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• HW3 Due tonight 

• HW4 posted 

• No class Thursday (Thanksgiving)
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Mixtures of 
Gaussians
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Mixture models

©Kevin Jamieson 2017

Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

�i(✓) = E[�i|✓,Z] =
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Mixture models
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Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration

©Kevin Jamieson 2017



©Kevin Jamieson 2017  8

After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Some Bio Assay data
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GMM clustering of the assay data
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Resulting 
Density 
Estimator
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Expectation Maximization Algorithm

©Kevin Jamieson 2017

Observe data x1, . . . , xn drawn from a distribution p(·|✓⇤) for some ✓⇤ 2 ⇥

b✓MLE = argmax
✓

nX

i=1

log(p(xi|✓))

(Jensen’s inequality, log() is concave)

Does not depend on θ!

(Introduce dummy distribution qi, variable θ’)

(Introduce hidden data zi)

nX

i=1

log(p(xi|✓)) =
nX

i=1

log

0

@
X

j

p(xi, zi = j|✓)

1

A

=
nX

i=1

log

0

@
X

j

qi(zi = j|✓0)p(xi, zi = j|✓)
qi(zi = j|✓0)

1

A

�
nX

i=1

X

j

qi(zi = j|✓0) log
✓
p(xi, zi = j|✓)
qi(zi = j|✓0)

◆

=
nX

i=1

X

j

qi(zi = j|✓0) log (p(xi, zi = j|✓)) +
nX

i=1

X

j

qi(zi = j|✓0) log( 1
qi(zi=j|✓0) )
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Expectation Maximization Algorithm

©Kevin Jamieson 2017

b✓MLE = argmax
✓

nX

i=1

log(p(xi|✓))

Observe dataX = [x1, . . . , xn] drawn from a distribution p(·|✓⇤) for some ✓⇤ 2 ⇥

nX

i=1

log(p(xi|✓)) �
nX

i=1

X

j

qi(zi = j|✓0) log (p(xi, zi = j|✓))

True for any choice of ✓0 and distribution qi(zi = j|✓0)

Set qi(zi = j|✓0) = p(zi = j|✓0,X)
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Expectation Maximization Algorithm

©Kevin Jamieson 2017

Observe data x1, . . . , xn drawn from a distribution p(·|✓⇤) for some ✓⇤ 2 ⇥

b✓MLE = argmax
✓

nX

i=1

log(p(xi|✓))

Initial guess for         , for each step k:✓(0)

E-step: compute 

M-step: find ✓(k+1) = argmax
✓

Q(✓, ✓(k))

nX

i=1

log(p(xi|✓)) �
nX

i=1

X

j

p(zi = j|✓0,X) log (p(xi, zi = j|✓)) =: Q(✓, ✓0)

Q(✓, ✓(k)) =
nX

i=1

Ezi

h
log (p(xi, zi|✓))

���✓(k),X
i
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Expectation Maximization Algorithm

©Kevin Jamieson 2017

Initial guess for         , for each step k:✓(0)

E-step: compute 

M-step: find ✓(k+1) = argmax
✓

Q(✓, ✓(k))

Observe x1, . . . , xn ⇠ (1� ⇡)N (µ1,�2
1) + ⇡N (µ2,�2

2)Example:

zi = j if i is in mixture component j for j 2 {1, 2} ✓ = (⇡, µ1,�
2
1 , µ2,�

2
2)

Q(✓, ✓(k)) =
nX

i=1

Ezi

h
log (p(xi, zi|✓))

���✓(k),X
i

Ezi [log(p(xi, zi|✓)|✓(k),X]

= p(zi = 1|✓(k), xi) log
⇣
p(xi, zi = 1|✓)

⌘
+ p(zi = 2|✓(k), xi) log

⇣
p(xi, zi = 2|✓)

⌘

= p(zi = 1|✓(k), xi) log
⇣
p(xi|zi = 1, ✓)p(zi = 1|✓)

⌘
+ p(zi = 2|✓(k), xi) log

⇣
p(xi|zi = 2, ✓)p(zi = 2|✓)

⌘

= �(xi|µ(k)
1 ,�2

1
(k)

)

�(xi|µ(k)
1 ,�2

1
(k))+�(xi|µ(k)

2 ,�2
2
(k))

log
�
�(xi|µ1,�

2
1)(1� ⇡)

�
+ �(xi|µ(k)

2 ,�2
2
(k)

)

�(xi|µ(k)
1 ,�2

1
(k))+�(xi|µ(k)

2 ,�2
2
(k))

log
�
�(xi|µ2,�

2
2)⇡

�
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Expectation Maximization Algorithm
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- EM used to solve Latent Factor Models  
 
 
 
 

- Also used to solve missing data problems 
- Also known as Baum-Welch algorithm for Hidden Markov Models 
- In general, EM is non-convex so it can get stuck in local minima. 
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Density Estimation

Machine Learning – CSE546 
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Kernel Density Estimation
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A very “lazy” GMM
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Kernel Density Estimation
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Kernel Density Estimation
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Predict argmaxm brim

What is the Bayes 
optimal classification 
rule?
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Generative vs Discriminative
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Basic Text Modeling

Machine Learning – CSE4546 
Kevin Jamieson 
University of Washington 

November 20, 2017
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Bag of Words

 27

n documents/articles with lots of text 

Questions: 
- How to get a feature representation of each article? 
- How to cluster documents into topics? 

xi 2 RDith document:

xi,j = proportion of times jth word occurred in ith document

Bag of words model:
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Bag of Words

 28

n documents/articles with lots of text 

Questions: 
- How to get a feature representation of each article? 
- How to cluster documents into topics? 

xi 2 RDith document:

xi,j = proportion of times jth word occurred in ith document

Bag of words model:

Given vectors, run k-means or Gaussian mixture model to find k clusters/topics
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Nonnegative matrix factorization (NMF)

 29

Nonnegative  
Matrix factorization:

Also see latent Dirichlet factorization (LDA)

W 2 Rm⇥d
+ , H 2 Rn⇥d

+

A 2 Rm⇥n

d is number of topics

min kA�WH
T k2F

Ai,j = frequency of jth word in document i
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Nonnegative matrix factorization (NMF)

 30

Nonnegative  
Matrix factorization:

Also see latent Dirichlet factorization (LDA)

W 2 Rm⇥d
+ , H 2 Rn⇥d

+

A 2 Rm⇥n

d is number of topics

min kA�WH
T k2F

Ai,j = frequency of jth word in document i

Each column of H represents a cluster of a topic,
Each row W is some weights a combination of topics
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Previous section presented 
methods to embed documents 
into a latent space

Alternatively, we can 
embed words into a 
latent space

This embedding came from 
directly querying for 
relationships. 

word2vec is a popular 
unsupervised learning 
approach that just uses a text 
corpus (e.g. nytimes.com)

Word embeddings, word2vec
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Word embeddings, word2vec

 32

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



©Kevin Jamieson

Word embeddings, word2vec

 33

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Training neural network to predict co-occuring words. Use first layer weights as 
embedding, throw out output layer
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Word embeddings, word2vec

 34

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Training neural network to predict co-occuring words. Use first layer weights as 
embedding, throw out output layer

ehxants,ycari
X

i

ehxants,yii
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word2vec outputs

 35

slide: https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

king - man + woman = queen

country - capital
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TF*IDF

 36

n documents/articles with lots of text 

How to get a feature representation of each article? 

1. For each document d compute the proportion of times 
word t occurs out of all words in d, i.e. term frequency 

2. For each word t in your corpus, compute the proportion of 
documents out of n that the word t occurs, i.e., document frequency

3. Compute score for word t in document d as

TFd,t

DFt

TFd,t log(
1

DFt
)



http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Two Hearted Ale - Input ~2500 natural language reviews

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood



Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Two Hearted Ale - Weighted Bag of Words: 



Weighted count vector
for the ith beer:

zi 2 R400,000

Cosine distance:

d(zi, zj) = 1� zT
i zj

||zi|| ||zj ||

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Two Hearted Ale - Nearest Neighbors: 
Bear Republic Racer 5 
Avery IPA 
Stone India Pale Ale &#40;IPA&#41; 
Founders Centennial IPA 
Smuttynose IPA  
Anderson Valley Hop Ottin IPA 
AleSmith IPA 
BridgePort IPA 
Boulder Beer Mojo IPA 
Goose Island India Pale Ale 
Great Divide Titan IPA 
New Holland Mad Hatter Ale 
Lagunitas India Pale Ale 
Heavy Seas Loose Cannon Hop3 
Sweetwater IPA

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood



Find an embedding {x1, . . . , xn} ⇢ Rd such that

||xk � xi|| < ||xk � xj || whenever d(zk, zi) < d(zk, zj)

for all 100-nearest neighbors.

(107 constraints, 105 variables)

Solve with hinge loss and stochastic gradient descent.

Could have also used local-linear-embedding,
max-volume-unfolding, kernel-PCA, etc.

(20 minutes on my laptop) (d=2,err=6%) (d=3,err=4%)

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF
Embedding in 
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling

distance in 400,000
dimensional “word space”



Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions



Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Sanity check: styles 
should cluster together 
and similar styles 
should be close. 

IPA

Pale ale
Brown ale

Porter

Stout

Doppelbock

Belgian dark
Lambic

Wheat

Belgian light
Wit

Light lager

Pilsner

Amber
Blond



Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Sanity check: styles 
should cluster together 
and similar styles 
should be close. 

IPA

Pale ale
Brown ale

Porter

Stout

Doppelbock

Belgian dark
Lambic

Wheat

Belgian light
Wit

Light lager

Pilsner

Amber
Blond
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Feature generation for 
images

Machine Learning – CSE4546 
Kevin Jamieson 
University of Washington 

November 20, 2017
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Contains slides from…

■ LeCun & Ranzato 
■ Russ Salakhutdinov 
■ Honglak Lee 
■ Google images…

 45
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Convolution of images

 46

(Note to EEs: deep learning uses the word “convolution” 
to mean what is usually known as  “cross-correlation”, 
e.g., neither signal is flipped)

Slide credit: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Image I
Filter K

I ⇤K
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Convolution of images

 47

(Note to EEs: deep learning uses the word “convolution” 
to mean what is usually known as  “cross-correlation”, 
e.g., neither signal is flipped)

K

Image I

I ⇤K
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Convolution of images

filters Hk
convolved image
Hk ⇤X

flatten
into vector

2

64
vec(H1 ⇤X)
vec(H2 ⇤X)

...

3

75

Input image X
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Stacking convolved images

 49

64 filters

6

6

3 27

27
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Stacking convolved images

 50

64 filters

6

6

3 27

27

Apply Non-linearity to 
the output of each  
layer, Here: ReLu 
(rectified linear unit)

Other choices: sigmoid, arctan
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Pooling

 51

Pooling reduces the 
dimension and can be 
interpreted as “This filter had 
a high response in this 
general region”

27x27x64
14x14x64
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Pooling Convolution layer

 52

14x14x64

64 filters

6

6

3 27

27

MaxPool with 
2x2 filters 
and stride 2

Convolve 
with 64 6x6x3 filters
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Full feature pipeline

 53

14x14x64

64 filters

6

6

3 27

27

Convolve 
with 64 6x6x3 filters

MaxPool with 
2x2 filters 
and stride 2

Flatten into a single 
vector of size 
14*14*64=12544

How do we choose the filters? 
- Hand design them (digital signal processing, c.f. wavelets) 
- Learn them (deep learning)

How do we choose all the hyperparameters?
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Some hand-created image features
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SIFT Spin Image

RIFTHoG

Texton GLOH

Slide from Honglak Lee
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ML Street Fight

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

November 20, 2017
©Kevin Jamieson 2017
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Mini case study 

 56

Inspired by Coates and Ng (2012)

Input is CIFAR-10 dataset: 50000 examples of 32x32x3 images

1. Construct set of patches by random selection from images 
2. Standardize patch set (de-mean, norm 1, whiten, etc.) 
3. Run k-means on random patches 
4. Convolve each image with all patches (plus an offset) 
5. Push through ReLu 
6. Solve least squares for multiclass classification 
7. Classify with argmax
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Mini case study
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Methods of standardization:
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Mini case study

 58

Dealing with class imbalance:
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Mini case study

 59

Dealing with outliers:
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Mini case study

 60

Dealing with outliers:

argmin
↵

nX

i=1

`huber

0

@
X

j

k(xi, xj)↵j � yi

1

A+ �
X

i,j

↵i↵jk(xi, xj)argmin
↵

nX

i=1

0

@
X

j

k(xi, xj)↵j � yi

1

A
2

+ �
X

i,j

↵i↵jk(xi, xj)

`huber(z) =

(
1
2z

2 if |z|  1

|z|� 1
2 otherwise
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Mini case study
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Dealing with hyperparameters:
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Hyperparameter 
Optimization

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

November 20, 2017
©Kevin Jamieson 2017





Training set \Eval setNin = 784

Nout = 10
Nhid

hyperparameters

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

# hidden nodes Nhid 2 [101, 103]



hyperparameters

Nin = 784

Nout = 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

# hidden nodes Nhid 2 [101, 103]

Nhid
Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577 
0.182 
0.0436 
0.0919 
0.0575 
0.0765 
0.1196 
0.0834 
0.0242 
0.029

Hyperparameters Eval-loss

Eval set

bf



hyperparameters

Nin = 784

Nout = 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

# hidden nodes Nhid 2 [101, 103]

Nhid
Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577 
0.182 
0.0436 
0.0919 
0.0575 
0.0765 
0.1196 
0.0834 
0.0242 
0.029

Hyperparameters Eval-loss

Eval set

bf



hyperparameters

Nin = 784

Nout = 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

# hidden nodes Nhid 2 [101, 103]

Nhid
Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577 
0.182 
0.0436 
0.0919 
0.0575 
0.0765 
0.1196 
0.0834 
0.0242 
0.029

Hyperparameters Eval-loss

Eval set



Nin = 784

Nout = 10
Nhid

Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577 
0.182 
0.0436 
0.0919 
0.0575 
0.0765 
0.1196 
0.0834 
0.0242 
0.029

Hyperparameters Eval-loss

Eval set

How do we choose 
hyperparameters to train 

and evaluate?



How do we choose hyperparameters to train 
and evaluate?

Grid search:
Hyperparameters
on 2d uniform grid



How do we choose hyperparameters to train 
and evaluate?

Grid search:
Hyperparameters
on 2d uniform grid

Random search:
Hyperparameters
randomly chosen



How do we choose hyperparameters to train 
and evaluate?

Grid search:
Hyperparameters
on 2d uniform grid

Random search:
Hyperparameters
randomly chosen

Bayesian Optimization:
Hyperparameters

adaptively chosen

1

2

3

4

5

6

7
8

9

10

11
12

13

14
15

16



Bayesian Optimization:
Hyperparameters

adaptively chosen

1

2

3

4

5

6

7
8

9

10

11
12

13

14
15

16

How does it work?



(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577 
0.182 
0.0436 
0.0919 
0.0575 
0.0765 
0.1196 
0.0834 
0.0242 
0.029

Hyperparameters Eval-loss

epochs

ev
al

-lo
ss

How computation time 
was spent?

András György and Levente Kocsis. Efficient multi-start strategies for local search algorithms. JAIR, 41, 2011.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014. 

Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for computationally adaptive model selection. COLT, 2012. 

Domhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by 
extrapolation of learning curves. In IJCAI, 2015. 

Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. ICLR 2016.

Recent work attempts to speed up hyperparameter evaluation by 
stopping poor performing settings before they are fully trained.



Hyperparameter Optimization

In general, hyperparameter optimization is 
non-convex optimization and little is 
known about the underlying function (only 
observe validation loss)

Tools for different purposes:
- Very few evaluations: use random search (and pray) or be clever
- Few evaluations and long-running computations: see refs on last slide
- Moderate number of evaluations (but still exp(#params)) and high 

accuracy needed: use Bayesian Optimization
- Many evaluations possible: use random search. Why overthink it?

Your time is valuable, computers are cheap:  
Do not employ “grad student descent” for hyper parameter search.  
Write modular code that takes parameters as input and automate this 
embarrassingly parallel search. Use crowd resources (see pywren)


