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• Fill in the missing plots:

X

J = I � 11T /n

Z

VSVT = eig(⌃)

⌃ = XTJJX = ZTJJZ

µX = XT1/n µZ = ZT1/n

VS�1/2VT (µX � µZ)µX � µZ
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Singular Value Decomposition (SVD)
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Theorem (SVD): LetA 2 Rm⇥n with rank r  min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

ATAvi =

AATui =

S2
i,ivi

S2
i,iui

V are the first r eigenvectors of ATA with eigenvalues diag(S)
U are the first r eigenvectors of AAT with eigenvalues diag(S)

U = [u1, . . . , ur] V = [v1, . . . , vr]
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Singular Value Decomposition (SVD)

©2018 Kevin Jamieson

Theorem (SVD): LetA 2 Rm⇥n with rank r  min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

U = [u1, . . . , ur] V = [v1, . . . , vr] S = diag(s1, . . . , sr)

s1 � s2 � · · · � srA =
rX

k=1

ukv
T
k sk

Best rank-1 approximation � > 0 and unit vectors x 2 Rm, y 2 Rn minimizes:
k�xyT �Ak2F=
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Singular Value Decomposition (SVD)
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Theorem (SVD): LetA 2 Rm⇥n with rank r  min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

U = [u1, . . . , ur] V = [v1, . . . , vr] S = diag(s1, . . . , sr)

s1 � s2 � · · · � srA =
rX

k=1

ukv
T
k sk

Best rank-1 approximation � > 0 and unit vectors x 2 Rm, y 2 Rn minimizes:
k�xyT �Ak2F=

k�xyT �Ak2F = �2 +Tr(ATA)� 2�xTAy

= �2 +

 
rX

k=1

s2k

!
� 2�

 
rX

k=1

xTukv
T
k y sk
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Singular Value Decomposition (SVD)
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Theorem (SVD): LetA 2 Rm⇥n with rank r  min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

U = [u1, . . . , ur] V = [v1, . . . , vr] S = diag(s1, . . . , sr)

s1 � s2 � · · · � srA =
rX

k=1

ukv
T
k sk

pX

k=1

uiv
T
i si = arg min

Z:rank(Z)=p
kZ�Ak2FIn general:



Matrix completion
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17,700 movies,  480,189 users,  99,072,112 ratings (Sparsity: 1.2%)

Given historical data on how users rated movies in past:

Predict how the same users will rate movies in the future (for $1 million prize)
O

IIF

M n s d mtn

0012 un d men learning is possible



Matrix completion
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n movies,  m users,  |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T )i,j � si,j ||22

How do we solve it? With full information?



Matrix completion
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n movies,  m users,  |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T )i,j � si,j ||220
User i gets assigned Ui CRd
movie j g CRd

Predict user i will rak movie j as uitvj

fuvtli.jki.ITyelgfuiVs SijY I 2egvgluitu si

v vi Ju 2 visa



Matrix completion
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n movies,  m users,  |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T )i,j � si,j ||22

Practical techniques to solve: 
- Alternating minimization (Fix U, minimize V. Then fix V and minimize U) 
- Stochastic gradient descent on U, V 
- Nuclear norm regularization (convex) 
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Clustering images

 12[Goldberger et al.]

Set of Images
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Clustering web search results
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Some Data
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints)
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. 

4. Each Center finds 
the centroid of the 
points it owns
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. 

4. Each Center finds 
the centroid of the 
points it owns… 

5. …and jumps there 

6. …Repeat until 
terminated!
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K-means

■ Randomly initialize k centers 
 µ(0) = µ1

(0),…, µk
(0) 

■ Classify: Assign each point j∈{1,…N} to nearest 
center: 

  

■ Recenter: µi becomes centroid of its point: 
   

Equivalent to µi ← average of its points!
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Does K-means converge??? Part 1

■ Optimize potential function: 

■ Fix µ, optimize C
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Does K-means converge??? Part 2

■ Optimize potential function: 

■ Fix C, optimize µ

 22©Kevin Jamieson 2018

0



Vector Quantization, Fisher Vectors
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1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Vector Quantization (for compression)

DODD



Vector Quantization, Fisher Vectors
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1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Vector Quantization (for compression)



Vector Quantization, Fisher Vectors
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1. Represent image as grid of patches 
2. Run k-means on the patches to build code book 
3. Represent each patch as a code word. 

Similar reduced representation can be used as a feature vector

Vector Quantization (for compression)

Coates, Ng, Learning Feature Representations with K-means, 2012

Typical output of k-means  
on patches



Spectral Clustering
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Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct: 
- k-nearest neighbor graph with weights in {0,1} 
- weighted graph with arbitrary similarities

Di,i =
nX

j=1

Wi,j L = D�W

Wi,j = e��||xi�xj ||2

Let f 2 Rn be a
function over the nodes



Spectral Clustering
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Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct: 
- k-nearest neighbor graph with weights in {0,1} 
- weighted graph with arbitrary similarities

Di,i =
nX

j=1

Wi,j L = D�W

Wi,j = e��||xi�xj ||2

Let f 2 Rn be a
function over the nodes



Spectral Clustering

 28

Adjacency matrix: W

Wi,j = weight of edge (i, j)

Given feature vectors, could construct: 
- (k=10)-nearest neighbor graph with  

weights in {0,1}

Di,i =
nX

j=1

Wi,j L = D�W

tj o
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(One) bad case for k-means

■ Clusters may overlap 
■ Some clusters may be 

“wider” than others

©Kevin Jamieson 2017
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■ Clusters may overlap 
■ Some clusters may be 

“wider” than others
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Mixture models
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Y

`(✓;Z) =
nX

i=1

log[(1� ⇡)�✓1(yi) + ⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

94
e 5

I me ay Z l fo z
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Mixture models
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Y

`(✓; yi,�i = 0) =

`(✓; yi,�i = 1) =

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

log u e Iai exp
it

Zeke si yo
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Mixture models
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Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

If we knew �, how would we choose ✓? compute IT MI
r r

e d Oz
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Mixture models
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Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

If we knew ✓, how would we choose �?
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Mixture models
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Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

�i(✓) = E[�i|✓,Z] =
tT0r ae

IT011 t c T OnlyMe
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Mixture models
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Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Some Bio Assay data
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GMM clustering of the assay data
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Resulting 
Density 
Estimator
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