prime}\right)$ is a valid kernel if and only if K is a positive semi-definite.
\square PSD in the following sense:

$$
\int_{x, x^{\prime}} h(x) K\left(x, x^{\prime}\right) h\left(x^{\prime}\right) d x d x^{\prime} \geq 0 \quad \forall h: \mathbb{R}^{d} \rightarrow \mathbb{R}, \int_{x}|h(x)|^{2} d x \leq \infty
$$

RBF Kernel
 $$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Note that this is like weighting "bumps" on each point like kernel smoothing but now we learn the weights

RBF Kernel
 $$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

The bandwidth sigma has an enormous effect on fit:

$$
\widehat{f}(x)=\sum_{i=1}^{n} \widehat{\alpha}_{i} K\left(x_{i}, x\right)
$$

RBF Kernel
 $$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

The bandwidth sigma has an enormous effect on fit:

RBF kernel and random features

$$
2 \cos (\alpha) \cos (\beta)=\cos (\alpha+\beta)+\cos (\alpha-\beta)
$$

$\cos (z)+\sin (z)$

Recall HW1 where we used the feature map:

$$
\begin{gathered}
\phi(x)=\left[\begin{array}{cc}
\sqrt{2} \cos \left(w_{1}^{T} x+b_{1}\right) \\
\vdots \\
\sqrt{2} \cos \left(w_{p}^{T} x+b_{p}\right)
\end{array}\right] \\
\begin{array}{c}
w_{k} \sim \mathcal{N}(0,2 \gamma I) \\
\mathbb{E}\left[\frac{1}{p} \phi(x)^{T} \phi(y)\right]=\frac{1}{p} \sum_{k=1}^{p} \mathbb{E}\left[2 \cos \left(w_{k}^{T} x+b_{k}\right) \cos \left(w_{k}^{T} y+b_{k}\right)\right] \\
=\mathbb{E}_{w, b}\left[2 \cos \left(w^{T} x+b\right) \cos \left(w^{T} y+b\right)\right]
\end{array}
\end{gathered}
$$

RBF kernel and random features

$$
2 \cos (\alpha) \cos (\beta)=\cos (\alpha+\beta)+\cos (\alpha-\beta)
$$

$\cos (z)+\sin (z)$

Recall HW1 where we used the feature map:

$$
\begin{gathered}
\phi(x)=\left[\begin{array}{cc}
\sqrt{2} \cos \left(w_{1}^{T} x+b_{1}\right) \\
\vdots \\
\sqrt{2} \cos \left(w_{p}^{T} x+b_{p}\right)
\end{array}\right] \\
\left.\begin{array}{c}
\mathbb{E}\left[\frac{1}{p} \phi(x)^{T} \phi(y)\right]
\end{array}\right] \frac{w_{k} \sim \mathcal{N}(0,2 \gamma I)}{p} \sum_{k=1}^{p} \mathbb{E}\left[2 \cos \left(w_{k}^{T} x+b_{k}\right) \cos \left(w_{k}^{T} y+b_{k}\right)\right] \\
=\mathbb{E}_{w, b}\left[2 \cos \left(w^{T} x+b\right) \cos \left(w^{T} y+b\right)\right] \\
=e^{-\gamma\|x-y\|_{2}^{2}}
\end{gathered}
$$

[Rahimi, Recht NIPS 2007]
"NIPS Test of Time Award, 2018"

RBF Classification

$$
\begin{gathered}
\widehat{w}=\sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(b+x_{i}^{T} w\right)\right\}+\lambda\|w\|_{2}^{2} \\
\min _{\alpha, b} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(b+\sum_{j=1}^{n} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle\right)\right\}+\lambda \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle
\end{gathered}
$$

Wait, infinite dimensions?

- Isn't everything separable there? How are we not overfitting?
- Regularization! Fat shattering (R/margin)^2

String Kernels

Example from Efron and Hastie, 2016
Amino acid sequences of different lengths:

X1 IPTSALVKETLALLSTHRTLLLANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGOTV ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLOEFLGVMNTEWI PHRRDLCSRSIWLARKIRSDLTALTESYVKHOGLWSELTEAERLOENLQAYRTFHVLLA X2 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK LWGLKVLQELSQWTVRSHIHLRFISSICGIGIP

All subsequences of length 3 (of possible 20 amino acids) $20^{3}=8,000$

$$
h_{\mathrm{LLE}}^{3}\left(x_{1}\right)=1 \text { and } h_{\mathrm{LQE}}^{3}\left(x_{2}\right)=2 .
$$

