
Practice

 1©2017 Kevin Jamieson

• Fill in the missing plots:

X

J = I � 11T /n

Z

VSVT = eig(⌃)

⌃ = XTJJX = ZTJJZ

µX = XT1/n µZ = ZT1/n

VS�1/2VT (µX � µZ)µX � µZ

Milestone 0
Appendix

THEIR
O

JX u5vT
extend

ith T
Hz

SVT

2 Eat
vs ihutg xyi.us The's'it
Tf UT
din

©Kevin Jamieson 2018 2

Matrix Completion

Machine Learning – CSE546
Kevin Jamieson
University of Washington

November 15, 2016
©Kevin Jamieson 2018

WUT UTU V
T

 3

Singular Value Decomposition (SVD)

©2018 Kevin Jamieson

Theorem (SVD): LetA 2 Rm⇥n with rank r min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

ATAvi =

AATui =

S2
i,ivi

S2
i,iui

V are the first r eigenvectors of ATA with eigenvalues diag(S)
U are the first r eigenvectors of AAT with eigenvalues diag(S)

U = [u1, . . . , ur] V = [v1, . . . , vr]

 4

Singular Value Decomposition (SVD)

©2018 Kevin Jamieson

Theorem (SVD): LetA 2 Rm⇥n with rank r min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

U = [u1, . . . , ur] V = [v1, . . . , vr] S = diag(s1, . . . , sr)

s1 � s2 � · · · � srA =
rX

k=1

ukv
T
k sk

Best rank-1 approximation � > 0 and unit vectors x 2 Rm, y 2 Rn minimizes:
k�xyT �Ak2F=

 5

Singular Value Decomposition (SVD)

©2018 Kevin Jamieson

Theorem (SVD): LetA 2 Rm⇥n with rank r min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

U = [u1, . . . , ur] V = [v1, . . . , vr] S = diag(s1, . . . , sr)

s1 � s2 � · · · � srA =
rX

k=1

ukv
T
k sk

Best rank-1 approximation � > 0 and unit vectors x 2 Rm, y 2 Rn minimizes:
k�xyT �Ak2F=

k�xyT �Ak2F = �2 +Tr(ATA)� 2�xTAy

= �2 +

rX

k=1

s2k

!
� 2�

rX

k=1

xTukv
T
k y sk

!

 6

Singular Value Decomposition (SVD)

©2018 Kevin Jamieson

Theorem (SVD): LetA 2 Rm⇥n with rank r min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

U = [u1, . . . , ur] V = [v1, . . . , vr] S = diag(s1, . . . , sr)

s1 � s2 � · · · � srA =
rX

k=1

ukv
T
k sk

pX

k=1

uiv
T
i si = arg min

Z:rank(Z)=p
kZ�Ak2FIn general:

Matrix completion

 7

17,700 movies, 480,189 users, 99,072,112 ratings (Sparsity: 1.2%)

Given historical data on how users rated movies in past:

Predict how the same users will rate movies in the future (for $1 million prize)
O

IIF

M n s d mtn

0012 un d men learning is possible

Matrix completion

 8

n movies, m users, |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T)i,j � si,j ||22

How do we solve it? With full information?

Matrix completion

 9

n movies, m users, |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T)i,j � si,j ||220
User i gets assigned Ui CRd
movie j g CRd

Predict user i will rak movie j as uitvj

fuvtli.jki.ITyelgfuiVs SijY I 2egvgluitu si

v vi Ju 2 visa

Matrix completion

 10

n movies, m users, |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T)i,j � si,j ||22

Practical techniques to solve:
- Alternating minimization (Fix U, minimize V. Then fix V and minimize U)
- Stochastic gradient descent on U, V
- Nuclear norm regularization (convex)

©Kevin Jamieson 2018 11

Clustering 
K-means

Machine Learning – CSE546
Kevin Jamieson
University of Washington

November 15, 2016
©Kevin Jamieson 2018

©Kevin Jamieson 2018

Clustering images

 12[Goldberger et al.]

Set of Images

©Kevin Jamieson 2018

©Kevin Jamieson 2018

Clustering web search results

 13©Kevin Jamieson 2018

©Kevin Jamieson 2018

Some Data

 14©Kevin Jamieson 2018

©Kevin Jamieson 2018

K-means

1. Ask user how many
clusters they’d like.
(e.g. k=5)

 15©Kevin Jamieson 2018

©Kevin Jamieson 2018

K-means

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

 16©Kevin Jamieson 2018

©Kevin Jamieson 2018

K-means

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to. (Thus
each Center “owns”
a set of datapoints)

 17©Kevin Jamieson 2018

©Kevin Jamieson 2018

K-means

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns

 18©Kevin Jamieson 2018

©Kevin Jamieson 2018

K-means

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns…

5. …and jumps there

6. …Repeat until
terminated!

 19©Kevin Jamieson 2018

©Kevin Jamieson 2018

K-means

■ Randomly initialize k centers
 µ(0) = µ1

(0),…, µk
(0)

■ Classify: Assign each point j∈{1,…N} to nearest
center:

■ Recenter: µi becomes centroid of its point:

Equivalent to µi ← average of its points!
 20©Kevin Jamieson 2018

©Kevin Jamieson 2018

Does K-means converge??? Part 1

■ Optimize potential function:

■ Fix µ, optimize C

 21©Kevin Jamieson 2018

©Kevin Jamieson 2018

Does K-means converge??? Part 2

■ Optimize potential function:

■ Fix C, optimize µ

 22©Kevin Jamieson 2018

0

Vector Quantization, Fisher Vectors

 23

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

Vector Quantization (for compression)

DODD

Vector Quantization, Fisher Vectors

 24

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

Vector Quantization (for compression)

Vector Quantization, Fisher Vectors

 25

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

Similar reduced representation can be used as a feature vector

Vector Quantization (for compression)

Coates, Ng, Learning Feature Representations with K-means, 2012

Typical output of k-means
on patches

Spectral Clustering

 26

Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct:
- k-nearest neighbor graph with weights in {0,1}
- weighted graph with arbitrary similarities

Di,i =
nX

j=1

Wi,j L = D�W

Wi,j = e��||xi�xj ||2

Let f 2 Rn be a
function over the nodes

Spectral Clustering

 27

Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct:
- k-nearest neighbor graph with weights in {0,1}
- weighted graph with arbitrary similarities

Di,i =
nX

j=1

Wi,j L = D�W

Wi,j = e��||xi�xj ||2

Let f 2 Rn be a
function over the nodes

Spectral Clustering

 28

Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct:
- (k=10)-nearest neighbor graph with  

weights in {0,1}

Di,i =
nX

j=1

Wi,j L = D�W

tj o

©Kevin Jamieson 2017 29

Mixtures of
Gaussians

Machine Learning – CSE546
Kevin Jamieson
University of Washington

November 15, 2016
©Kevin Jamieson 2017

©Kevin Jamieson 2017 30

(One) bad case for k-means

■ Clusters may overlap
■ Some clusters may be

“wider” than others

©Kevin Jamieson 2017

©Kevin Jamieson 2017 31

(One) bad case for k-means

■ Clusters may overlap
■ Some clusters may be

“wider” than others

©Kevin Jamieson 2017

©Kevin Jamieson 2017 32

Mixture models

©Kevin Jamieson 2017

Y

`(✓;Z) =
nX

i=1

log[(1� ⇡)�✓1(yi) + ⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

94
e 5

I me ay Z l fo z

©Kevin Jamieson 2017 33

Mixture models

©Kevin Jamieson 2017

Y

`(✓; yi,�i = 0) =

`(✓; yi,�i = 1) =

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

log u e Iai exp
it

Zeke si yo

©Kevin Jamieson 2017 34

Mixture models

©Kevin Jamieson 2017

Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

If we knew �, how would we choose ✓? compute IT MI
r r

e d Oz

©Kevin Jamieson 2017 35

Mixture models

©Kevin Jamieson 2017

Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

If we knew ✓, how would we choose �?

©Kevin Jamieson 2017 36

Mixture models

©Kevin Jamieson 2017

Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

�i(✓) = E[�i|✓,Z] =
tT0r ae

IT011 t c T OnlyMe

©Kevin Jamieson 2017 37

Mixture models

©Kevin Jamieson 2017

©Kevin Jamieson 2017 38

Gaussian Mixture Example: Start

©Kevin Jamieson 2017

©Kevin Jamieson 2017 39

After first iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 40

After 2nd iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 41

After 3rd iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 42

After 4th iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 43

After 5th iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 44

After 6th iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 45

After 20th iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 46

Some Bio Assay data

©Kevin Jamieson 2017

©Kevin Jamieson 2017 47

GMM clustering of the assay data

©Kevin Jamieson 2017

©Kevin Jamieson 2017 48

Resulting
Density
Estimator

©Kevin Jamieson 2017

