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• Fill in the missing plots:

X

J = I � 11T /n

Z

VSVT = eig(⌃)

⌃ = XTJJX = ZTJJZ

µX = XT1/n µZ = ZT1/n

VS�1/2VT (µX � µZ)µX � µZ
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Singular Value Decomposition (SVD)

©2018 Kevin Jamieson

Theorem (SVD): LetA 2 Rm⇥n with rank r  min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

ATAvi =

AATui =

S2
i,ivi

S2
i,iui

V are the first r eigenvectors of ATA with eigenvalues diag(S)
U are the first r eigenvectors of AAT with eigenvalues diag(S)

U = [u1, . . . , ur] V = [v1, . . . , vr]
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Linear projections

©2018 Kevin Jamieson

where is orthonormal:

Given xi 2 Rd and some q < d consider

Vq are the first q eigenvectors of ⌃

Vq = [v1, v2, . . . , vq]

VT
q Vq = Iq

UT
q Uq = Iq

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T
Vq are the first q principal components

Principal Component Analysis (PCA) projects (X� 1x̄T ) down onto Vq

(X� 1x̄T )Vq = Uqdiag(d1, . . . , dq)
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Dimensionality reduction

©2018 Kevin Jamieson

Vq are the first q eigenvectors of ⌃ X� 1x̄T = USVTand SVD

X� 1x̄T
U1

U2



©Kevin Jamieson 2018  6

Kernel PCA

©2018 Kevin Jamieson

Vq are the first q eigenvectors of ⌃ X� 1x̄T = USVTand SVD

(X� 1x̄T )Vq = UqSq 2 Rn⇥q

JX = X� 1x̄T = USVT J = I � 11T /n

(JX)(JX)T = US2UTJXXTJ =: JKJ = Ki,j = xT
i xj
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Kernel PCA

©2018 Kevin Jamieson

Vq are the first q eigenvectors of ⌃ X� 1x̄T = USVTand SVD

(X� 1x̄T )Vq = UqSq 2 Rn⇥q

JX = X� 1x̄T = USVT J = I � 11T /n

(JX)(JX)T = US2UTJXXTJ =: JKJ = Ki,j = xT
i xj



Nonlinear dimensionality reduction
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Find a low dimensional representation that respects “local distances” in the higher 
dimensional space

Many methods: 
- Kernel PCA 
- ISOMAP 
- Local linear embedding 
- Maximum volume unfolding 
- Non-metric multidimensional scaling 
- Laplacian 
- Neural network auto encoder 
- … 

Due to lack of agreed upon metrics, 
it is very hard to judge which is 
best. Also, results from 3 to 2 dims 
is probably not representative of 
1000 to 2 dimensions.

Zhang et al 2010



Random projections
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VqVT
q is a projection matrix that

minimizes error in basis of size q

PCA finds a low-dimensional representation that reduces population variance

Vq are the first q eigenvectors of ⌃ ⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T

But what if I care about the reconstruction of the individual points? 

min
Wq

max
i=1,...,n

||(xi � x̄)�WqW
T
q (xi � x̄)||2



Random projections
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min
Wq

max
i=1,...,n

||(xi � x̄)�WqW
T
q (xi � x̄)||2

Johnson-Lindenstrauss (1983) (q is independent of d)

Theorem Let ✏ 2 Rd and set q = 20✏�2 log(n). Assume that the entries
A 2 Rd⇥q are sampled iid from N (0, 1/q). Then for any z 2 Rd we have with

probability at least 1� 2e(✏
2�✏3)q/4 that

(1� ✏)kzk2  kAT zk2  (1 + ✏)kzk2



Other matrix factorizations
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Nonnegative matrix factorization (NMF)

Singular value decomposition 

U
S VT

X =

Elements of U,S,V in R

Elements of U,S,V in R+
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Singular Value Decomposition (SVD)

©2018 Kevin Jamieson

Theorem (SVD): LetA 2 Rm⇥n with rank r  min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

ATAvi =

AATui =

S2
i,ivi

S2
i,iui

V are the first r eigenvectors of ATA with eigenvalues diag(S)
U are the first r eigenvectors of AAT with eigenvalues diag(S)

U = [u1, . . . , ur] V = [v1, . . . , vr]
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Singular Value Decomposition (SVD)

©2018 Kevin Jamieson

Theorem (SVD): LetA 2 Rm⇥n with rank r  min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

U = [u1, . . . , ur] V = [v1, . . . , vr] S = diag(s1, . . . , sr)

s1 � s2 � · · · � srA =
rX

k=1

ukv
T
k sk

Best rank-1 approximation � > 0 and unit vectors x 2 Rm, y 2 Rn minimizes:
k�xyT �Ak2F=
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Singular Value Decomposition (SVD)

©2018 Kevin Jamieson

Theorem (SVD): LetA 2 Rm⇥n with rank r  min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

U = [u1, . . . , ur] V = [v1, . . . , vr] S = diag(s1, . . . , sr)

s1 � s2 � · · · � srA =
rX

k=1

ukv
T
k sk

Best rank-1 approximation � > 0 and unit vectors x 2 Rm, y 2 Rn minimizes:
k�xyT �Ak2F=

k�xyT �Ak2F = �2 +Tr(ATA)� 2�xTAy

= �2 +

 
rX

k=1

s2k

!
� 2�

 
rX

k=1

xTukv
T
k y sk

!
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Singular Value Decomposition (SVD)

©2018 Kevin Jamieson

Theorem (SVD): LetA 2 Rm⇥n with rank r  min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

U = [u1, . . . , ur] V = [v1, . . . , vr] S = diag(s1, . . . , sr)

s1 � s2 � · · · � srA =
rX

k=1

ukv
T
k sk

pX

k=1

uiv
T
i si = arg min

Z:rank(Z)=p
kZ�Ak2FIn general:



Matrix completion
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17,700 movies,  480,189 users,  99,072,112 ratings (Sparsity: 1.2%)

Given historical data on how users rated movies in past:

Predict how the same users will rate movies in the future (for $1 million prize)



Matrix completion
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n movies,  m users,  |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T )i,j � si,j ||22

How do we solve it? With full information?



Matrix completion
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n movies,  m users,  |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T )i,j � si,j ||22



Matrix completion
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n movies,  m users,  |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T )i,j � si,j ||22

Practical techniques to solve: 
- Alternating minimization (Fix U, minimize V. Then fix V and minimize U) 
- Stochastic gradient descent on U, V 
- Nuclear norm regularization (convex) 
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Clustering images

 22[Goldberger et al.]

Set of Images

©Kevin Jamieson 2018
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Clustering web search results
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Some Data
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 

 25©Kevin Jamieson 2018
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations

 26©Kevin Jamieson 2018
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints)

 27©Kevin Jamieson 2018
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. 

4. Each Center finds 
the centroid of the 
points it owns

 28©Kevin Jamieson 2018
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. 

4. Each Center finds 
the centroid of the 
points it owns… 

5. …and jumps there 

6. …Repeat until 
terminated!

 29©Kevin Jamieson 2018
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K-means

■ Randomly initialize k centers 
 µ(0) = µ1

(0),…, µk
(0) 

■ Classify: Assign each point j∈{1,…N} to nearest 
center: 

  

■ Recenter: µi becomes centroid of its point: 
   

Equivalent to µi ← average of its points!
 30©Kevin Jamieson 2018
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Does K-means converge??? Part 1

■ Optimize potential function: 

■ Fix µ, optimize C

 31©Kevin Jamieson 2018
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Does K-means converge??? Part 2

■ Optimize potential function: 

■ Fix C, optimize µ

 32©Kevin Jamieson 2018



Vector Quantization, Fisher Vectors

 33

1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Vector Quantization (for compression)



Vector Quantization, Fisher Vectors
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1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Vector Quantization (for compression)



Vector Quantization, Fisher Vectors
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1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Similar reduced representation can be used as a feature vector

Vector Quantization (for compression)

Coates, Ng, Learning Feature Representations with K-means, 2012

Typical output of k-means  
on patches



Spectral Clustering
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Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct: 
- k-nearest neighbor graph with weights in {0,1} 
- weighted graph with arbitrary similarities

Di,i =
nX

j=1

Wi,j L = D�W

Wi,j = e��||xi�xj ||2

Let f 2 Rn be a
function over the nodes



Spectral Clustering
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Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct: 
- k-nearest neighbor graph with weights in {0,1} 
- weighted graph with arbitrary similarities

Di,i =
nX

j=1

Wi,j L = D�W

Wi,j = e��||xi�xj ||2

Let f 2 Rn be a
function over the nodes



Spectral Clustering
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Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct: 
- (k=10)-nearest neighbor graph with  

weights in {0,1}

Di,i =
nX

j=1

Wi,j L = D�W
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(One) bad case for k-means

■ Clusters may overlap 
■ Some clusters may be 

“wider” than others

©Kevin Jamieson 2017
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(One) bad case for k-means

■ Clusters may overlap 
■ Some clusters may be 

“wider” than others
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Mixture models

©Kevin Jamieson 2017

Y

`(✓;Z) =
nX

i=1

log[(1� ⇡)�✓1(yi) + ⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then
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Mixture models

©Kevin Jamieson 2017

Y

`(✓; yi,�i = 0) =

`(✓; yi,�i = 1) =

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data
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Mixture models

©Kevin Jamieson 2017

Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

If we knew �, how would we choose ✓?
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Mixture models

©Kevin Jamieson 2017

Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

If we knew ✓, how would we choose �?
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Mixture models
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Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

�i(✓) = E[�i|✓,Z] =



©Kevin Jamieson 2017  47

Mixture models
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Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Some Bio Assay data

©Kevin Jamieson 2017
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GMM clustering of the assay data
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Resulting 
Density 
Estimator

©Kevin Jamieson 2017



©Kevin Jamieson 2017  59

Expectation Maximization Algorithm

©Kevin Jamieson 2017

The iterative gaussian mixture model (GMM) fitting algorithm is special case of EM:

Z is observed data

� is unobserved data

T = (Z,�)
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Density Estimation
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Kernel Density Estimation
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A very “lazy” GMM
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Kernel Density Estimation
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Kernel Density Estimation

 63©Kevin Jamieson 2017

Predict argmaxm brim

What is the Bayes 
optimal classification 
rule?
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Generative vs Discriminative

 64©Kevin Jamieson 2017


