Announcements

Principal Component Analysis

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 8, 2018

Linear projections

Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, for $q \ll d$ find a compressed representation with $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}^{q}$ such that $x_{i} \approx \mu+\mathbf{V}_{q} \lambda_{i}$ and $\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I$

$$
\min _{\mu, \mathbf{V}_{q},\left\{\lambda_{i}\right\}_{i}} \sum_{i=1}^{n}\left\|x_{i}-\mu-\mathbf{V}_{q} \lambda_{i}\right\|_{2}^{2}
$$

Linear projections

Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, for $q \ll d$ find a compressed representation with $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}^{q}$ such that $x_{i} \approx \mu+\mathbf{V}_{q} \lambda_{i}$ and $\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I$

$$
\min _{\left.\mu, \mathbf{V}_{q},\left\{\lambda_{i}\right\}_{i}\right\}_{i}} \sum_{i=1}^{n}\left\|x_{i}-\mu-\mathbf{V}_{q} \lambda_{i}\right\|_{2}^{2}
$$

Fix \mathbf{V}_{q} and solve for μ, λ_{i} : $\quad \mu=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

$$
\lambda_{i}=\mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)
$$

Which gives us:

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} . \quad \begin{aligned}
& \mathbf{V}_{q} \mathbf{V}_{q}^{T} \text { is a projection matrix that } \\
& \text { minimizes error in basis of size } q
\end{aligned}
$$

Linear projections

$$
\begin{gathered}
\sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2} \quad \Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} \\
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q} \\
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2}=\min _{\mathbf{V}_{q}} \operatorname{Tr}(\Sigma)-\operatorname{Tr}\left(\mathbf{V}_{q}^{T} \Sigma \mathbf{V}_{q}\right)
\end{gathered}
$$

Eigenvalue decomposition of $\Sigma=$

Linear projections

$$
\begin{gathered}
\sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2} \\
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} \\
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q} \\
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|_{2}^{2}=\min _{\mathbf{V}_{q}} \operatorname{Tr}(\Sigma)-\operatorname{Tr}\left(\mathbf{V}_{q}^{T} \Sigma \mathbf{V}_{q}\right)
\end{gathered}
$$

Eigenvalue decomposition of $\Sigma=$

$$
\mathbf{V}_{q} \text { are the first } q \text { eigenvectors of } \Sigma
$$

Minimize reconstruction error and capture the most variance in your data.

Pictures

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principal components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

$$
\mathbf{V}_{q} \text { with } \mathbf{V}_{q}^{T} \mathbf{V}_{q}=I \text { maximizes } \operatorname{Tr}\left(\mathbf{V}_{q}^{T} \Sigma \mathbf{V}_{q}\right)
$$

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} .
$$

where $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principal components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Principal Component Analysis (PCA) projects ($\mathbf{X}-\mathbf{1} \bar{x}^{T}$) down onto \mathbf{V}_{q}

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{q} \operatorname{diag}\left(d_{1}, \ldots, d_{q}\right) \quad \mathbf{U}_{q}^{T} \mathbf{U}_{q}=I_{q}
$$

Dimensionality reduction

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}{ }^{T}$

Dimensionality reduction

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}{ }^{T}$
Handwritten 3's, 16x16 pixel image so that $x_{i} \in \mathbb{R}^{256}$

$$
\begin{aligned}
\hat{f}(\lambda) & =\bar{x}+\lambda_{1} v_{1}+\lambda_{2} v_{2} \\
& =3+\lambda_{1} \cdot 3+\lambda_{2} .
\end{aligned}
$$

FIGURE 14.24. The 256 singular values for the digitized threes, compared to those for a randomized version of the data (each column of \mathbf{X} was scrambled).

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\mathbf{A}^{T} \mathbf{A} v_{i}=
$$

$$
\mathbf{A} \mathbf{A}^{T} u_{i}=
$$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\mathbf{A}^{T} \mathbf{A} v_{i}=\mathbf{S}_{i, i}^{2} v_{i}
$$

$$
\mathbf{A A}^{T} u_{i}=\mathbf{S}_{i, i}^{2} u_{i}
$$

\mathbf{V} are the first r eigenvectors of $\mathbf{A}^{T} \mathbf{A}$ with eigenvalues $\operatorname{diag}(\mathbf{S})$
\mathbf{U} are the first r eigenvectors of $\mathbf{A} \mathbf{A}^{T}$ with eigenvalues $\operatorname{diag}(\mathbf{S})$

Linear projections

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principal components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Principal Component Analysis (PCA) projects ($\mathbf{X}-\mathbf{1} \bar{x}^{T}$) down onto \mathbf{V}_{q}

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{q} \operatorname{diag}\left(d_{1}, \ldots, d_{q}\right) \quad \mathbf{U}_{q}^{T} \mathbf{U}_{q}=I_{q}
$$

Singular Value Decomposition defined as

$$
\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}{ }^{T}
$$

Pictures, intuition!

- Fill in the missing plots: $\mathbf{U}, \mathbf{S}, \mathbf{V}=\operatorname{svd}(\mathbf{J X})$

$$
\mathbf{J}=I-\mathbf{1 1}^{T} / n \quad \mathbf{J X}=\mathbf{U S V}^{T}
$$

$$
\mathbf{X} \quad \mathbf{J X} \quad \mathbf{J X V S}{ }^{-1} \quad \mathbf{J X V S} \mathbf{S}^{-1} \mathbf{V}^{T}
$$

Kernel PCA

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{\mathbf{q}} \mathbf{S}_{\mathbf{q}} \in \mathbb{R}^{n \times q}
$$

$\mathbf{J X}=\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T} \quad \mathbf{J}=I-\mathbf{1 1}^{T} / n$
$(\mathbf{J X})(\mathbf{J X})^{T}=$

PCA Algorithm

input PCA
A matrix of m examples $X \in \mathbb{R}^{m, d}$
number of components n
if $(m>d)$
$A=X^{\top} X$
Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ be the eigenvectors of A with largest eigenvalues
else
$B=X X^{\top}$
Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be the eigenvectors of B with largest eigenvalues
for $i=1, \ldots, n$ set $\mathbf{u}_{i}=\frac{1}{\left\|X^{\top} \mathbf{v}_{i}\right\|} X^{\top} \mathbf{v}_{i}$
output: $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$

Cool tricks with SVD

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 8, 2016

Ridge Regression revisited

$$
\begin{aligned}
& \widehat{w}_{\text {ridge }}=\arg \min _{w}\|\mathbf{X} w-\mathbf{y}\|_{2}^{2}+\lambda\|w\|_{2}^{2} \\
& \widehat{w}_{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

Singular vector decomposition (SVD): $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$

$$
\hat{\mathbf{y}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

Ridge Regression revisited

$$
\begin{aligned}
& \widehat{w}_{\text {ridge }}=\arg \min _{w}\|\mathbf{X} w-\mathbf{y}\|_{2}^{2}+\lambda\|w\|_{2}^{2} \\
& \widehat{w}_{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

Singular vector decomposition (SVD): $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$

$$
\begin{array}{rl}
\hat{\mathbf{y}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y} & \\
\hat{\mathbf{y}}=\sum_{i=1}^{d} u_{i} u_{i}^{T} \frac{s_{i}^{2}}{s_{i}^{2}+\lambda} y_{i} & \mathbf{U}=\left[u_{1}, \ldots, u_{d}\right] \\
\mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{d}\right)
\end{array}
$$

