Announcements

- HW3 Due tonight
- HW4 posted
- No class Thursday (Thanksgiving)

Mixtures of Gaussians

Machine Learning - CSE546

Kevin Jamieson
University of Washington
November 20, 2016

Mixture models

$$
\begin{aligned}
Y_{1} & \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y_{2} & \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \\
Y & =(1-\Delta) \cdot Y_{1}+\Delta \cdot Y_{2}, \\
\Delta & \in\{0,1\} \text { with } \operatorname{Pr}(\Delta=1)=\pi
\end{aligned}
$$

$\mathbf{Z}=\left\{y_{i}\right\}_{i=1}^{n}$ is observed data

$$
\theta=\left(\pi, \theta_{1}, \theta_{2}\right)=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)
$$

$\boldsymbol{\Delta}=\left\{\Delta_{i}\right\}_{i=1}^{n}$ is unobserved data

If $\phi_{\theta}(x)$ is Gaussian density with parameters $\theta=\left(\mu, \sigma^{2}\right)$ then

$$
\begin{aligned}
& \quad \ell(\theta ; \mathbf{Z}, \boldsymbol{\Delta})=\sum_{i=1}^{n}\left(1-\Delta_{i}\right) \log \left[(1-\pi) \phi_{\theta_{1}}\left(y_{i}\right)\right]+\Delta_{i} \log \left(\pi \phi_{\theta_{2}}\left(y_{i}\right)\right] \\
& \gamma_{i}(\theta)=\mathbb{E}\left[\Delta_{i} \mid \theta, \mathbf{Z}\right]=
\end{aligned}
$$

Mixture models

Algorithm 8.1 EM Algorithm for Two-component Gaussian Mixture.

1. Take initial guesses for the parameters $\hat{\mu}_{1}, \hat{\sigma}_{1}^{2}, \hat{\mu}_{2}, \hat{\sigma}_{2}^{2}, \hat{\pi}$ (see text).
2. Expectation Step: compute the responsibilities

$$
\begin{equation*}
\hat{\gamma}_{i}=\frac{\hat{\pi} \phi_{\hat{\theta}_{2}}\left(y_{i}\right)}{(1-\hat{\pi}) \phi_{\hat{\theta}_{1}}\left(y_{i}\right)+\hat{\pi} \phi_{\hat{\theta}_{2}}\left(y_{i}\right)}, i=1,2, \ldots, N . \tag{8.42}
\end{equation*}
$$

3. Maximization Step: compute the weighted means and variances:

$$
\begin{aligned}
\hat{\mu}_{1}=\frac{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right) y_{i}}{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)}, & \hat{\sigma}_{1}^{2}=\frac{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)\left(y_{i}-\hat{\mu}_{1}\right)^{2}}{\sum_{i=1}^{N}\left(1-\hat{\gamma}_{i}\right)}, \\
\hat{\mu}_{2}=\frac{\sum_{i=1}^{N} \hat{\gamma}_{i} y_{i}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}, & \hat{\sigma}_{2}^{2}=\frac{\sum_{i=1}^{N} \hat{\gamma}_{i}\left(y_{i}-\hat{\mu}_{2}\right)^{2}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}
\end{aligned}
$$

and the mixing probability $\hat{\pi}=\sum_{i=1}^{N} \hat{\gamma}_{i} / N$.
4. Iterate steps 2 and 3 until convergence.

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data.

Resulting

 DensityEstimator

Expectation Maximization Algorithm

Observe data x_{1}, \ldots, x_{n} drawn from a distribution $p\left(\cdot \mid \theta_{*}\right)$ for some $\theta_{*} \in \Theta$

$$
\begin{gathered}
\widehat{\theta}_{M L E}=\arg \max _{\theta} \sum_{i=1}^{n} \log \left(p\left(x_{i} \mid \theta\right)\right) \\
\sum_{i=1}^{n} \log \left(p\left(x_{i} \mid \theta\right)\right)= \\
=\sum_{i=1}^{n} \log \left(\sum_{j} p\left(x_{i}, z_{i}=j \mid \theta\right)\right) \quad \quad \text { (Introduce hidden data zi) } \\
=\sum_{i=1}^{n} \log \left(\sum_{j} q_{i}\left(z_{i}=j \mid \theta^{\prime}\right) \frac{p\left(x_{i}, z_{i}=j \mid \theta\right)}{q_{i}\left(z_{i}=j \mid \theta^{\prime}\right)}\right) \quad \text { (Introduce dummy distribution qi, variable } \theta^{\prime} \text {) } \\
\geq \\
=\sum_{i=1}^{n} \sum_{j}^{n} q_{i}\left(z_{i}=j \mid \theta^{\prime}\right) \log \left(\frac{p\left(x_{i}, z_{i}=j \mid \theta\right)}{q_{i}\left(z_{i}=j \mid \theta^{\prime}\right)}\right) \quad \quad \text { (Jensen's inequality, log() is concave) } \\
\\
=\sum_{i=1}^{n} q_{i}\left(z_{i}=j \mid \theta^{\prime}\right) \log \left(p\left(x_{i}, z_{i}=j \mid \theta\right)\right)+\sum_{i=1}^{n} \sum_{j} q_{i}\left(z_{i}=j \mid \theta^{\prime}\right) \log \left(\frac{1}{q_{i}\left(z_{i}=j \mid \theta^{\prime}\right)}\right)
\end{gathered}
$$

Expectation Maximization Algorithm

Observe data $\mathbf{X}=\left[x_{1}, \ldots, x_{n}\right]$ drawn from a distribution $p\left(\cdot \mid \theta_{*}\right)$ for some $\theta_{*} \in \Theta$

$$
\widehat{\theta}_{M L E}=\arg \max _{\theta} \sum_{i=1}^{n} \log \left(p\left(x_{i} \mid \theta\right)\right)
$$

$$
\sum_{i=1}^{n} \log \left(p\left(x_{i} \mid \theta\right)\right) \geq \sum_{i=1}^{n} \sum_{j} q_{i}\left(z_{i}=j \mid \theta^{\prime}\right) \log \left(p\left(x_{i}, z_{i}=j \mid \theta\right)\right)
$$

True for any choice of θ^{\prime} and distribution $q_{i}\left(z_{i}=j \mid \theta^{\prime}\right)$

$$
\text { Set } q_{i}\left(z_{i}=j \mid \theta^{\prime}\right)=p\left(z_{i}=j \mid \theta^{\prime}, \mathbf{X}\right)
$$

Expectation Maximization Algorithm

Observe data x_{1}, \ldots, x_{n} drawn from a distribution $p\left(\cdot \mid \theta_{*}\right)$ for some $\theta_{*} \in \Theta$

$$
\widehat{\theta}_{M L E}=\arg \max _{\theta} \sum_{i=1}^{n} \log \left(p\left(x_{i} \mid \theta\right)\right)
$$

$$
\sum_{i=1}^{n} \log \left(p\left(x_{i} \mid \theta\right)\right) \geq \sum_{i=1}^{n} \sum_{j} p\left(z_{i}=j \mid \theta^{\prime}, \mathbf{X}\right) \log \left(p\left(x_{i}, z_{i}=j \mid \theta\right)\right)=: Q\left(\theta, \theta^{\prime}\right)
$$

Initial guess for $\theta^{(0)}$, for each step k :
E-step: compute

$$
Q\left(\theta, \theta^{(k)}\right)=\sum_{i=1}^{n} \mathbb{E}_{z_{i}}\left[\log \left(p\left(x_{i}, z_{i} \mid \theta\right)\right) \mid \theta^{(k)}, \mathbf{X}\right]
$$

M-step: find

$$
\theta^{(k+1)}=\arg \max _{\theta} Q\left(\theta, \theta^{(k)}\right)
$$

Expectation Maximization Algorithm

Initial guess for $\theta^{(0)}$, for each step k :
E-step: compute

M-step: find

$$
\begin{aligned}
& Q\left(\theta, \theta^{(k)}\right)=\sum_{i=1}^{n} \mathbb{E}_{z_{i}}\left[\log \left(p\left(x_{i}, z_{i} \mid \theta\right)\right) \mid \theta^{(k)}, \mathbf{X}\right] \\
& \theta^{(k+1)}=\arg \max _{\theta} Q\left(\theta, \theta^{(k)}\right)
\end{aligned}
$$

Example: Observe $x_{1}, \ldots, x_{n} \sim(1-\pi) \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+\pi \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$
$z_{i}=j$ if i is in mixture component j for $j \in\{1,2\} \quad \theta=\left(\pi, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)$

$$
\begin{aligned}
& \mathbb{E}_{z_{i}}\left[\log \left(p\left(x_{i}, z_{i} \mid \theta\right) \mid \theta^{(k)}, \mathbf{X}\right]\right. \\
& =p\left(z_{i}=1 \mid \theta^{(k)}, x_{i}\right) \log \left(p\left(x_{i}, z_{i}=1 \mid \theta\right)\right)+p\left(z_{i}=2 \mid \theta^{(k)}, x_{i}\right) \log \left(p\left(x_{i}, z_{i}=2 \mid \theta\right)\right) \\
& =p\left(z_{i}=1 \mid \theta^{(k)}, x_{i}\right) \log \left(p\left(x_{i} \mid z_{i}=1, \theta\right) p\left(z_{i}=1 \mid \theta\right)\right)+p\left(z_{i}=2 \mid \theta^{(k)}, x_{i}\right) \log \left(p\left(x_{i} \mid z_{i}=2, \theta\right) p\left(z_{i}=2 \mid \theta\right)\right) \\
& =\frac{\phi\left(x_{i} \mid \mu_{1}^{(k)}, \sigma_{1}^{2(k)}\right)}{\phi\left(x_{i} \mid \mu_{1}^{(k)}, \sigma_{1}^{2(k)}\right)+\phi\left(x_{i} \mid \mu_{2}^{(k)}, \sigma_{2}^{2(k)}\right)} \log \left(\phi\left(x_{i} \mid \mu_{1}, \sigma_{1}^{2}\right)(1-\pi)\right)+\frac{\phi\left(x_{i} \mid \mu_{2}^{(k)}, \sigma_{2}^{2(k)}\right)}{\phi\left(x_{i} \mid \mu_{1}^{(k)}, \sigma_{1}^{2(k)}\right)+\phi\left(x_{i} \mid \mu_{2}^{(k)}, \sigma_{2}^{2(k)}\right)} \log \left(\phi\left(x_{i} \mid \mu_{2}, \sigma_{2}^{2}\right) \pi\right)
\end{aligned}
$$

Expectation Maximization Algorithm

- EM used to solve Latent Factor Models
- Also used to solve missing data problems
- Also known as Baum-Welch algorithm for Hidden Markov Models
- In general, EM is non-convex so it can get stuck in local minima.

Density Estimation

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 20, 2016

Kernel Density Estimation

$f(x)=\sum_{m=1}^{M} \alpha_{m} \phi\left(x ; \mu_{m}, \boldsymbol{\Sigma}_{m}\right) \quad$ A very "lazy" GMM

Kernel Density Estimation

Kernel Density Estimation

No CHD

$$
f(x)=\sum_{m=1}^{M} \alpha_{m} \phi\left(x ; \mu_{m}, \boldsymbol{\Sigma}_{m}\right)
$$

Combined

What is the Bayes optimal classification rule?
$\hat{r}_{i m}=\frac{\hat{\alpha}_{m} \phi\left(x_{i} ; \hat{\mu}_{m}, \hat{\Sigma}_{m}\right)}{\sum_{k=1}^{M} \hat{\alpha}_{k} \phi\left(x_{i} ; \hat{\mu}_{k}, \hat{\Sigma}_{k}\right)}$

Predict $\arg \max _{m} \widehat{r}_{i m}$

Generative vs Discriminative

Basic Text Modeling

Machine Learning - CSE4546 Kevin Jamieson University of Washington

November 20, 2017

Bag of Words

n documents/articles with lots of text

Questions:

- How to get a feature representation of each article?
- How to cluster documents into topics?

Bag of words model:
ith document: $\quad x_{i} \in \mathbb{R}^{D}$
$x_{i, j}=$ proportion of times j th word occurred in i th document

Bag of Words

n documents/articles with lots of text
Questions:

- How to get a feature representation of each article?
- How to cluster documents into topics?

Bag of words model:
ith document: $\quad x_{i} \in \mathbb{R}^{D}$
$x_{i, j}=$ proportion of times j th word occurred in i th document

Given vectors, run k-means or Gaussian mixture model to find k clusters/topics

Nonnegative matrix factorization (NMF)

$$
A \in \mathbb{R}^{m \times n} \quad A_{i, j}=\text { frequency of } j \text { th word in document } i
$$

Nonnegative Matrix factorization:

$$
\min _{W \in \mathbb{R}_{+}^{m \times d}, H \in \mathbb{R}_{+}^{n \times d}}\left\|A-W H^{T}\right\|_{F}^{2}
$$

d is number of topics

Also see latent Dirichlet factorization (LDA)

Nonnegative matrix factorization (NMF)

$$
A \in \mathbb{R}^{m \times n} \quad A_{i, j}=\text { frequency of } j \text { th word in document } i
$$

Nonnegative Matrix factorization:

$$
\min _{W \in \mathbb{R}_{+}^{m \times d}, H \in \mathbb{R}_{+}^{n \times d}}\left\|A-W H^{T}\right\|_{F}^{2}
$$

d is number of topics

Each column of H represents a cluster of a topic,
Each row W is some weights a combination of topics

Also see latent Dirichlet factorization (LDA)

Word embeddings, word2vec

Previous section presented methods to embed documents into a latent space

Alternatively, we can embed words into a latent space

This embedding came from directly querying for relationships.

word2vec is a popular unsupervised learning approach that just uses a text corpus (e.g. nytimes.com)

Word embeddings, word2vec

Source Text

Training
 Samples

The	quick	brown
fox jumps over the lazy dog. \Longrightarrow		

(the, quick)
(the, brown)

The	quick	brown	fox
jumps over the lazy dog. \Longrightarrow			

(quick, the)
(quick, brown) (quick, fox)

The	quick	brown	fox	jumps
over the lazy dog. \Longrightarrow				

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

The | quick | brown | fox | jumps | over |
| :--- | :--- | :--- | :--- | :--- |

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

Word embeddings, word2vec

Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer

Word embeddings, word2vec

Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer

word2vec outputs

king - man + woman = queen

TF**DF

n documents/articles with lots of text
How to get a feature representation of each article?

1. For each document d compute the proportion of times word t occurs out of all words in d, i.e. term frequency

$$
T F_{d, t}
$$

2. For each word t in your corpus, compute the proportion of documents out of n that the word t occurs, i.e., document frequency

$$
D F_{t}
$$

3. Compute score for word t in document d as $T F_{d, t} \log \left(\frac{1}{D F_{t}}\right)$

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

Two Hearted Ale - Input ~2500 natural language reviews

http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

3.8 aroma $8 / 10$ appearance $4 / 5$ taste $8 / 10$ palate $3 / 5$ overall $15 / 20$
fonefan (25678) - VestJylland, DENMARK - JAN 18, 2009

Bottle 355mI.

Clear light to medium yellow orange color with a average, frothy, good lacing, fully lasting, off-white head. Aroma is moderate to heavy malty, moderate to heavy hoppy, perfume, grapefruit, orange shell, soap. Flavor is moderate to heavy sweet and bitter with a average to long duration. Body is medium, texture is oily, carbonation is soft. [250908]

4
aroma $8 / 10$ appearance $4 / 5$ taste $7 / 10$ palate $4 / 5$ overall $17 / 20$
Ungstrup (24358) - Oamaru, NEW ZEALAND - MAR 31, 2005
An orange beer with a huge off-white head. The aroma is sweet and very freshly hoppy with notes of hop oils very powerful aroma. The flavor is sweet and quite hoppy, that gives flavors of oranges, flowers as well as hints of grapefruit. Very refreshing yet with a powerful body.

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric multidimensional scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric multidimensional scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

Weighted count vector for the i th beer:

$$
z_{i} \in \mathbb{R}^{400,000}
$$

Cosine distance:

$$
d\left(z_{i}, z_{j}\right)=1-\frac{z_{i}^{T} z_{j}}{\left\|z_{i}\right\|\left\|z_{j}\right\|}
$$

Two Hearted Ale - Nearest Neighbors:
Bear Republic Racer 5
Avery IPA
Stone India Pale Ale \&\#40;IPA\&\#41;
Founders Centennial IPA
Smuttynose IPA
Anderson Valley Hop Ottin IPA
AleSmith IPA
BridgePort IPA
Boulder Beer Mojo IPA
Goose Island India Pale Ale Great Divide Titan IPA
New Holland Mad Hatter Ale Lagunitas India Pale Ale
Heavy Seas Loose Cannon Hop3 Sweetwater IPA

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric
multidimensional
scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$
Find an embedding $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$ such that $\left\|x_{k}-x_{i}\right\|<\left\|x_{k}-x_{j}\right\|$ whenever $d\left(z_{k}, z_{i}\right)<d\left(z_{k}, z_{j}\right)$ for all 100-nearest neighbors. distance in 400,000 (10^{7} constraints, 10^{5} variables) dimensional "word space" Solve with hinge loss and stochastic gradient descent. (20 minutes on my laptop) $(d=2, \mathrm{err}=6 \%)(d=3, \mathrm{err}=4 \%)$

Could have also used local-linear-embedding, max-volume-unfolding, kernel-PCA, etc.

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric multidimensional scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

Reviews for each beer

Get 100 nearest neighbors using cosine distance

Non-metric multidimensional scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$
 each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric
multidimensional
scaling

Embedding in d dimensions

BeerMapper - Under the Hood

Algorithm requires feature representations of the beers $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$

Reviews for each beer

Bag of Words weighted by TF*IDF

Get 100 nearest neighbors using cosine distance

Non-metric
multidimensional
scaling

Embedding in d dimensions

Feature generation for images

Machine Learning - CSE4546
Kevin Jamieson University of Washington

November 20, 2017

Contains slides from...

- LeCun \& Ranzato
- Russ Salakhutdinov
- Honglak Lee
- Google images...

Convolution of images

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
Image I				

1	0	1
0	1	0
1	0	1

Filter K

$1_{x_{1}}$	$1_{x 0}$	$1_{x 1}$	0	0
$0_{x 0}$	$1_{x 1}$	$1_{x 0}$	1	0
$0_{x 1}$	$0_{x 0}$	$1_{x 1}$	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved
Feature

$$
I * K
$$

Convolution of images

Image I

Operation	Filter K	$\begin{aligned} & \text { Convolved } \\ & \text { Image } \end{aligned}$
Edge detection	$\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right]$	
	$\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0\end{array}\right]$	
	$\left[\begin{array}{rrr}-1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1\end{array}\right]$	
Sharpen	$\left[\begin{array}{rrr}0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0\end{array}\right]$	
Box blur (normalized)	$\frac{1}{9}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$	
Gaussian blur (approximation)	$\frac{1}{16}\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1\end{array}\right]$	

Convolution of images

Stacking convolved images

Stacking convolved images

Apply Non-linearity to the output of each layer, Here: ReLu (rectified linear unit)

Other choices: sigmoid, arctan

Pooling

Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region"

$27 \times 27 \times 64$

Pooling Convolution layer

Full feature pipeline

Flatten into a single vector of size 14*14*64=12544

How do we choose all the hyperparameters?
How do we choose the filters?

- Hand design them (digital signal processing, c.f. wavelets)
- Learn them (deep learning)

Some hand-created image features

Spin Image

RIFT

(a)

(c)

GLOH

ML Street Fight

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 20, 2017

Mini case study

Inspired by Coates and Ng (2012)
Input is CIFAR-10 dataset: 50000 examples of $32 \times 32 \times 3$ images

1. Construct set of patches by random selection from images
2. Standardize patch set (de-mean, norm 1, whiten, etc.)
3. Run k-means on random patches
4. Convolve each image with all patches (plus an offset)
5. Push through ReLu
6. Solve least squares for multiclass classification
7. Classify with argmax

Mini case study

Methods of standardization:

Mini case study

Dealing with class imbalance:

Mini case study

Dealing with outliers:

Mini case study

Dealing with outliers:

$$
\ell_{\text {huber }}(z)= \begin{cases}\frac{1}{2} z^{2} & \text { if }|z| \leq 1 \\ |z|-\frac{1}{2} & \text { otherwise }\end{cases}
$$

$\underset{\arg \min _{i=1}^{n}}{\sum_{i=1}^{n}}\left(\sum_{j}^{k} k\left(x_{i}, x_{j}\right) \alpha_{j}-y_{i}\right)^{2}+\lambda \sum_{i, j} \sum_{i, a_{j} k} \beta_{i}\left(x_{i}, x_{j}\right)$
$\arg \min _{\alpha} \sum_{i=1}^{n} \ell_{\text {huber }}\left(\sum_{j} k\left(x_{i}, x_{j}\right) \alpha_{j}-y_{i}\right)+\lambda \sum_{i, j} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right)$

Mini case study

Dealing with hyperparameters:

Hyperparameter Optimization

Machine Learning - CSE546
Kevin Jamieson
University of Washington
November 20, 2017

$$
00000000000000000000
$$

$$
11111111111111111111
$$

222 2 2 2 2 2 2 2 2 2 2 22 22 22
33333333333333333333
44444444444444444444
55555555555555555555
66666666666666666666
77777777777177777797
88888888888888888884
99999999499999999994

000000 111111

222222
333333
Eval set
666666
777777
688888
999999
hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
$\#$ hidden nodes $N_{h i d} \in\left[10^{1}, 10^{3}\right]$

hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
$\#$ hidden nodes $N_{h i d} \in\left[10^{1}, 10^{3}\right]$

Hyperparameters $\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$

Eval-loss
0.0577

0	0	0	0	0	0
1	1	1	1	1	1
2	2	2	2	2	2
3	3	3	3	3	3
Eval		set			
6	6	6	6	6	6
7	7	7	7	7	
8	8	8	8	8	8
9	9	9	9	9	9

hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
$\#$ hidden nodes $N_{h i d} \in\left[10^{1}, 10^{3}\right]$

Hyperparameters

$\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$	0.0577
$\left(10^{-1.0}, 10^{-1.2}, 10^{2.6}\right)$	0.182
$\left(10^{-1.2}, 10^{-5.7}, 10^{1.4}\right)$	0.0436
$\left(10^{-2.4}, 10^{-2.0}, 10^{2.9}\right)$	0.0919
$\left(10^{-2.6}, 10^{-2.9}, 10^{1.9}\right)$	0.0575
$\left(10^{-2.7}, 10^{-2.5}, 10^{2.4}\right)$	0.0765
$\left(10^{-1.8}, 10^{-1.4}, 10^{2.6}\right)$	0.1196
$\left(10^{-1.4}, 10^{-2.1}, 10^{1.5}\right)$	0.0834
$\left(10^{-1.9}, 10^{-5.8}, 10^{2.1}\right)$	0.0242
$\left(10^{-1.8}, 10^{-5.6}, 10^{1.7}\right)$	0.029

hyperparameters
learning rate $\eta \in\left[10^{-3}, 10^{-1}\right]$
ℓ_{2}-penalty $\lambda \in\left[10^{-6}, 10^{-1}\right]$
\# hidden nodes $N_{h i d} \in\left[10^{1}, 10^{3}\right]$

Hyperparameters
$\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$
$\left(10^{-1.0}, 10^{-1.2}, 10^{2.6}\right)$
$\left(10^{-1.2}, 10^{-5.7}, 10^{1.4}\right)$
$\left(10^{-2.4}, 10^{-2.0}, 10^{2.9}\right)$
$\left(10^{-2.6}, 10^{-2.9}, 10^{1.9}\right)$
$\left(10^{-2.7}, 10^{-2.5}, 10^{2.4}\right)$
$\left(10^{-1.8}, 10^{-1.4}, 10^{2.6}\right)$
$\left(10^{-1.4}, 10^{-2.1}, 10^{1.5}\right)$
$\left(10^{-1.9}, 10^{-5.8}, 10^{2.1}\right)$
$\left(10^{-1.8}, 10^{-5.6}, 10^{1.7}\right)$

Eval-loss

$$
\begin{aligned}
& 0.0577 \\
& 0.182 \\
& 0.0436 \\
& 0.0919 \\
& 0.0575 \\
& 0.0765 \\
& 0.1196 \\
& 0.0834 \\
& 0.0242 \\
& 0.029
\end{aligned}
$$

How do we choose hyperparameters to train and evaluate?

How do we choose hyperparameters to train and evaluate?

Grid search:

Hyperparameters on 2d uniform grid

How do we choose hyperparameters to train and evaluate?

Grid search:

Hyperparameters on 2d uniform grid

Random search:

Hyperparameters randomly chosen

How do we choose hyperparameters to train and evaluate?

Grid search:

Hyperparameters on 2d uniform grid

Random search:

Hyperparameters randomly chosen

Bayesian Optimization:

Bayesian Optimization:

How does it work?

Recent work attempts to speed up hyperparameter evaluation by stopping poor performing settings before they are fully trained.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014.
Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for computationally adaptive model selection. COLT, 2012.
Domhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In IJCAI, 2015.
András György and Levente Kocsis. Efficient multi-start strategies for local search algorithms. JAIR, 41, 2011.
Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. ICLR 2016.

Hyperparameters
$\left(10^{-1.6}, 10^{-2.4}, 10^{1.7}\right)$
$\left(10^{-1.0}, 10^{-1.2}, 10^{2.6}\right)$
$\left(10^{-1.2}, 10^{-5.7}, 10^{1.4}\right)$
$\left(10^{-2.4}, 10^{-2.0}, 10^{2.9}\right)$
$\left(10^{-2.6}, 10^{-2.9}, 10^{1.9}\right)$
$\left(10^{-2.7}, 10^{-2.5}, 10^{2.4}\right)$
$\left(10^{-1.8}, 10^{-1.4}, 10^{2.6}\right)$
$\left(10^{-1.4}, 10^{-2.1}, 10^{1.5}\right)$
$\left(10^{-1.9}, 10^{-5.8}, 10^{2.1}\right)$
$\left(10^{-1.8}, 10^{-5.6}, 10^{1.7}\right)$
0.0242
0.029

Eval-loss
0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834

Hyperparameter Optimization

In general, hyperparameter optimization is non-convex optimization and little is known about the underlying function (only observe validation loss)

Your time is valuable, computers are cheap:
Do not employ "grad student descent" for hyper parameter search. Write modular code that takes parameters as input and automate this embarrassingly parallel search. Use crowd resources (see pywren)

Tools for different purposes:

- Very few evaluations: use random search (and pray) or be clever
- Few evaluations and long-running computations: see refs on last slide
- Moderate number of evaluations (but still exp(\#params)) and high accuracy needed: use Bayesian Optimization
- Many evaluations possible: use random search.Why overthink it?

