Practice
" A

* Fill in the missing plots: ¥ =X"JJX =27"JJZ
vsvT —eig(x) J=1-117/n
px =XT1/n pz=27"1/n

X Z px — pz VS~ Y2VT (ux — py)

©2017 Kevin Jamieson
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Singular Value Decomposition (SVD)
" S

Theorem (SVD): Let A € R™*" with rank r < min{m,n}. Then A = USV?T
where S € R"*" is diagonal with positive entries, UTU =1, VIV = TI.

U:[ul,...,ur] V:[vl,...,vr]

T 2 .
A A’Ui = Si,ivz

AA ;= S7 u

V are the first r eigenvectors of AT A with eigenvalues diag(S)
U are the first r eigenvectors of AAT with eigenvalues diag(S)

©2018 Kevin Jamieson



Linear projections

Given z; € R? and some g < d consider
q

N
min Y ||(z; — 7) — V4 V} (i — 2)|%.
7 =1

where V, = [v1,v2,...,v,] is orthonormal:
ViV, =1,

V, are the first g eigenvectors of X

V, are the first q principal components

o ‘Ul}
uu/
N
=) (z;—2)(x; —2)7
1=1

Principal Component Analysis (PCA) projects (X — 1z") down onto V,

(X — 127V, = U,diag(dy, ..., d,)

©2018 Kevin Jamieson

Ulu, =1,



Dimensionality reduction
" S

[
V, are the first g eigenvectors of ¥ and SVD X — 1z1 = usv?

First principal component

©2018 Kevin Jamieson ©Kevin Jamieson 2018



Kernel PCA
" J———
V, are the first g eigenvectors of ¥ and SVD X — 1z1 = usv?

(X — 12"V, = UqSq € R"*1

JIX =X -1z" =usv” J=I-11"/n

IX)(IX)T =IXX'J = JKJ =Uus2u” K ;=] 2

©2018 Kevin Jamieson ©Kevin Jamieson 2018



Kernel PCA

V, are the first g eigenvectors of ¥ and SVD X — 1z1

(X — 12"V, = UqSq € R"*1

JIX=X-1z" =Uusv?

IX)IX)T =IXX'J
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J=I-11"/n

- JKJ = US2yu?

Radial Kernel (c=2)

2 ] o «
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°* % s
g g | g0t ¢ o .
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First Largest Eigenvector
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Second Largest Eigenvector
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0.00

-0.05

— Usv?’

T
K;; =z; z;

Radial Kernel (c=10)
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Many methods:

Nonlinear dimensionality reduction
" S

Find a low dimensional representation that respects “local distances” in the higher

dimensional space

Kernel PCA
ISOMAP

Local linear embedding

0.02 4

-0.02
-0.04 -

-0.06

MDS: 16.1676s PCA: 0.08175s
10—, X
w" i
o— "‘
L‘t.""
104
a‘_rum e
. . R,
0 5 0 5 10 15 -0.06 ~0.05 ~0.04 ~0.03 -0.02 001 0
LLE: 0.48407s Hessian LLE: 4.4685s
£ ) RS O
ﬁ$v 006, "% e N e
' “%‘b X a3 --' .'\n wan X ‘r -”-..
14 o TRy g 008-1,p08 3, ooy Sinat \'.,. :
002_' ; T30
0 0+
=14 Bl W, 0 29
,mﬂ%" -0 u"w-"wvf .»-ﬁr
-2 = 0 1 2 006 004 002 0 002 004 006

KNN=8

KNN =8

LTSA: 0.66605s

005-‘..

o3

-0.05 4.-.-_.}- e

-0.05

0.05

T T u
-15 -10 -05 0 0.5 10 15
Alpha =1

—004 002 0 002 004 006
Sigma =10

Maximum volume unfolding

Non-metric multidimensional scaling

Laplacian

Neural network auto encoder

Zhang et al 2010

Due to lack of agreed upon metrics,
it is very hard to judge which is

best. Also, results from 3 to 2 dims

is probably not representative of
1000 to 2 dimensions.



Random projections
"

PCA finds a low-dimensional representation that reduces population variance

V,VZIis a projection matriz that
T =112 174
mmz ||(z - V4V, (z: — Z)||". minimizes error in basis of size q

N
V, are the first g eigenvectors of X ¥ := Z(xi —z)(x; — )"

1=1
But what if | care about the reconstruction of the individual points?

=\ T )12
r{,l‘;nzrglfgéfnl\( —I) = W W, (z; — z)|]



Random projections
" SN

. — T =\ 112
in, o (5 =) = W, W1 (s, = o)

JOhnson'LindenStraUSS (1 983) (q is independent of d)

Theorem Let ¢ € R? and set ¢ = 20e 2log(n). Assume that the entries
A € R9%9 are sampled iid from A (0,1/q). Then for any z € R? we have with

probability at least 1 — 2e(€"=€")a/4 that

(1= ollz)* < IA"2[1* < (1 + ¢)ll=]"

10



Other matrix factorizations

Singular value decomposition i 5 5 K 2

Elements of U,S,V in R it

Nonnegative matrix factorization (NMF) orcinal
Elements of U, S,V in R NMF g

11
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Machine Learning — CSE546
Kevin Jamieson
University of Washington

November 13, 2016

©Kevin Jamieson 2018 ©Kevin Jamieson 2018



Singular Value Decomposition (SVD)
" S

Theorem (SVD): Let A € R™*" with rank r < min{m,n}. Then A = USV?T
where S € R"*" is diagonal with positive entries, UTU =1, VIV = TI.

U:[ul,...,ur] V:[vl,...,vr]

T 2 .
A A’Ui = Si,ivz

AA ;= S7 u

V are the first r eigenvectors of AT A with eigenvalues diag(S)
U are the first r eigenvectors of AAT with eigenvalues diag(S)

©2018 Kevin Jamieson
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Singular Value Decomposition (SVD)
" S

Theorem (SVD): Let A € R™*" with rank r < min{m,n}. Then A = USV?T
where S € R"*" is diagonal with positive entries, UTU =1, VIV = TI.

U = [ug,...,u,] V = [v1,...,0] S = diag(s1,...,s,)

T

§S1 >89 > -+ > 8§

Azg ukvgsk L=22= =
k=1

Best rank-1 approximation o > 0 and unit vectors x € R™, y € R™ minimizes:
T A 2
lowy I7=

©2018 Kevin Jamieson 14



Singular Value Decomposition (SVD)
" S

Theorem (SVD): Let A € R™*" with rank r < min{m,n}. Then A = USV?T
where S € R"*" is diagonal with positive entries, UTU =1, VIV = TI.

U = [ug,...,u,] V = [v1,...,0] S = diag(s1,...,s,)

T

S1 >89 > ---> 8

Azg ukvgsk L=7"2= — 7
k=1

Best rank-1 approximation o > 0 and unit vectors x € R™, y € R™ minimizes:

loxy? — A||% =0 + Tr(ATA) — 2027 Ay

=0+ (Z S%) — 20 <Z rlupvly sk>
k=1 k=1

©2018 Kevin Jamieson
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Singular Value Decomposition (SVD)
" S

Theorem (SVD): Let A € R™*" with rank r < min{m,n}. Then A = USV?T
where S € R"*" is diagonal with positive entries, UTU =1, VIV = TI.

U = [ug,...,u,] V = [v1,...,0] S = diag(s1,...,s,)

T

S >S >>S

Azg ukvgsk L=22= =
k=1

p
In general: Z uvy s; =arg  min  ||Z — A||%
1 Z:rank(Z)=p

©2018 Kevin Jamieson
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Matrix completion
"

Given historical data on how users rated movies in past: -

17,700 movies, 480,189 users, 99,072,112 ratings (Sparsity: 1.2%)

Predict how the same users will rate movies in the future (for $1 million prize)

Alice | 1 ? ? 4 ?

Bob| 2 | 2|5 | 2 | ?
Carol | ? ? 4 5 ?
Dave | 5 ? ? ? 4

17



Matrix completion
"

n movies, m users, |S| ratings

arg min > OV — sl
UeRde’VeRnXd (1’3,5)68

How do we solve it? With full information?

2
2

18



Matrix completion
"

n movies, m users, |S| ratings

arg min > OV — sl
UeRde’VERnXd (1,’.],3)68

2
2

19



Matrix completion
"
n movies, m users, |S| ratings

arg min > OV —sislls
UeRde’VeRnXd (1’3,5)68

Practical techniques to solve:
- Alternating minimization (Fix U, minimize V. Then fix V and minimize U)

- Stochastic gradient descent on U, V
- Nuclear norm regularization (convex)

20



Clustering

K-means
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Clustering images
—

Set of Images

.7.!. i E m-

' anane
gy -

Fo
©Kevin Jamieson 2018 ©Kevin Jamieson 2018 [Goldberger et al.] 2,



Clustering web search results
" JEEE——

web news images wikipedia blogs jobs more »

race

advanced

preferences

Cluster Human contains 8 documents.
clusters [ELTIC- R G

All Results (238) remix
Q@ Car(2s)
© Race cars (7)
© Photos, Races Scheduled (5)
@ Game (4)
@ Track(3)
@ Nascar (2)
@ Equipment And Safety (2)
@ Other Topics (7)
© Photos (22)
© Game (14)
© Definition (13)
© Team (18)
@ Human ()
@ Classification Of Human (2)
@ Statement, Evolved (2)
@ Other Topics (4)
© Weekend (s)
© Ethnicity And Race (7)
© Race for the Cure (3)
@ Race Information (s)

more | all clusters

find in clusters:

( Find

©Kevin Jamieson 2018

1.

Race (classification of human beings) - Wikipedia, the free ... & QA &

The term race or racial group usually refers to the concept of dividing humans into populations or groups on the basis of various sets of characteristics. The most widely used human racial
categories are based on visible traits (especially skin color, cranial or facial features and hair texture), and self-identification. Conceptions of race, as well as specific ways of grouping races, vary
by culture and over time, and are often controversial for scientific as well as social and political reasons.History - Modern debates - Political and ...

en.wikipedia.org/wiki/Race_(classification_of _human_beings) - [cache] - Live, Ask

. Race - Wikipedia, the free encyclopedia & A &

General. Racing competitions The Race (yachting race), or La course du millénaire, a no-rules round-the-world sailing event; Race (biology), classification of flora and fauna; Race (classification
of human beings) Race and ethnicity in the United States Census, official definitions of “race" used by the US Census Bureau; Race and genetics, notion of racial classifications based on
genetics. Historical definitions of race; Race (bearing), the inner and outer rings of a rolling-element bearing. RACE in molecular biology "Rapid ... General - Surnames - Television - Music -
Literature - Video games

en.wikipedia.org/wiki/Race - [cache] - Live, Ask

. Publications | Human Rights Watch & & &

The use of torture, unlawful rendition, secret prisons, unfair trials, ... Risks to Migrants, Refugees, and Asylum Seekers in Egypt and Israel ... In the run-up to the Beijing Olympics in August 2008,

www.hrw.org/backgrounder/usalrace - [cache] - Ask

. Amazon.com: Race: The Reality Of Human Differences: Vincent Sarich ... & Q4 &

Amazon.com: Race: The Reality Of Human Differences: Vincent Sarich, Frank Miele: Books ... From Publishers Weekly Sarich, a Berkeley emeritus anthropologist, and Miele, an editor ...
www.amazon.com/Race-Reality-Differences-Vincent-Sarich/dp/0813340861 - [cache] - Live

. AAPA Statement on Biological Aspects of Race & A &

AAPA Statement on Biclogical Aspects of Race ... Published in the American Journal of Physical Anthropology, vol. 101, pp 569-570, 1996 ... PREAMBLE As scientists who study human
evolution and variation, ...
www.physanth.org/positions/race.html - [cache] - Ask

. race: Definition from Answers.com & Q &

race n. A local geographic or global human population distinguished as a more or less distinct group by genetically transmitted physical
www.answers.com/topic/race-1 - [cache] - Live

. Dopefish.com & Q &

Site for newbies as well as experienced Dopefish followers, chronicling the birth of the Dopefish, its numerous appearances in several computer games, and its eventual take-over of the human
race. Maintained by Mr. Dopefish himself, Joe Siegler of Apogee Software.
www.dopefish.com - [cache] - Open Directory

©Kevin Jamieson 2018 23



= Auton’s Graphics i 4”
Some Data
" A '
i
0.8 —o—
0.8 ——
0.4 ——
0.2 ——
¢ ¢ t t t t
J 0 0,2 0,4 0.6 0,8 1 |
x0
©Kevin Jamieson 2018 ©Kevin Jamieson 2018 24



Auton’s Graphics

K-means
= I

o
1. Ask user how many
clusters they’d like.

(e.qg. k=5)

x1

0.8

0.6

0.4

0,2

" 1 1 1 1 L
T T T T T T
3 0,2 0.4 0.6 0.8 1 |
x0
©Kevin Jamieson 2018 25
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K-means

m
1.

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

©Kevin Jamieson 2018

Auton’s Graphics

x1

0.8

0.6

0.4

0,2

0.2

d
T

—.—
——
——

0.6 0.8 1 0

©Kevin Jamieson 2018
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= Auton”s Graphics [ J

K-means |
" I

1.  Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k 0.6
cluster Center
locations

0.8

3. Each datapoint finds

out which Center it's |
closest to. (Thus
each Center “owns”
a set of datapoints) | ,
| 0 0,2 0.4 0.6 0.8 1

%07

©Kevin Jamieson 2018 ©Kevin Jamieson 2018 27



= Auton”s Graphics [ J

K-means |
" I

1.  Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k 0.5
cluster Center
locations

0.8

3. Each datapoint finds

out which Center it's |
closest to.
4. Each Center finds
the centroid of the 0.2
points it owns
J 0 0,2 0.4 0.6 0.8 1

%07

©Kevin Jamieson 2018 ©Kevin Jamieson 2018 28



K-means

" J
1

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it’s
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!

©Kevin Jamieson 2018

Auton’s Graphics

x1

0.8

0.6

0.4

0,2

il

—i—

o

%07

——

©Kevin Jamieson 2018
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K-means

" JEE——
= Randomly initialize k centers
M(O) = M’](O)a"', Mk(o)

= Classify: Assign each point j&{1,...N} to nearest
center:

C(t)(j) — arg miin |y — xjHQ

= Recenter: u. becomes centroid of its point:

T —argmin 3 Jlu— a3
§:C(J)=1
Equivalent to w, < average of its points!

©Kevin Jamieson 2018 ©Kevin Jamieson 2018
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Does K-means converge??? Part 1

" A
= Optimize potential function:
k

minmin F(g,C) = minmin > ) ||,u7;—acj||2
weoc O =1 0G)=

= Fix u, optimize C

©Kevin Jamieson 2018



Does K-means converge??? Part 2

" A
= Optimize potential function:
k

minmin F(g,C) = minmin > ) ||,u7;—acj||2
weoc O =1 0G)=

= Fix C, optimize u

©Kevin Jamieson 2018



Vector Quantization, Fisher Vectors
W

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe mazimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale
image at 8 bits per pizel. The center image is the result of 2 x 2 block V@, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel

33



Vector Quantization, Fisher Vectors
" A

=
Vector Quantization (for compression) Originel
1. Represent image as grid of patches AT g
2. Run k-means on the patches to build code book L=

3. Represent each patch as a code word. O E
' v Y ?‘p . M il x ii:i

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe mazimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale
image at 8 bits per pizel. The center image is the result of 2 x 2 block V@, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel
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Vector Quantization, Fisher Vectors
"

B
Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

Typical output of k-means

on patches
llllllllﬂli=llii!

ENEu I Y

BlENANNELSRENENS
FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders '=.===EEH=E¥E|==E
of modern day statistics, to whom we owe mazimum-likelihood, sufficiency, and =“=“!nin!.‘!!“-“
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale DV PICLR T T I 2N/ A
image at 8 bits per pizel. The center image is the result of 2 x 2 block V@, using HEEEE:HHHEE===
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses EEESNANLBIILYIEE.

only four code vectors, with a compression rate of 0.50 bits/pizel mduENRVE=EENESINE

Similar reduced representation can be used as a feature vector

Coates, Ng, Learning Feature Representations with K-means, 2012

35



Spectral Clustering
" S

Adjacency matrix: W L

W, ; = weight of edge (i, j) @) \ .

Dii=) Wi L=D-W L alinC
j=1

Given feature vectors, could construct:
- k-nearest neighbor graph with weights in {0,1} ,
- weighted graph with arbitrary similarities W, ; = e~ llei=%ill

N N N
Let f € R" be a fTLF = Zngf _ Z Z i forwii
=1

function over the nodes . i—14/—1

Z Z wiz”(fz' — fi’)2'

1=114¢'=1

DY | =

36



Spectral Clustering
" S

Adjacency matrix: W L

W, ; = weight of edge (i, j) @) \ .

Dii=) Wi L=D-W L alinC
j=1

Given feature vectors, could construct:
- k-nearest neighbor graph with weights in {0,1} ,
- weighted graph with arbitrary similarities W, ; = e~ llei=%ill

N N N
Let f € R" be a fTLF = Zngf _ Z Z i forwii
=1

function over the nodes . i—14/—1

Z Z wiz”(fz' — fi’)2'

1=114¢'=1

DY | =
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Spectral Clustering
"

Adjacency matrix: W

W, ; = weight of edge (i, j) .
n o N~“»\‘ | S
D;i=) W, L=D-W % o 81
j=1 1% S
Given feature vectors, could construct: L o A

- (k=10)-nearest neighbor graph with - o
weights in {0,1}

Eigenvectors Spectral Clustering
g g
g ° g '
I R LR, =
& 8 g i
© © g Y
& s © °
w
%
2
- 0 o
A A N -
K B
- o— e S £
& =
B <o | {
B g g | {
?
T T T T T T T T T
0 100 200 300 400 -0.04 -0.02 0.00 0.02
Index Second Smallest Eigenvector
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(One) bad case for k-means

" J——
= Clusters may overlap

= Some clusters may be
“wider” than others

©Kevin Jamieson 2017



(One) bad case for k-means

" J——
= Clusters may overlap

= Some clusters may be
“wider” than others
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Mixture models

0.4

Yi ~ N(/J'lao-%)a
Yo ~ N(’U,2,Ug),
Y = (1-A)-Yi+A-Ys,

00 0.2

Y
IIIIII Illllll
A € {0,1} with Pr(A =1) =« 0 2 4 6
Z = {y;}"_, is observed data

If ¢(x) is Gaussian density with parameters § = (u,0?) then

0(0;Z) =) log[(1 —7)pe, (i) + wdp, ()]

1=1

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 42



Mixture models

©Kevin Jamieson 2017 ©Kevin Jamieson 2017

Y
Yi ~ N(/Llaaf)’ S
Yo ~ N(M2aag)a S - I I
Y = (1-A)-Yi+A-Yy, - | mllunlln anllann
0 2 4 6

A € {0,1} with Pr(A =1) =«
Z = {y;}7_, is observed data

_ _ 2 2
0 = (m,01,02) = (7, 1, 07, p2, 03) A = {A;}, is unobserved data

If ¢g(z) is Gaussian density with parameters 6 = (u,0?) then

0(0;y;,A; =0) =

43



Mixture models
" A

Y
Y1 ~ N(/Llaaf)’ S
Yo ~ N(uz,03), 8 - I I
Y = (1-A)-Yi+A- Vs, - | milnnlln anllann
o 2 4 6

A € {0,1} with Pr(A =1) =«
Z = {y;}7_, is observed data

_ _ 2 2
0 = (m,01,02) = (7, 1, 07, p2, 03) A = {A;}, is unobserved data

If ¢g(z) is Gaussian density with parameters 6 = (u,0?) then

n

06;2,8) = (1—Aq)log[(L —m)¢o, (yi)] + Ailog(meba, ()]

1=1

If we knew A, how would we choose 67

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 44



Mixture models
" A

Y
Y1 ~ N(/Llaaf)’ S
Yo ~ N(uz,03), 8 - I I
Y = (1-A)-Yi+A- Vs, - | milnnlln anllann
o 2 4 6

A € {0,1} with Pr(A =1) =«
Z = {y;}7_, is observed data

_ _ 2 2
0 = (m,01,02) = (7, 1, 07, p2, 03) A = {A;}, is unobserved data

If ¢g(z) is Gaussian density with parameters 6 = (u,0?) then

n

(0;Z,A) =) (1= A;)log[(1 - 7)¢e, (y:)] + A; log(mebo, ()]

1=1

If we knew 6, how would we choose A?

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 45



Mixture models
" A

Y
Y1 ~ N(/Llaaf)’ S
Yo ~ N(uz,03), 8 - I I
Y = (1-A)-Yi+A- Vs, - | milnnlln anllann
o 2 4 6

A € {0,1} with Pr(A =1) =«
Z = {y;}7_, is observed data

_ _ 2 2
0 = (m,01,02) = (7, 1, 07, p2, 03) A = {A;}, is unobserved data

If ¢g(z) is Gaussian density with parameters 6 = (u,0?) then

n

06;2,8) = (1—Aq)log[(L —m)¢o, (yi)] + Ailog(meba, ()]

1=1

7i(0) = E[A]0,Z] =

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 46



Mixture models
" A

il
Algorithm 8.1 EM Algorithm for Two-component Gaussian Mizture.

1. Take initial guesses for the parameters fiy, 6%, fio, 55,7 (see text).

2. FExpectation Step: compute the responsibilities

. oy, (Vi) .
i = - D ,1=1,2,...,N. .
EL G v v vy v L (8.42)

3. Mazximization Step: compute the weighted means and variances:

N A N o "
o 2= (L= %)y vo 2oima (1= 9)(yi — fun)?
Ml - N A Y 0-1 - N ~ )
Zi:l(l - 'Yi) Zi=1(1 - 'Yi)
N 4 N A N
o 2ai=1 Vil o Doim1 Yilyi — fi2)?
”2 - N R ) 0-2 — N N y

and the mixing probability # = Y~ | 4i/N.

4. Tterate steps 2 and 3 until convergence.

©Kevin Jamieson 2017 ©Kevin Jamieson 2017
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Gaussian Mixture Example: Start-——

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 48



After first iteration

©Kevin Jamieson 2017



After 2nd iteration

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 50



After 3rd iteration

©Kevin Jamieson 2017



After 4th iteration

©Kevin Jamieson 2017



After 5th iteration
" I

F Q‘
. H=0.322
doﬂ

__a-’

1

©Kevin Jamieson 2017 ©Kevin Jamieson 2017 53



After 6th iteration
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After 20th iteration
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Some Bio Assay data
" JE

- .
- L J
L ] .. * -
] - . » -
*a,
v - . 'V;
L J - - L
I-=. . . “". }'. -
co Tk RN
.!'. . .:.%;:.:.
® -
» - ’ ; ”'.':.
SR RIS I
@
L ehen U
: s - N *%° - -
¢ . e - .: .t
L] ... . " '-.l.. I. .
- s * . e a
- s . -
&."- . s * a o .. - -
. - ®
L :a .o oog.‘.'e:& ..' .
-.- ." # 0.
.c.: ‘.ﬁ ‘.’1:’
% -5. oo
oty WY
*®
.,

©Kevin Jamieson 2017 ©Kevin Jamieson 2017

56



GMM clustering of the assay data
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Resulting
Density
Estimator




Expectation Maximization Algorithm
" S

The iterative gaussian mixture model (GMM) fitting algorithm is special case of EM:

Algorithm 8.2 The EM Algorithm.

1. Start with initial guesses for the parameters 6, Z is observed data

A is unobserved data

T = (Z,A)

2. FExpectation Step: at the jth step, compute
Q(0',69)) = E(6o(0'; T)|Z,69)) (8.43)
as a function of the dummy argument ¢’.

3. Mazimization Step: determine the new estimate 0U+1) as the maxi-
mizer of Q(6’,00)) over @'

4. Tterate steps 2 and 3 until convergence.
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Density Estimation
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Kernel Density Estimation
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f(x) = E QU (L5 oy X)) A very “lazy” GMM
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Kernel Density Estimation
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Kernel Density Estimation

No CHD CHD Combined

. What is the Bayes
e optimal classification
P rule?
R R 'EE
e T ! 4lo 5Io °I° ) 2Io alo 4]0 slo elo ) 20 30 40 50 60 A &m¢(x'l,; ﬂm, Em)
o Age Age sz —_

= —r— —
Zk:l ak¢($i; Mk Zk)
Predict arg max,,, 7im
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Generative vs Discriminative
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