Practice

- Fill in the missing plots: $\quad \Sigma=\mathbf{X}^{T} \mathbf{J J X}=\mathbf{Z}^{T} \mathbf{J J Z}$

$$
\begin{aligned}
& \mathbf{V S V}^{T}=\operatorname{eig}(\Sigma) \quad \mathbf{J}=I-\mathbf{1 1}^{T} / n \\
& \mu_{X}=\mathbf{X}^{T} \mathbf{1} / n \quad \mu_{Z}=\mathbf{Z}^{T} \mathbf{1} / n
\end{aligned}
$$

X $\quad \mathbf{Z}$

$$
\mu_{X}-\mu_{Z} \quad \mathbf{V} S^{-1 / 2} \mathbf{V}^{T}\left(\mu_{X}-\mu_{Z}\right)
$$

Other dimensionality reduction

Machine Learning - CSE546 Kevin Jamieson
University of Washington
November 13, 2016

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\begin{aligned}
& \mathbf{U}=\left[u_{1}, \ldots, u_{r}\right] \quad \mathbf{V}=\left[v_{1}, \ldots, v_{r}\right] \\
& \mathbf{A}^{T} \mathbf{A} v_{i}=\mathbf{S}_{i, i}^{2} v_{i}
\end{aligned}
$$

$$
\mathbf{A} \mathbf{A}^{T} u_{i}=\mathbf{S}_{i, i}^{2} u_{i}
$$

\mathbf{V} are the first r eigenvectors of $\mathbf{A}^{T} \mathbf{A}$ with eigenvalues $\operatorname{diag}(\mathbf{S})$
\mathbf{U} are the first r eigenvectors of $\mathbf{A} \mathbf{A}^{T}$ with eigenvalues $\operatorname{diag}(\mathbf{S})$

Linear projections

Given $x_{i} \in \mathbb{R}^{d}$ and some $q<d$ consider

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} .
$$

where $\mathbf{V}_{q}=\left[v_{1}, v_{2}, \ldots, v_{q}\right]$ is orthonormal:

$$
\mathbf{V}_{q}^{T} \mathbf{V}_{q}=I_{q}
$$

\mathbf{V}_{q} are the first q eigenvectors of Σ
\mathbf{V}_{q} are the first q principal components

$$
\Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Principal Component Analysis (PCA) projects ($\mathbf{X}-\mathbf{1} \bar{x}^{T}$) down onto \mathbf{V}_{q}

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{q} \operatorname{diag}\left(d_{1}, \ldots, d_{q}\right) \quad \mathbf{U}_{q}^{T} \mathbf{U}_{q}=I_{q}
$$

Dimensionality reduction

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}{ }^{T}$

Kernel PCA

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$

$$
\left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{\mathbf{q}} \mathbf{S}_{\mathbf{q}} \in \mathbb{R}^{n \times q}
$$

$\mathbf{J X}=\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T} \quad \mathbf{J}=I-\mathbf{1 1}^{T} / n$
$(\mathbf{J X})(\mathbf{J X})^{T}=\mathbf{J X X}{ }^{T} \mathbf{J}=: \mathbf{J K J}=\mathbf{U S}^{2} \mathbf{U}^{T}$
$\mathbf{K}_{i, j}=x_{i}^{T} x_{j}$

Kernel PCA

\mathbf{V}_{q} are the first q eigenvectors of Σ and SVD $\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T}$

$$
\begin{aligned}
& \left(\mathbf{X}-\mathbf{1} \bar{x}^{T}\right) \mathbf{V}_{q}=\mathbf{U}_{\mathbf{q}} \mathbf{S}_{\mathbf{q}} \in \mathbb{R}^{n \times q} \\
& \mathbf{J X}=\mathbf{X}-\mathbf{1} \bar{x}^{T}=\mathbf{U S V}^{T} \\
& \mathbf{J}=I-\mathbf{1 1}^{T} / n \\
& (\mathbf{J X})(\mathbf{J X})^{T}=\mathbf{J X X}{ }^{T} \mathbf{J}=: \mathbf{J K J}=\mathbf{U S}^{2} \mathbf{U}^{T} \\
& \mathbf{K}_{i, j}=x_{i}^{T} x_{j}
\end{aligned}
$$

Nonlinear dimensionality reduction

Find a low dimensional representation that respects "local distances" in the higher dimensional space

Many methods:

- Kernel PCA
- ISOMAP
- Local linear embedding
- Maximum volume unfolding
- Non-metric multidimensional scaling
- Laplacian
- Neural network auto encoder

Due to lack of agreed upon metrics, it is very hard to judge which is best. Also, results from 3 to 2 dims is probably not representative of 1000 to 2 dimensions.

Random projections

PCA finds a low-dimensional representation that reduces population variance

$$
\begin{array}{ll}
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2} . & \begin{array}{l}
\mathbf{V}_{q} \mathbf{V}_{q}^{T} \text { is a projection matr } \\
\text { minimizes error in basis of }
\end{array} \\
\mathbf{V}_{q} \text { are the first } q \text { eigenvectors of } \Sigma & \Sigma:=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
\end{array}
$$

But what if I care about the reconstruction of the individual points?

$$
\min _{\mathbf{W}_{q}} \max _{i=1, \ldots, n}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{W}_{q} \mathbf{W}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2}
$$

Random projections

$$
\min _{\mathbf{W}_{q}} \max _{i=1, \ldots, n}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{W}_{q} \mathbf{W}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2}
$$

Johnson-Lindenstrauss (1983)
Theorem Let $\epsilon \in \mathbb{R}^{d}$ and set $q=20 \epsilon^{-2} \log (n)$. Assume that the entries $A \in \mathbb{R}^{d \times q}$ are sampled iid from $\mathcal{N}(0,1 / q)$. Then for any $z \in \mathbb{R}^{d}$ we have with probability at least $1-2 e^{\left(\epsilon^{2}-\epsilon^{3}\right) q / 4}$ that

$$
(1-\epsilon)\|z\|^{2} \leq\left\|A^{T} z\right\|^{2} \leq(1+\epsilon)\|z\|^{2}
$$

Other matrix factorizations

Singular value decomposition
Elements of $\mathbf{U}, \mathbf{S}, \mathbf{V}$ in \mathbb{R}

Nonnegative matrix factorization (NMF)
Elements of $\mathbf{U}, \mathbf{S}, \mathbf{V}$ in \mathbb{R}_{+}

Matrix Completion

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 13, 2016

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\begin{aligned}
& \mathbf{U}=\left[u_{1}, \ldots, u_{r}\right] \quad \mathbf{V}=\left[v_{1}, \ldots, v_{r}\right] \\
& \mathbf{A}^{T} \mathbf{A} v_{i}=\mathbf{S}_{i, i}^{2} v_{i}
\end{aligned}
$$

$$
\mathbf{A} \mathbf{A}^{T} u_{i}=\mathbf{S}_{i, i}^{2} u_{i}
$$

\mathbf{V} are the first r eigenvectors of $\mathbf{A}^{T} \mathbf{A}$ with eigenvalues $\operatorname{diag}(\mathbf{S})$
\mathbf{U} are the first r eigenvectors of $\mathbf{A} \mathbf{A}^{T}$ with eigenvalues $\operatorname{diag}(\mathbf{S})$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\begin{aligned}
& \mathbf{U}=\left[u_{1}, \ldots, u_{r}\right] \quad \mathbf{V}=\left[v_{1}, \ldots, v_{r}\right] \quad \mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{r}\right) \\
& \mathbf{A}=\sum^{r} u_{k} v_{k}^{T} s_{k}
\end{aligned}
$$

Best rank-1 approximation $\sigma>0$ and unit vectors $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$ minimizes: $\left\|\sigma x y^{T}-\mathbf{A}\right\|_{F}^{2}=$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\begin{aligned}
& \mathbf{U}=\left[u_{1}, \ldots, u_{r}\right] \quad \mathbf{V}=\left[v_{1}, \ldots, v_{r}\right] \quad \mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{r}\right) \\
& \mathbf{A}=\sum^{r} u_{k} v_{k}^{T} s_{k}
\end{aligned}
$$

Best rank-1 approximation $\sigma>0$ and unit vectors $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$ minimizes:

$$
\begin{aligned}
\left\|\sigma x y^{T}-\mathbf{A}\right\|_{F}^{2} & =\sigma^{2}+\operatorname{Tr}\left(\mathbf{A}^{T} \mathbf{A}\right)-2 \sigma x^{T} \mathbf{A} y \\
& =\sigma^{2}+\left(\sum_{k=1}^{r} s_{k}^{2}\right)-2 \sigma\left(\sum_{k=1}^{r} x^{T} u_{k} v_{k}^{T} y s_{k}\right)
\end{aligned}
$$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\begin{aligned}
\mathbf{U}=\left[u_{1}, \ldots, u_{r}\right] \quad \mathbf{V}=\left[v_{1}, \ldots, v_{r}\right] & \mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{r}\right) \\
\mathbf{A}=\sum^{r} u_{k} v_{k}^{T} s_{k} & s_{1} \geq s_{2} \geq \cdots \geq s_{r}
\end{aligned}
$$

In general: $\quad \sum_{k=1}^{p} u_{i} v_{i}^{T} s_{i}=\arg \min _{\mathbf{Z}: \operatorname{rank}(\mathbf{Z})=p}\|\mathbf{Z}-\mathbf{A}\|_{F}^{2}$

Matrix completion

Given historical data on how users rated movies in past:

17,700 movies, 480,189 users, 99,072,112 ratings
(Sparsity: 1.2\%)
Predict how the same users will rate movies in the future (for $\$ 1$ million prize)

Matrix completion

n movies, m users, $|S|$ ratings

$$
\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\arg \min } \sum_{(i, j, s) \in \mathcal{S}}\left\|\left(U V^{T}\right)_{i, j}-s_{i, j}\right\|_{2}^{2}
$$

How do we solve it? With full information?

Matrix completion

n movies, m users, $|S|$ ratings

$$
\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\arg \min } \sum_{(i, j, s) \in \mathcal{S}}\left\|\left(U V^{T}\right)_{i, j}-s_{i, j}\right\|_{2}^{2}
$$

Matrix completion

n movies, m users, $|S|$ ratings

$$
\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\arg \min } \sum_{(i, j, s) \in \mathcal{S}}\left\|\left(U V^{T}\right)_{i, j}-s_{i, j}\right\|_{2}^{2}
$$

Practical techniques to solve:

- Alternating minimization (Fix U, minimize V . Then fix V and minimize U)
- Stochastic gradient descent on U, V
- Nuclear norm regularization (convex)

Clustering K-means

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 13, 2016

Clustering images

Clustering web search results

Clusty race ${ }^{\text {web news images wikipedia blogs iobs more» }} \quad$ Search $\frac{\text { advanced }}{\text { preferences }}$

clusters sources sites

All Results（238）

－Car（28）

－Race cars（7）
\uparrow Photos，Races Scheduled（5）
－Game（4）
－Track（3）
－Nascar（2）
－Equipment And Safety（2）
－Other Topics（7）
\uparrow Photos（22）
－Game（14）
\uparrow Definition（13）
\uparrow Team（18）
－Human（8）
－Classification Of Human（2）
－Statement，Evolved（2）
－Other Topics（4）

－Weekend（8）

\uparrow Ethnicity And Race（7）
\uparrow Race for the Cure（8）
Race Information（8） more｜all clusters

Cluster Human contains 8 documents．

1．Race（classification of human beings）－Wikipedia，the free ．．．屄 $Q_{\text {© }}$
The term race or racial group usually refers to the concept of dividing humans into populations or groups on the basis of various sets of characteristics．The most widely used human racial categories are based on visible traits（especially skin color，cranial or facial features and hair texture），and self－identification．Conceptions of race，as well as specific ways of grouping races，vary by culture and over time，and are often controversial for scientific as well as social and political reasons．History • Modern debates • Political and ．．
en．wikipedia．org／wiki／Race＿（classification＿of＿human＿beings）－［cache］－Live，Ask
2．Race－Wikipedia，the free encyclopedia \bar{b} Q
General．Racing competitions The Race（yachting race），or La course du millénaire，a no－rules round－the－world sailing event；Race（biology），classification of flora and fauna；Race（classification of human beings）Race and ethnicity in the United States Census，official definitions of＂race＂used by the US Census Bureau；Race and genetics，notion of racial classifications based on genetics．Historical definitions of race；Race（bearing），the inner and outer rings of a rolling－element bearing．RACE in molecular biology＂Rapid ．．．General • Surnames－Television－Music Literature • Video games
en．wikipedia．org／wiki／Race－［cache］－Live，Ask
3．Publications｜Human Rights Watch ह Q ）
The use of torture，unlawful rendition，secret prisons，unfair trials，．．．Risks to Migrants，Refugees，and Asylum Seekers in Egypt and Israel ．．．In the run－up to the Beijing Olympics in August 2008，
www．hrw．org／backgrounder／usa／race－［cache］－Ask
4．Amazon．com：Race：The Reality Of Human Differences：Vincent Sarich ．．．㞓 Q Q
Amazon．com：Race：The Reality Of Human Differences：Vincent Sarich，Frank Miele：Books ．．．From Publishers Weekly Sarich，a Berkeley emeritus anthropologist，and Miele，an editor ．． www．amazon．com／Race－Reality－Differences－Vincent－Sarich／dp／0813340861－［cache］－Live

5．AAPA Statement on Biological Aspects of Race 居 Q
AAPA Statement on Biological Aspects of Race ．．．Published in the American Journal of Physical Anthropology，vol．101，pp 569－570， 1996 ．．．PREAMBLE As scientists who study human evolution and variation，
www．physanth．org／positions／race．html－［cache］－Ask
6．race：Definition from Answers．com 㞓 Q \％
race n ．A local geographic or global human population distinguished as a more or less distinct group by genetically transmitted physical
www．answers．com／topic／race－1－［cache］－Live
7．Dopefish．com 㞓 Q
Site for newbies as well as experienced Dopefish followers，chronicling the birth of the Dopefish，its numerous appearances in several computer games，and its eventual take－over of the human race．Maintained by Mr．Dopefish himself，Joe Siegler of Apogee Software．
www．dopefish．com－［cache］－Open Directory

K-means

1. Ask user how many clusters they'd like.
(e.g. k=5)

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns...
5. ...and jumps there
6. ...Repeat until terminated!

K-means

- Randomly initialize k centers
$\square \mu^{(0)}=\mu_{1}{ }^{(0)}, \ldots, \mu_{k}{ }^{(0)}$
- Classify: Assign each point $j \in\{1, \ldots N\}$ to nearest center:

$$
C^{(t)}(j) \leftarrow \arg \min _{i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Recenter: μ_{i} becomes centroid of its point:

$$
\mu_{i}^{(t+1)} \leftarrow \arg \min _{\mu} \sum_{j: C(j)=i}\left\|\mu-x_{j}\right\|^{2}
$$

\square Equivalent to $\mu_{\mathrm{i}} \leftarrow$ average of its points!

Does K-means converge??? Part 1

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix μ, optimize C

Does K-means converge??? Part 2

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix C, optimize μ

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 - 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block $V Q$, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher ($1890-1962$) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 - 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Typical output of k-means on patches

Similar reduced representation can be used as a feature vector
Coates, Ng, Learning Feature Representations with K-means, 2012

Spectral Clustering

Adjacency matrix: W

$$
\begin{aligned}
& \mathbf{W}_{i, j}=\text { weight of edge }(i, j) \\
& \mathbf{D}_{i, i}=\sum_{j=1}^{n} \mathbf{W}_{i, j} \quad \mathbf{L}=\mathbf{D}-\mathbf{W}
\end{aligned}
$$

Given feature vectors, could construct:

- k-nearest neighbor graph with weights in $\{0,1\}$
- weighted graph with arbitrary similarities $\mathbf{W}_{i, j}=e^{-\gamma\left\|x_{i}-x_{j}\right\|^{2}}$
$\begin{aligned} & \text { Let } f \in \mathbb{R}^{n} \text { be a } \\ & \text { function over the nodes }\end{aligned} \quad \mathbf{f}^{T} \mathbf{L} \mathbf{f}=\sum_{i=1}^{N} g_{i} f_{i}^{2}-\sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} f_{i} f_{i^{\prime}} w_{i i^{\prime}}$

$$
=\frac{1}{2} \sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} w_{i i^{\prime}}\left(f_{i}-f_{i^{\prime}}\right)^{2}
$$

Spectral Clustering

Adjacency matrix: W

$$
\begin{aligned}
& \mathbf{W}_{i, j}=\text { weight of edge }(i, j) \\
& \mathbf{D}_{i, i}=\sum_{j=1}^{n} \mathbf{W}_{i, j} \quad \mathbf{L}=\mathbf{D}-\mathbf{W}
\end{aligned}
$$

Given feature vectors, could construct:

- k-nearest neighbor graph with weights in $\{0,1\}$
- weighted graph with arbitrary similarities $\mathbf{W}_{i, j}=e^{-\gamma\left\|x_{i}-x_{j}\right\|^{2}}$
$\begin{aligned} & \text { Let } f \in \mathbb{R}^{n} \text { be a } \\ & \text { function over the nodes }\end{aligned} \quad \mathbf{f}^{T} \mathbf{L} \mathbf{f}=\sum_{i=1}^{N} g_{i} f_{i}^{2}-\sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} f_{i} f_{i^{\prime}} w_{i i^{\prime}}$

$$
=\frac{1}{2} \sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} w_{i i^{\prime}}\left(f_{i}-f_{i^{\prime}}\right)^{2}
$$

Spectral Clustering

Adjacency matrix: W

$$
\begin{aligned}
& \mathbf{W}_{i, j}=\text { weight of edge }(i, j) \\
& \mathbf{D}_{i, i}=\sum_{j=1}^{n} \mathbf{W}_{i, j} \quad \mathbf{L}=\mathbf{D}-\mathbf{W}
\end{aligned}
$$

Given feature vectors, could construct:

- (k=10)-nearest neighbor graph with weights in $\{0,1\}$

Mixtures of Gaussians

Machine Learning - CSE546

Kevin Jamieson
University of Washington
November 13, 2016

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\ell(\theta ; \mathbf{Z})=\sum_{i=1}^{n} \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)+\pi \phi_{\theta_{2}}\left(y_{i}\right)\right]
$$

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi \\
\theta & =\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)
\end{aligned}
$$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data
$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\begin{aligned}
& \ell\left(\theta ; y_{i}, \Delta_{i}=0\right)= \\
& \ell\left(\theta ; y_{i}, \Delta_{i}=1\right)=
\end{aligned}
$$

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi \\
\theta & =\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)
\end{aligned}
$$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data
$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\ell(\theta ; \mathbf{Z}, \boldsymbol{\Delta})=\sum_{i=1}^{n}\left(1-\Delta_{i}\right) \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)\right]+\Delta_{i} \log \left(\pi \phi_{\theta_{2}}\left(y_{i}\right)\right]
$$

If we knew Δ, how would we choose θ ?

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data
$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\ell(\theta ; \mathbf{Z}, \boldsymbol{\Delta})=\sum_{i=1}^{n}\left(1-\Delta_{i}\right) \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)\right]+\Delta_{i} \log \left(\pi \phi_{\theta_{2}}\left(y_{i}\right)\right]
$$

If we knew θ, how would we choose $\boldsymbol{\Delta}$?

Mixture models

$$
\begin{aligned}
& Y_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
& Y_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
& Y=(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
& \Delta \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi \\
& \theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)
\end{aligned}
$$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data
$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\begin{aligned}
& \quad \ell(\theta ; \mathbf{Z}, \boldsymbol{\Delta})=\sum_{i=1}^{n}\left(1-\Delta_{i}\right) \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)\right]+\Delta_{i} \log \left(\pi \phi_{\theta_{2}}\left(y_{i}\right)\right] \\
& \gamma_{i}(\theta)=\mathbb{E}\left[\Delta_{i} \mid \theta, \mathbf{Z}\right]=
\end{aligned}
$$

Mixture models

Algorithm 8.1 EM Algorithm for Two-component Gaussian Mixture.

1. Take initial guesses for the parameters $\hat{\mu}_{1}, \hat{\sigma}_{1}^{2}, \hat{\mu}_{2}, \hat{\sigma}_{2}^{2}, \hat{\pi}$ (see text).
2. Expectation Step: compute the responsibilities

$$
\begin{equation*}
\hat{\gamma}_{i}=\frac{\hat{\pi} \phi_{\hat{\theta}_{2}}\left(y_{i}\right)}{(1-\hat{\pi}) \phi_{\hat{\theta}_{1}}\left(y_{i}\right)+\hat{\pi} \phi_{\hat{\theta}_{2}}\left(y_{i}\right)}, i=1,2, \ldots, N . \tag{8.42}
\end{equation*}
$$

3. Maximization Step: compute the weighted means and variances:

$$
\begin{aligned}
\hat{\mu}_{1}=\frac{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right) y_{i}}{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)}, & \hat{\sigma}_{1}^{2}=\frac{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)\left(y_{i}-\hat{\mu}_{1}\right)^{2}}{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)} \\
\hat{\mu}_{2}=\frac{\sum_{i=1}^{N} \hat{\gamma}_{i} y_{i}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}, & \hat{\sigma}_{2}^{2}=\frac{\sum_{i=1}^{N} \hat{\gamma}_{i}\left(y_{i}-\hat{\mu}_{2}\right)^{2}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}
\end{aligned}
$$

and the mixing probability $\hat{\pi}=\sum_{i=1}^{N} \hat{\gamma}_{i} / N$.
4. Iterate steps 2 and 3 until convergence.

Gaussian Mixture Example: Start

 -
After first iteration

-

After 2nd iteration

-

After 3rd iteration

-

After 4th iteration

-

After 5th iteration

-

After 6th iteration

-

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data.

Resulting Density Estimator

Expectation Maximization Algorithm

The iterative gaussian mixture model (GMM) fitting algorithm is special case of EM:
Algorithm 8.2 The EM Algorithm.

1. Start with initial guesses for the parameters $\hat{\theta}^{(0)}$.
2. Expectation Step: at the j th step, compute

$$
\begin{equation*}
Q\left(\theta^{\prime}, \hat{\theta}^{(j)}\right)=\mathrm{E}\left(\ell_{0}\left(\theta^{\prime} ; \mathbf{T}\right) \mid \mathbf{Z}, \hat{\theta}^{(j)}\right) \tag{8.43}
\end{equation*}
$$

\mathbf{Z} is observed data
$\boldsymbol{\Delta}$ is unobserved data

$$
\mathbf{T}=(\mathbf{Z}, \boldsymbol{\Delta})
$$

as a function of the dummy argument θ^{\prime}.
3. Maximization Step: determine the new estimate $\hat{\theta}^{(j+1)}$ as the maximizer of $Q\left(\theta^{\prime}, \hat{\theta}^{(j)}\right)$ over θ^{\prime}.
4. Iterate steps 2 and 3 until convergence.

Density Estimation

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 13, 2016

Kernel Density Estimation

$f(x)=\sum_{m=1}^{M} \alpha_{m} \phi\left(x ; \mu_{m}, \boldsymbol{\Sigma}_{m}\right) \quad$ A very "lazy" GMM

Kernel Density Estimation

Kernel Density Estimation

Combined

$\hat{r}_{i m}=\frac{\hat{\alpha}_{m} \phi\left(x_{i} ; \hat{\mu}_{m}, \hat{\Sigma}_{m}\right)}{\sum_{k=1}^{M} \hat{\alpha}_{k} \phi\left(x_{i} ; \hat{\mu}_{k}, \hat{\Sigma}_{k}\right)}$

Predict $\arg \max _{m} \widehat{r}_{i m}$

Generative vs Discriminative

