Announcements

Convex Optimization (next quarter)
ES 78 Margam Faze

- Modeling, how to formulate real-wolld problems as convex optimization
- Constrained optimization (KKT, duality,) CSE S3S Yin Tat Lee
- Algorithms (first ardor)
- Analysis (convergence proofs)

Statistics stuff
stat 538 Zaid Harchaoui

- VC dimension, covering $\#$
- What is "learnable"
(spring)
ML stuff
CS 547 Tim Alfh_ff
- "Data science" "Bis data"
- harge-scule data andyrio and inference.

Kernels

Machine Learning - CSE546

Kevin Jamieson
University of Washington
November 6, 2018

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Hinge Loss: $\ell_{i}(w)=\max \left\{0,1-y_{i} \underline{x_{i}^{T} w}\right\}$
Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} \underline{x_{i}^{T} w}\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-\underline{x_{i}^{T} w}\right)^{2}$

All in terms of inner products! Even nearest neighbor can use inner products!

What if the data is not linearly separable?

Feature space can get really large really quickly!

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d $d=1: \phi(u)=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2}$

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d

$$
\begin{aligned}
& d=1: \phi(u)=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2} \\
& d=2: \phi(u)=\left[\begin{array}{c}
u_{1}^{2} \\
u_{2}^{2} \\
u_{1} u_{2} \\
u_{2} u_{1}
\end{array}\right] \quad \begin{aligned}
\langle\phi(u), \phi(v)\rangle & =u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2}+2 u_{1} u_{2} v_{1} v_{2} \\
& =\left(u_{1} v_{1}+u_{2} v_{2}\right)^{2}=\left(u^{\top} v\right)^{2}
\end{aligned}
\end{aligned}
$$

Dot-product of polynomials

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=$ polynomials of degree exactly d
$d=1: \phi(u)=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \quad\langle\phi(u), \phi(v)\rangle=u_{1} v_{1}+u_{2} v_{2}$
$d=2: \phi(u)=\left[\begin{array}{c}u_{1}^{2} \\ u_{2}^{2} \\ u_{1} u_{2} \\ u_{2} u_{1}\end{array}\right] \quad \begin{aligned}\langle\phi(u), \phi(v)\rangle & =u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2}+2 u_{1} u_{2} v_{1} v_{2} \\ & =\left(u_{1} v_{1}+u_{2} v_{2}\right)^{2}=\left(u^{\top} v\right)^{2}\end{aligned}$
General $d: \phi(A)=\left[\begin{array}{cc}u_{1}{ }^{d} \\ u_{2} & d \\ u_{1}^{d-1} u_{2} \\ u_{d}-2 & u_{2} \\ \vdots & \\ 2 & \end{array}\right]$
$\langle\phi(u), \phi(v)\rangle=\left(u^{\top} v\right)^{d}$

Dimension of $\phi(u)$ is roughly p^{d} if $u \in \mathbb{R}^{p}$

Kernel Trick

$$
\widehat{w}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{w}^{2} \quad \hat{\omega} \in \mathbb{R}^{d}, x_{i} \in \mathbb{R}^{d}
$$

There exists an $\alpha \in \mathbb{R}^{n}: \widehat{w}=\sum_{i=1}^{n} \alpha_{i} x_{i} \quad$ Why?
Suppose not. Then $\tilde{\omega}=\sum \alpha_{i} x_{i}+\underbrace{\omega_{1}}_{\text {where }} w_{\perp}^{\top} x_{i}=0 \quad \forall i$

$$
\left\|\sum \alpha_{i} x_{i}+w_{1}\right\|_{2}=\left\|\sum \alpha_{i} x_{i}\right\|+\left\|\omega_{+}\right\|
$$

Kernel Trick

$$
\widehat{w}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{w}^{2}
$$

There exists an $\alpha \in \mathbb{R}^{n}: \widehat{w}=\sum_{i=1}^{n} \alpha_{i} x_{i}$

$$
K_{i j}=\varnothing\left(x_{i}\right)^{\top} \phi\left(x_{j}\right)
$$

$\widehat{\alpha}=\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j}\left\langle\overline{\left.\left(x_{j}, x_{i}\right\rangle\right)^{2}}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left\langle\overline{\left.x_{i}, x_{j}\right\rangle}\right.\right.\right.$

Kernel Trick

$$
\widehat{w}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{\text {wu }}^{2}
$$

There exists an $\alpha \in \mathbb{R}^{n}: \widehat{w}=\sum_{i=1}^{n} \alpha_{i} x_{i}$

$$
\begin{aligned}
\widehat{\alpha} & =\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle\right)^{2}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle \\
& =\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j} K\left(x_{i}, x_{j}\right)\right)^{2}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right)
\end{aligned}
$$

$$
=\arg \min _{\alpha}\|\mathbf{y}-\mathbf{K} \alpha\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha
$$

New $z \in \mathbb{R}^{d}$, predict

$$
z^{\top} \hat{w}=\sum_{i} \alpha_{i} z^{\top} x_{i}=\sum_{i} \alpha_{i} K\left(z, x_{i}\right)
$$

$$
K_{i, j}=K\left(x_{i}, x_{j}\right)=\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle
$$

Why regularization?

Typically, $\mathbf{K} \succ 0 . \quad$ What if $\lambda=0$?

$$
\begin{gathered}
\widehat{\alpha}=\arg \min _{\alpha}\|\mathbf{y}-\mathbf{K} \alpha\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha \\
\nabla=0 \Rightarrow \quad-K(y-K \alpha)+\lambda K \alpha=0 \\
K y=K(K+\lambda I) \alpha \\
\hat{\alpha}=(K+\lambda I)^{-1} y
\end{gathered}
$$

$$
\hat{\omega}=X^{\top} \hat{\alpha} \quad \hat{y}=X \hat{\omega}=X X^{\top} \hat{\alpha}=K \tilde{\alpha}=K(K+\lambda I)^{-1} y
$$

Why regularization?

Typically, $\mathbf{K} \succ 0$. What if $\lambda=0$?

$$
\widehat{\alpha}=\arg \min _{\alpha}\|\mathbf{y}-\mathbf{K} \alpha\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha
$$

Unregularized kernel least squares can (over) fit any data!

$$
\widehat{\alpha}=\mathbf{K}^{-1} \mathbf{y}
$$

Common kernels
 $K(x, y)=\phi(x)^{\top} \phi(y)$

- Polynomials of degree exactly d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomials of degree up to d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}
$$

- Gaussian (squared exponential) kernel

$$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid

$$
K(\mathbf{u}, \mathbf{v})=\tanh (\eta \mathbf{u} \cdot \mathbf{v}+\nu)
$$

Mercer's Theorem

- When do we have a valid Kernel $\mathrm{K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$?
- Sufficient:
$K\left(x, x^{\prime}\right)$ is a valid kernel if there exists $\phi(x)$ such that $K\left(x, x^{\prime}\right)=\phi(x)^{T} \phi\left(x^{\prime}\right)$
- Mercer's Theorem:
$K\left(x, x^{\prime}\right)$ is a valid kernel if and only if \mathbf{K} is symmetric and positive semi-definite for any pointset $\left(x_{1}, \ldots, x_{n}\right)$ where $\mathbf{K}_{i, j}=K\left(x_{i}, x_{j}\right)$.

RBF Kernel
 $$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Note that this is like weighting "bumps" on each point like kernel smoothing but now we learn the weights

RBF Kernel
 $$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

The bandwidth sigma has an enormous effect on fit:

$$
\widehat{f}(x)=\sum_{i=1}^{n} \widehat{\alpha}_{i} K\left(x_{i}, x\right)
$$

RBF Kernel

$$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

The bandwidth sigma has an enormous effect on fit:

RBF Kernel
 $$
K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

Basis representation in 1d?

$$
[\phi(x)]_{i}=\frac{1}{\sqrt{i!}} e^{-\frac{x^{2}}{2}} x^{i} \quad \text { for } i=0,1, \ldots
$$

$$
\begin{aligned}
\phi(x)^{T} \phi\left(x^{\prime}\right) & =\sum_{i=0}^{\infty}\left(\frac{1}{\sqrt{i!}} e^{-\frac{x^{2}}{2}} x^{i}\right)\left(\frac{1}{\sqrt{i!}} e^{-\frac{\left(x^{\prime}\right)^{2}}{2}}\left(x^{\prime}\right)^{i}\right) \\
& =e^{-\frac{x^{2}+\left(x^{\prime}\right)^{2}}{2}} \sum_{i=0}^{\infty} \frac{1}{i!}\left(x x^{\prime}\right)^{i} \\
& =e^{-\left|x-x^{\prime}\right|^{2} / 2} \quad \Omega=(k+\lambda I)^{\gamma} y
\end{aligned}
$$

If n is very large, allocating an n-by-n matrix is tough. Can we truncate the above sum to approximate the kernel?

RBF kernel and random features

Recall HW1 where we used the feature map:

$$
\begin{aligned}
& \phi(x)=\left[\begin{array}{c}
\sqrt{2} \cos \left(w_{1}^{T} x+b_{1}\right) \\
\vdots \\
\sqrt{2} \cos \left(w_{p}^{T} x+b_{p}\right)
\end{array}\right] \quad w_{k} \sim \mathcal{N}(0,2 \gamma I) \\
& \mathbb{E}\left[\frac{1}{p} \phi(x)^{T} \phi(y)\right]=\frac{1}{p} \sum_{k=1}^{p} \mathbb{E}\left[2 \cos \left(w_{k}^{T} x+b_{k}\right) \cos \left(w_{k}^{T} y+b_{k}\right)\right] \\
&=\mathbb{E}_{w, b}\left[2 \cos \left(w^{T} x+b\right) \cos \left(w^{T} y+b\right)\right] \\
&=\mathbb{E}_{w, b}\left[\cos \left(w^{T}(x+y)+2 b\right)+\cos \left(w^{T}(x-y)\right)\right]
\end{aligned}
$$

RBF kernel and random features

$\cos (z)+j \sin (z)$

Recall HW1 where we used the feature map:

$$
\begin{gathered}
\phi(x)=\left[\begin{array}{cc}
\sqrt{2} \cos \left(w_{1}^{T} x+b_{1}\right) \\
\vdots \\
\sqrt{2} \cos \left(w_{p}^{T} x+b_{p}\right)
\end{array}\right] \\
\mathbb{E}\left[\frac{1}{p} \phi(x)^{T} \phi(y)\right]=\frac{1}{p} \sum_{k=1}^{p} \mathbb{E}\left[2 \cos \left(w_{k}^{T} x+b_{k}\right) \cos \left(w_{k}^{T} y+b_{k}\right)\right] \\
=\mathbb{E}_{w, b}\left[2 \cos \left(w^{T} x+b\right) \cos \left(w^{T} y+b\right)\right] \\
=e^{-\gamma\|x-y\|_{2}^{2}} \\
\text { "NIPS Test of Time Award, 2018" }
\end{gathered}
$$

RBF Classification

$$
\begin{gathered}
\widehat{w}=\operatorname{man}_{\mathrm{b}, \sum_{i=1}^{n} \sum_{\alpha, b}^{n} \max \left\{0,1-y_{i}\left(b+x_{i}^{T} w\right)\right\}+\lambda\|w\|_{2}^{2}}^{\min _{i=1}^{n} \max \left\{0,1-y_{i}\left(b+\sum_{j=1}^{n} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle\right)\right\}+\lambda \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle}
\end{gathered}
$$

Wait, infinite dimensions?

- Isn't everything separable there? How are we not overfitting?
- Regularization! Fat shattering (R/margin) ${ }^{\wedge} 2$

String Kernels

Example from Efron and Hastie, 2016
Amino acid sequences of different lengths:

```
X1 IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
    ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI
    PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
X2 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK
    LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP
```

All subsequences of length 3 (of possible 20 amino acids) $20^{3}=8,000$

$$
h_{\mathrm{LEE}}^{3}\left(x_{1}\right)=1 \text { and } h_{\mathrm{LEE}}^{3}\left(x_{2}\right)=2 .
$$

Principal Component Analysis

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 6, 2018

Linear projections

Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, for $q \ll d$ find a compressed representation with $\lambda_{1}, \ldots, \lambda_{\eta} \in \mathbb{R}^{q}$ such that $x_{i} \approx \mu+\mathbf{V}_{q} \lambda_{i}$ and $\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I$

$$
\min _{\mu, \mathbf{V}_{q},\left\{\lambda_{i}\right\}_{i}} \sum_{i=1}^{n}\left\|x_{i}-\mu-\mathbf{V}_{q} \lambda_{i}\right\|_{2}^{2}
$$

Linear projections

Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, for $q \ll d$ find a compressed representation with $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}^{q}$ such that $x_{i} \approx \mu+\mathbf{V}_{q} \lambda_{i}$ and $\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I$

$$
\min _{\mu, \mathbf{V}_{q},\left\{\lambda_{i}\right\}_{i}} \sum_{i=1}^{n}\left\|x_{i}-\mu-\mathbf{V}_{q} \lambda_{i}\right\|_{2}^{2}
$$

Fix \mathbf{V}_{q} and solve for $\mu, \lambda_{i}: \quad \mu=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

$$
\lambda_{i}=\mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)
$$

Which gives us:

$$
\begin{aligned}
& \qquad \min _{\mathbf{V}_{q}} \sum_{i=1}^{N} \|\left(x_{i}-\bar{x}\right)-\underbrace{\left.d x_{i}-\bar{x}\right) \|^{2}}_{\substack{\mathbf{V}_{q} \mathbf{V}_{q}^{T}}} \underset{\sim}{\downarrow} q \\
& \text { Q2018 Kevin Jamieson }
\end{aligned}
$$

$\mathbf{V}_{q} \mathbf{V}_{q}^{T}$ is a projection matrix that minimizes error in basis of size q

Linear projections

$$
\begin{aligned}
& \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-V_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2} \\
&= \sum_{i}\left\|x_{i}-\bar{x}\right\|_{2}^{2}-2\left(x_{i}-\bar{x}\right)^{\top} V_{q} V_{q}^{\top}\left(x_{i}-\bar{x}\right) \quad \Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} \\
&+\left(x_{i}-\bar{x}\right)^{\top} V_{q} V_{i} V_{V} V_{q}^{\top} V_{q}^{\top}\left(x_{i}-\bar{x}\right) \\
&= \sum_{i}\left\|x_{i}-\bar{x}\right\|_{2}^{2}-\left(x_{i}-\bar{x}\right) V_{2} V_{\varepsilon}^{\top}\left(x_{i}-\bar{x}\right) \\
&=\left.\sum_{i} \operatorname{Tr}\left(\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)\right)-\operatorname{Tr}\left(V_{\varepsilon}^{\top}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\top} V_{q}\right)\right) \\
&= \operatorname{Tr}(\Sigma)-\operatorname{Tr}\left(V_{q}^{\top} \sum V_{q}\right)
\end{aligned}
$$

Linear projections

$$
\begin{array}{rc}
\sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2} & \Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} \\
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q} \\
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2}=\min _{\mathbf{V}_{q}} \operatorname{Tr}(\Sigma)-\operatorname{Tr}\left(\mathbf{V}_{q}^{T} \Sigma \mathbf{V}_{q}\right)
\end{array}
$$

Eigenvalue decomposition of $\Sigma=\bigcup D \cup^{\top}$

$$
\begin{gathered}
\xi=1 \quad \max _{\| \|_{2}=1} v_{1}^{\Gamma} \sum v_{1}=-\operatorname{man}_{\| \rightarrow 1} \sum_{j=1}^{d}(\underbrace{\left.v_{1}^{\top} u_{j}\right)^{2} D_{j, j}=\max _{j} D_{j, j}} \\
V_{1}=u_{1}
\end{gathered}
$$

Linear projections

$\sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2}$

$$
\begin{gathered}
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} \\
\overline{\mathbf{V}}_{q}^{T} \mathbf{V}_{q q}=I_{q}
\end{gathered}
$$

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2}=\min _{\mathbf{V}_{q}} \operatorname{Tr}(\Sigma)-\operatorname{Tr}\left(\mathbf{V}_{q}^{T} \Sigma \mathbf{V}_{q}\right)
$$

Eigenvalue decomposition of $\Sigma=$

$$
\mathbf{V}_{q} \text { are the first } q \text { eigenvectors of } \Sigma
$$

Minimize reconstruction error and capture the most variance in yourddata.

Pictures

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principal components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} .
$$

where $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principal components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Principal Component Analysis (PCA) projects ($\mathbf{X}-\mathbf{1} \bar{x}^{T}$) down onto \mathbf{V}_{q}

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{q} \operatorname{diag}\left(d_{1}, \ldots, d_{q}\right) \quad \mathbf{U}_{q}^{T} \mathbf{U}_{q}=I_{q}
$$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\mathbf{A}^{T} \mathbf{A} v_{i}=
$$

$$
\mathbf{A} \mathbf{A}^{T} u_{i}=
$$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\mathbf{A}^{T} \mathbf{A} v_{i}=\mathbf{S}_{i, i}^{2} v_{i}
$$

$$
\mathbf{A A}^{T} u_{i}=\mathbf{S}_{i, i}^{2} u_{i}
$$

\mathbf{V} are the first r eigenvectors of $\mathbf{A}^{T} \mathbf{A}$ with eigenvalues $\operatorname{diag}(\mathbf{S})$
\mathbf{U} are the first r eigenvectors of $\mathbf{A A}^{T}$ with eigenvalues diag($\left.\mathbf{S}\right)$

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} .
$$

where $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principal components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Principal Component Analysis (PCA) projects ($\mathbf{X}-\mathbf{1} \bar{x}^{T}$) down onto \mathbf{V}_{q}

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{q} \operatorname{diag}\left(d_{1}, \ldots, d_{q}\right) \quad \mathbf{U}_{q}^{T} \mathbf{U}_{q}=I_{q}
$$

Singular Value Decomposition defined as

$$
\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}
$$

Dimensionality reduction

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}{ }^{T}$

Dimensionality reduction

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$
Handwritten 3 's, 16×16 pixel image so that $x_{i} \in \mathbb{R}^{256}$

$$
\begin{aligned}
\hat{f}(\lambda) & =\bar{x}+\lambda_{1} v_{1}+\lambda_{2} v_{2} \\
& =3+\lambda_{1} \cdot 3+\lambda_{2} .
\end{aligned}
$$

FIGURE 14.24. The 256 singular values for the digitized threes, compared to those for a randomized version of the data (each column of \mathbf{X} was scrambled).

Kernel PCA

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}{ }^{T}$

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{\mathbf{q}} \mathbf{S}_{\mathbf{q}} \in \mathbb{R}^{n \times q}
$$

$\mathbf{J X}=\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$

$$
\mathbf{J}=I-\mathbf{1 1}^{T} / n
$$

$(\mathbf{J X})(\mathbf{J X})^{T}=$

Kernel PCA

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{\mathbf{q}} \mathbf{S}_{\mathbf{q}} \in \mathbb{R}^{n \times q}
$$

$\mathbf{J X}=\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$

$$
\mathbf{J}=I-\mathbf{1 1}^{T} / n
$$

$(\mathbf{J X})(\mathbf{J X})^{T}=\mathbf{U S}^{2} \mathbf{U}^{T}$

Radial Kernel (c=10)

PCA Algorithm

input PCA
A matrix of m examples $X \in \mathbb{R}^{m, d}$
number of components n
if $(m>d)$
$A=X^{\top} X$
Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ be the eigenvectors of A with largest eigenvalues
else
$B=X X^{\top}$
Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be the eigenvectors of B with largest eigenvalues
for $i=1, \ldots, n$ set $\mathbf{u}_{i}=\frac{1}{\left\|X^{\top} \mathbf{v}_{i}\right\|} X^{\top} \mathbf{v}_{i}$
output: $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$

