

- Fill in the missing plots:

$$
\Sigma=\mathbf{X}^{T} \mathbf{J J X}=\mathbf{Z}^{T} \mathbf{J J Z}
$$

$$
\begin{aligned}
& \mathbf{V S V}^{T}=\operatorname{eig}(\Sigma) \quad \mathbf{J}=I-\mathbf{1 1}^{T} / n \\
& \mu_{X}=\mathbf{X}^{T} \mathbf{1} / n \quad \mu_{Z}=\mathbf{Z}^{T} \mathbf{1} / n \\
& S X=U^{\prime \prime} S^{\top} \\
& (J x)^{\top}(J x) \\
& \begin{array}{l}
=X^{\top} J J^{\top} X \\
=V S^{1 / 2} S^{1 / 2} V^{\top}
\end{array} \\
& \begin{array}{l}
=X^{\top} J J^{\top} X \\
=V S^{1 / 2} S^{\prime / 2} V^{\top}
\end{array} \\
& =U S V^{\top}
\end{aligned}
$$

$$
\begin{aligned}
V_{d \times n}^{V S^{-1 / 2} V^{T}(J X)^{T}} & =V S^{-1 / 2} V^{T} V S^{1 / 2} U^{T} \\
& =V U^{T}
\end{aligned}
$$

$$
W V^{\top}=V U^{\top} U V^{\top}=V V^{\top}
$$

Matrix Completion

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 15, 2016

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\begin{aligned}
& \mathbf{U}=\left[u_{1}, \ldots, u_{r}\right] \quad \mathbf{V}=\left[v_{1}, \ldots, v_{r}\right] \\
& \mathbf{A}^{T} \mathbf{A} v_{i}=\mathbf{S}_{i, i}^{2} v_{i}
\end{aligned}
$$

$$
\mathbf{A A}^{T} u_{i}=\mathbf{S}_{i, i}^{2} u_{i}
$$

\mathbf{V} are the first r eigenvectors of $\mathbf{A}^{T} \mathbf{A}$ with eigenvalues $\operatorname{diag}(\mathbf{S})$
\mathbf{U} are the first r eigenvectors of $\mathbf{A} \mathbf{A}^{T}$ with eigenvalues $\operatorname{diag}(\mathbf{S})$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\begin{array}{lr}
\mathbf{U}=\left[u_{1}, \ldots, u_{r}\right] & \mathbf{V}=\left[v_{1}, \ldots, v_{r}\right] \\
\mathbf{A}=\sum^{r} u_{k} v_{k}^{T} s_{k} & \mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{r}\right) \\
s_{1} \geq s_{2} \geq \cdots \geq s_{r}
\end{array}
$$

Best rank-1 approximation $\sigma>0$ and unit vectors $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$ minimizes: $\left\|\sigma x y^{T}-\mathbf{A}\right\|_{F}^{2}=$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\begin{aligned}
& \mathbf{U}=\left[u_{1}, \ldots, u_{r}\right] \quad \mathbf{V}=\left[v_{1}, \ldots, v_{r}\right] \quad \mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{r}\right) \\
& \\
& \mathbf{A}=\sum^{r} u_{k} v_{k}^{T} s_{k}
\end{aligned}
$$

Best rank-1 approximation $\sigma>0$ and unit vectors $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$ minimizes:

$$
\begin{aligned}
\left\|\sigma x y^{T}-\mathbf{A}\right\|_{F}^{2} & =\sigma^{2}+\operatorname{Tr}\left(\mathbf{A}^{T} \mathbf{A}\right)-2 \sigma x^{T} \mathbf{A} y \\
& =\sigma^{2}+\left(\sum_{k=1}^{r} s_{k}^{2}\right)-2 \sigma\left(\sum_{k=1}^{r} x^{T} u_{k} v_{k}^{T} y s_{k}\right)
\end{aligned}
$$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$. Then $\mathbf{A}=\mathbf{U S V}^{T}$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^{T} \mathbf{U}=I, \mathbf{V}^{T} \mathbf{V}=I$.

$$
\begin{array}{ll}
\mathbf{U}=\left[u_{1}, \ldots, u_{r}\right] & \mathbf{V}=\left[v_{1}, \ldots, v_{r}\right]
\end{array} \quad \mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{r}\right) . ~\left(s_{1} \geq s_{2} \geq \cdots \geq s_{r} .\right.
$$

In general: $\quad \sum_{k=1}^{p} u_{i} v_{i}^{T} s_{i}=\arg \min _{\mathbf{Z}: \operatorname{rank}(\mathbf{Z})=p}\|\mathbf{Z}-\mathbf{A}\|_{F}^{2}$

Matrix completion

Given historical data on how users rated movies in past:
17,700 movies, 480,189 users, $99,072,112$ ratings
Predict how the same users will rate movies in the future (for $\$ 1$ million prize)

$$
m n \quad \gg d(m+n)
$$

$.0012 m n \gg d(m+n) \Rightarrow$ learning is possible

Matrix completion

n movies, m users, $|S|$ ratings

$$
\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\arg \min } \sum_{(i, j, s) \in \mathcal{S}}\left\|\left(U V^{T}\right)_{i, j}-s_{i, j}\right\|_{2}^{2}
$$

How do we solve it? With full information?

Matrix completion
n movies, m users, $|S|$ ratings

$$
\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\arg \min } \sum_{(i, j, s) \in \mathcal{S}}\|\left(U V^{T}\right)_{i, j} \underbrace{}_{i, j, j}\|_{2}^{2}
$$

user i gets assigned $u_{i} \in \mathbb{R}^{d}$
movie j " ${ }^{\prime} v_{j} \in \mathbb{R}^{d}$
Predict user i will rate movie j as $u_{i}{ }^{\Gamma} V_{j}$

$$
\begin{aligned}
\nabla_{u i} \sum_{j:(i, j) \in S} \|\left(u_{i}^{\top} v_{j}-s_{i, j}\right)^{2} & =\sum_{i:(i, j) \in \mathcal{S}_{j}} 2 v_{j}\left(u_{i}^{\top} v_{j}-S_{i, j}\right)=\left(U V^{\top}\right)_{i, j} \\
& \Rightarrow\left(\sum v_{j} v_{j}^{\top}\right) u_{i}=\sum v_{j} S_{i, j} .
\end{aligned}
$$

Matrix completion

n movies, m users, $|S|$ ratings

$$
\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\arg \min } \sum_{(i, j, s) \in \mathcal{S}}\left\|\left(U V^{T}\right)_{i, j}-s_{i, j}\right\|_{2}^{2}
$$

Practical techniques to solve:

- Alternating minimization (Fix U, minimize V . Then fix V and minimize U)
- Stochastic gradient descent on U, V
- Nuclear norm regularization (convex)

Clustering K-means

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 15, 2016

Clustering images

Clustering web search results

（Clesty）web news images wikipedia blogs jobs more» \quad Search | advanced |
| :--- |
| preferences |

clusters sources sites

All Results（238）
－Car（28）
\uparrow Race cars（7）
\oplus Photos，Races Scheduled（5）
－Game（4）
－Track（3）
－Nascar ${ }_{(2)}$
－Equipment And Safety（2）
－Other Topics（7）
（－）Photos（22）
\uparrow Game（14）
－Definition（13）
\uparrow Team（18）

－Human（8）

－Classification Of Human（2）
－Statement，Evolved（2）
－Other Topics（4）
\uparrow Weekend（8）
\uparrow Ethnicity And Race（7）
－Race for the Cure（8）
－Race Information（8） more｜all clusters

Cluster Human contains 8 documents．

1．Race（classification of human beings）－Wikipedia，the free ．．．㞓 Q
The term race or racial group usually refers to the concept of dividing humans into populations or groups on the basis of various sets of characteristics．The most widely used human racial categories are based on visible traits（especially skin color，cranial or facial features and hair texture），and self－identification．Conceptions of race，as well as specific ways of grouping races，vary by culture and over time，and are often controversial for scientific as well as social and political reasons．History • Modern debates • Political and
en．wikipedia．org／wiki／Race＿（classification＿of＿human＿beings）－［cache］－Live，Ask
2．Race－Wikipedia，the free encyclopedia 㞓 Q \＆
General．Racing competitions The Race（yachting race），or La course du millénaire，a no－rules round－the－world sailing event；Race（biology），classification of flora and fauna；Race（classification of human beings）Race and ethnicity in the United States Census，official definitions of＂race＂used by the US Census Bureau；Race and genetics，notion of racial classifications based on genetics．Historical definitions of race；Race（bearing），the inner and outer rings of a rolling－element bearing．RACE in molecular biology＂Rapid ．．．General • Surnames • Television－Music Literature－Video games
en．wikipedia．org／wiki／Race－［cache］－Live，Ask
3．Publications｜Human Rights Watch ह Q ©
The use of torture，unlawful rendition，secret prisons，unfair trials，．．．Risks to Migrants，Refugees，and Asylum Seekers in Egypt and Israel ．．．In the run－up to the Beijing Olympics in August 2008，
www．hrw．org／backgrounder／usa／race－［cache］－Ask
4．Amazon．com：Race：The Reality Of Human Differences：Vincent Sarich
㞓 9
Amazon．com：Race：The Reality Of Human Differences：Vincent Sarich，Frank Miele：Books ．．．From Publishers Weekly Sarich，a Berkeley emeritus anthropologist，and Miele，an editor ．． www．amazon．com／Race－Reality－Differences－Vincent－Sarich／dp／0813340861－［cache］－Live

5．AAPA Statement on Biological Aspects of Race 局 Q
AAPA Statement on Biological Aspects of Race ．．．Published in the American Journal of Physical Anthropology，vol．101，pp 569－570，1996 ．．．PREAMBLE As scientists who study human evolution and variation，
www．physanth．org／positions／race．html－［cache］－Ask
6．race：Definition from Answers．com 㞓 Q \＆
race n ．A local geographic or global human population distinguished as a more or less distinct group by genetically transmitted physical www．answers．com／topic／race－1－［cache］－Live

7．Dopefish．com 㞓 Q
Site for newbies as well as experienced Dopefish followers，chronicling the birth of the Dopefish，its numerous appearances in several computer games，and its eventual take－over of the human race．Maintained by Mr．Dopefish himself，Joe Siegler of Apogee Software．
www．dopefish．com－［cache］－Open Directory

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)

K-means

1. Ask user how many clusters they'd like.
(e.g. k=5)
2. Randomly guess k cluster Center locations

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns

 terminated!

K-means

- Randomly initialize k centers
$\square \mu^{(0)}=\mu_{1}(0), \ldots, \mu_{k}{ }^{(0)}$
- Classify: Assign each point $j \in\{1, \ldots \mathrm{~N}\}$ to nearest center:

$$
C^{(t)}(j) \leftarrow \arg \min _{i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Recenter: μ_{i} becomes centroid of its point:

$$
\mu_{i}^{(t+1)} \leftarrow \arg \min _{\mu} \sum_{j: C(j)=i}\left\|\mu-x_{j}\right\|^{2}
$$

\square Equivalent to $\mu_{\mathrm{i}} \leftarrow$ average of its points!

Does K-means converge??? Part 1

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix μ, optimize C

Does K-means converge??? Part 2

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix C, optimize μ

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890 - 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890-1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Vector Quantization, Fisher Vectors

Vector Quantization (for compression)

1. Represent image as grid of patches
2. Run k-means on the patches to build code book
3. Represent each patch as a code word.

FIGURE 14.9. Sir Ronald A. Fisher (1890-1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Typical output of k-means on patches

Similar reduced representation can be used as a feature vector
Coates, Ng, Learning Feature Representations with K-means, 2012

Spectral Clustering

Adjacency matrix: W

$$
\begin{aligned}
& \mathbf{W}_{i, j}=\text { weight of edge }(i, j) \\
& \mathbf{D}_{i, i}=\sum_{j=1}^{n} \mathbf{W}_{i, j} \quad \mathbf{L}=\mathbf{D}-\mathbf{W}
\end{aligned}
$$

Given feature vectors, could construct:

- k-nearest neighbor graph with weights in $\{0,1\}$
- weighted graph with arbitrary similarities $\mathbf{W}_{i, j}=e^{-\gamma\left\|x_{i}-x_{j}\right\|^{2}}$

Let $f \in \mathbb{R}^{n}$ be a function over the nodes

$$
\begin{aligned}
\mathbf{f}^{T} \mathbf{L} \mathbf{f} & =\sum_{i=1}^{N} g_{i} f_{i}^{2}-\sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} f_{i} f_{i^{\prime}} w_{i i^{\prime}} \\
& =\frac{1}{2} \sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} w_{i i^{\prime}}\left(f_{i}-f_{i^{\prime}}\right)^{2}
\end{aligned}
$$

Spectral Clustering

Adjacency matrix: W

$$
\begin{aligned}
& \mathbf{W}_{i, j}=\text { weight of edge }(i, j) \\
& \mathbf{D}_{i, i}=\sum_{j=1}^{n} \mathbf{W}_{i, j} \quad \mathbf{L}=\mathbf{D}-\mathbf{W}
\end{aligned}
$$

Given feature vectors, could construct:

- k-nearest neighbor graph with weights in $\{0,1\}$
- weighted graph with arbitrary similarities $\mathbf{W}_{i, j}=e^{-\gamma\left\|x_{i}-x_{j}\right\|^{2}}$

Spectral Clustering

Adjacency matrix: W

$$
\begin{aligned}
& \frac{\mathbf{W}_{i, j}}{\mathbf{D}_{i, i}}=\sum_{j=1}^{n} \mathbf{W}_{i, j} \quad \mathbf{L}=\mathbf{i g h t} \text { of edge }(i, j) \\
& \mathbf{D}_{i, j}=0
\end{aligned}
$$

Given feature vectors, could construct:

- ($\mathrm{k}=10$)-nearest neighbor graph with weights in $\{0,1\}$

Mixtures of Gaussians

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 15, 2016

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta)=1)=\pi \\
\oint_{\left(\mu, \delta^{\prime}\right)}(x) & =\frac{1}{\sqrt{2 \pi d^{2}}} e^{-\frac{(x-\mu)}{28^{2}}}
\end{aligned}
$$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\begin{aligned}
& \ell(\theta ; \mathbf{Z})=\sum_{i=1}^{n} \log \left[\left(\underline{\left.(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)+\pi \phi_{\theta_{2}}\left(y_{i}\right)\right]}\right.\right. \\
& \widehat{\theta}_{\text {MLLE }}=\operatorname{aymax}_{\theta} \ell(\theta ; z)
\end{aligned}
$$

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data
$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\begin{aligned}
& \ell\left(\theta ; y_{i}, \Delta_{i}=0\right)=\log \left((1-\pi) \frac{1}{\sqrt{\left.2 \pi_{0}\right)_{1}^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma_{1}^{2}}\right)\right. \\
& \ell\left(\theta ; y_{i}, \Delta_{i}=1\right)=\log (\pi \cdots) \\
& \sum \ell\left(\theta ; \Delta_{i}, v_{c}\right)
\end{aligned}
$$

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data

$$
\theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)
$$

$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\ell(\theta ; \mathbf{Z}, \boldsymbol{\Delta})=\sum_{i=1}^{n}\left(1-\Delta_{i}\right) \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)\right]+\Delta_{i} \log \left(\pi \phi_{\theta_{2}}\left(y_{i}\right)\right]
$$

If we knew Δ, how would we choose θ ?
compute

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right) \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data

$$
\theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)
$$

$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\ell(\theta ; \mathbf{Z}, \boldsymbol{\Delta})=\sum_{i=1}^{n}\left(1-\Delta_{i}\right) \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)\right]+\Delta_{i} \log \left(\pi \phi_{\theta_{2}}\left(y_{i}\right)\right]
$$

If we knew θ, how would we choose $\boldsymbol{\Delta}$?

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data
$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\begin{aligned}
& \ell(\theta ; \mathbf{Z}, \mathbf{\Delta})=\sum_{i=1}^{n}\left(1-\Delta_{i}\right) \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)\right]+\Delta_{i} \log \left(\pi \phi_{\theta_{2}}\left(y_{i}\right)\right] \\
& \gamma_{i}(\theta)=\mathbb{E}\left[\Delta_{i} \mid \theta, \mathbf{Z}\right]=\frac{\bar{\iota} \phi_{\mu_{i} \alpha_{2}}\left(y_{i}\right)}{\sqrt{ } \phi_{\mu_{k}}\left(y_{i}\right)+(1-\pi) \phi_{\mu_{1}}\left(y_{i}\right)}
\end{aligned}
$$

Mixture models

Algorithm 8.1 EM Algorithm for Two-component Gaussian Mixture.

1. Take initial guesses for the parameters $\hat{\mu}_{1}, \hat{\sigma}_{1}^{2}, \hat{\mu}_{2}, \hat{\sigma}_{2}^{2}, \hat{\pi}$ (see text).
2. Expectation Step: compute the responsibilities

$$
\begin{equation*}
\hat{\gamma}_{i}=\frac{\hat{\pi} \phi_{\hat{\theta}_{2}}\left(y_{i}\right)}{(1-\hat{\pi}) \phi_{\hat{\theta}_{1}}\left(y_{i}\right)+\hat{\pi} \phi_{\hat{\theta}_{2}}\left(y_{i}\right)}, i=1,2, \ldots, N . \tag{8.42}
\end{equation*}
$$

3. Maximization Step: compute the weighted means and variances:

$$
\begin{aligned}
\hat{\mu}_{1}=\frac{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right) y_{i}}{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)}, & \hat{\sigma}_{1}^{2}=\frac{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)\left(y_{i}-\hat{\mu}_{1}\right)^{2}}{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)}, \\
\hat{\mu}_{2}=\frac{\sum_{i=1}^{N} \hat{\gamma}_{i} y_{i}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}, & \hat{\sigma}_{2}^{2}=\frac{\sum_{i=1}^{N} \hat{\gamma}_{i}\left(y_{i}-\hat{\mu}_{2}\right)^{2}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}
\end{aligned}
$$

and the mixing probability $\hat{\pi}=\sum_{i=1}^{N} \hat{\gamma}_{i} / N$.
4. Iterate steps 2 and 3 until convergence.

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

\square

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data.

Resulting

 DensityEstimator

