
Announcements

 1©2017 Kevin Jamieson

• HW3 Due tonight

• HW4 posted

• No class Thursday (Thanksgiving)

©Kevin Jamieson 2017 2

Mixtures of
Gaussians

Machine Learning – CSE546
Kevin Jamieson
University of Washington

November 20, 2016
©Kevin Jamieson 2017

©Kevin Jamieson 2017 3

Mixture models

©Kevin Jamieson 2017

Y

`(✓;Z,�) =
nX

i=1

(1��i) log[(1� ⇡)�✓1(yi)] +�i log(⇡�✓2(yi)]

Z = {yi}ni=1 is observed data

� = {�i}ni=1 is unobserved data

If �✓(x) is Gaussian density with parameters ✓ = (µ,�2) then

�i(✓) = E[�i|✓,Z] =

©Kevin Jamieson 2017 4

Mixture models

©Kevin Jamieson 2017

©Kevin Jamieson 2017 5

Gaussian Mixture Example: Start

©Kevin Jamieson 2017

©Kevin Jamieson 2017 6

After first iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 7

After 2nd iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 8

After 3rd iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 9

After 4th iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 10

After 5th iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 11

After 6th iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 12

After 20th iteration

©Kevin Jamieson 2017

©Kevin Jamieson 2017 13

Some Bio Assay data

©Kevin Jamieson 2017

©Kevin Jamieson 2017 14

GMM clustering of the assay data

©Kevin Jamieson 2017

©Kevin Jamieson 2017 15

Resulting
Density
Estimator

©Kevin Jamieson 2017

©Kevin Jamieson 2017 16

Expectation Maximization Algorithm

©Kevin Jamieson 2017

Observe data x1, . . . , xn drawn from a distribution p(·|✓⇤) for some ✓⇤ 2 ⇥

b✓MLE = argmax
✓

nX

i=1

log(p(xi|✓))

(Jensen’s inequality, log() is concave)

Does not depend on θ!

(Introduce dummy distribution qi, variable θ’)

(Introduce hidden data zi)

nX

i=1

log(p(xi|✓)) =
nX

i=1

log

0

@
X

j

p(xi, zi = j|✓)

1

A

=
nX

i=1

log

0

@
X

j

qi(zi = j|✓0)p(xi, zi = j|✓)
qi(zi = j|✓0)

1

A

�
nX

i=1

X

j

qi(zi = j|✓0) log
✓
p(xi, zi = j|✓)
qi(zi = j|✓0)

◆

=
nX

i=1

X

j

qi(zi = j|✓0) log (p(xi, zi = j|✓)) +
nX

i=1

X

j

qi(zi = j|✓0) log(1
qi(zi=j|✓0))

©Kevin Jamieson 2017 17

Expectation Maximization Algorithm

©Kevin Jamieson 2017

b✓MLE = argmax
✓

nX

i=1

log(p(xi|✓))

Observe dataX = [x1, . . . , xn] drawn from a distribution p(·|✓⇤) for some ✓⇤ 2 ⇥

nX

i=1

log(p(xi|✓)) �
nX

i=1

X

j

qi(zi = j|✓0) log (p(xi, zi = j|✓))

True for any choice of ✓0 and distribution qi(zi = j|✓0)

Set qi(zi = j|✓0) = p(zi = j|✓0,X)

©Kevin Jamieson 2017 18

Expectation Maximization Algorithm

©Kevin Jamieson 2017

Observe data x1, . . . , xn drawn from a distribution p(·|✓⇤) for some ✓⇤ 2 ⇥

b✓MLE = argmax
✓

nX

i=1

log(p(xi|✓))

Initial guess for , for each step k:✓(0)

E-step: compute

M-step: find ✓(k+1) = argmax
✓

Q(✓, ✓(k))

nX

i=1

log(p(xi|✓)) �
nX

i=1

X

j

p(zi = j|✓0,X) log (p(xi, zi = j|✓)) =: Q(✓, ✓0)

Q(✓, ✓(k)) =
nX

i=1

Ezi

h
log (p(xi, zi|✓))

���✓(k),X
i

©Kevin Jamieson 2017 19

Expectation Maximization Algorithm

©Kevin Jamieson 2017

Initial guess for , for each step k:✓(0)

E-step: compute

M-step: find ✓(k+1) = argmax
✓

Q(✓, ✓(k))

Observe x1, . . . , xn ⇠ (1� ⇡)N (µ1,�2
1) + ⇡N (µ2,�2

2)Example:

zi = j if i is in mixture component j for j 2 {1, 2} ✓ = (⇡, µ1,�
2
1 , µ2,�

2
2)

Q(✓, ✓(k)) =
nX

i=1

Ezi

h
log (p(xi, zi|✓))

���✓(k),X
i

Ezi [log(p(xi, zi|✓)|✓(k),X]

= p(zi = 1|✓(k), xi) log
⇣
p(xi, zi = 1|✓)

⌘
+ p(zi = 2|✓(k), xi) log

⇣
p(xi, zi = 2|✓)

⌘

= p(zi = 1|✓(k), xi) log
⇣
p(xi|zi = 1, ✓)p(zi = 1|✓)

⌘
+ p(zi = 2|✓(k), xi) log

⇣
p(xi|zi = 2, ✓)p(zi = 2|✓)

⌘

= �(xi|µ(k)
1 ,�2

1
(k)

)

�(xi|µ(k)
1 ,�2

1
(k))+�(xi|µ(k)

2 ,�2
2
(k))

log
�
�(xi|µ1,�

2
1)(1� ⇡)

�
+ �(xi|µ(k)

2 ,�2
2
(k)

)

�(xi|µ(k)
1 ,�2

1
(k))+�(xi|µ(k)

2 ,�2
2
(k))

log
�
�(xi|µ2,�

2
2)⇡

�

©Kevin Jamieson 2017 20

Expectation Maximization Algorithm

©Kevin Jamieson 2017

- EM used to solve Latent Factor Models  
 
 
 
 

- Also used to solve missing data problems
- Also known as Baum-Welch algorithm for Hidden Markov Models
- In general, EM is non-convex so it can get stuck in local minima.

©Kevin Jamieson 2017 21

Density Estimation

Machine Learning – CSE546
Kevin Jamieson
University of Washington

November 20, 2016
©Kevin Jamieson 2017

©Kevin Jamieson 2017

Kernel Density Estimation

 22©Kevin Jamieson 2017

A very “lazy” GMM

©Kevin Jamieson 2017

Kernel Density Estimation

 23©Kevin Jamieson 2017

©Kevin Jamieson 2017

Kernel Density Estimation

 24©Kevin Jamieson 2017

Predict argmaxm brim

What is the Bayes
optimal classification
rule?

©Kevin Jamieson 2017

Generative vs Discriminative

 25©Kevin Jamieson 2017

©Kevin Jamieson 26

Basic Text Modeling

Machine Learning – CSE4546
Kevin Jamieson
University of Washington

November 20, 2017

©Kevin Jamieson

Bag of Words

 27

n documents/articles with lots of text

Questions:
- How to get a feature representation of each article?
- How to cluster documents into topics?

xi 2 RDith document:

xi,j = proportion of times jth word occurred in ith document

Bag of words model:

©Kevin Jamieson

Bag of Words

 28

n documents/articles with lots of text

Questions:
- How to get a feature representation of each article?
- How to cluster documents into topics?

xi 2 RDith document:

xi,j = proportion of times jth word occurred in ith document

Bag of words model:

Given vectors, run k-means or Gaussian mixture model to find k clusters/topics

©Kevin Jamieson

Nonnegative matrix factorization (NMF)

 29

Nonnegative
Matrix factorization:

Also see latent Dirichlet factorization (LDA)

W 2 Rm⇥d
+ , H 2 Rn⇥d

+

A 2 Rm⇥n

d is number of topics

min kA�WH
T k2F

Ai,j = frequency of jth word in document i

©Kevin Jamieson

Nonnegative matrix factorization (NMF)

 30

Nonnegative
Matrix factorization:

Also see latent Dirichlet factorization (LDA)

W 2 Rm⇥d
+ , H 2 Rn⇥d

+

A 2 Rm⇥n

d is number of topics

min kA�WH
T k2F

Ai,j = frequency of jth word in document i

Each column of H represents a cluster of a topic,
Each row W is some weights a combination of topics

©Kevin Jamieson 31

Previous section presented
methods to embed documents
into a latent space

Alternatively, we can
embed words into a
latent space

This embedding came from
directly querying for
relationships.

word2vec is a popular
unsupervised learning
approach that just uses a text
corpus (e.g. nytimes.com)

Word embeddings, word2vec

©Kevin Jamieson

Word embeddings, word2vec

 32

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

©Kevin Jamieson

Word embeddings, word2vec

 33

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Training neural network to predict co-occuring words. Use first layer weights as
embedding, throw out output layer

©Kevin Jamieson

Word embeddings, word2vec

 34

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Training neural network to predict co-occuring words. Use first layer weights as
embedding, throw out output layer

ehxants,ycari
X

i

ehxants,yii

©Kevin Jamieson

word2vec outputs

 35

slide: https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

king - man + woman = queen

country - capital

©Kevin Jamieson

TF*IDF

 36

n documents/articles with lots of text

How to get a feature representation of each article?

1. For each document d compute the proportion of times
word t occurs out of all words in d, i.e. term frequency

2. For each word t in your corpus, compute the proportion of
documents out of n that the word t occurs, i.e., document frequency

3. Compute score for word t in document d as

TFd,t

DFt

TFd,t log(
1

DFt
)

http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Two Hearted Ale - Input ~2500 natural language reviews

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Two Hearted Ale - Weighted Bag of Words:

Weighted count vector
for the ith beer:

zi 2 R400,000

Cosine distance:

d(zi, zj) = 1� zT
i zj

||zi|| ||zj ||

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Two Hearted Ale - Nearest Neighbors:
Bear Republic Racer 5
Avery IPA
Stone India Pale Ale (IPA)
Founders Centennial IPA
Smuttynose IPA
Anderson Valley Hop Ottin IPA
AleSmith IPA
BridgePort IPA
Boulder Beer Mojo IPA
Goose Island India Pale Ale
Great Divide Titan IPA
New Holland Mad Hatter Ale
Lagunitas India Pale Ale
Heavy Seas Loose Cannon Hop3
Sweetwater IPA

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Find an embedding {x1, . . . , xn} ⇢ Rd such that

||xk � xi|| < ||xk � xj || whenever d(zk, zi) < d(zk, zj)

for all 100-nearest neighbors.

(107 constraints, 105 variables)

Solve with hinge loss and stochastic gradient descent.

Could have also used local-linear-embedding,
max-volume-unfolding, kernel-PCA, etc.

(20 minutes on my laptop) (d=2,err=6%) (d=3,err=4%)

Reviews for
each beer

Bag of Words
weighted by

TF*IDF
Embedding in
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling

distance in 400,000
dimensional “word space”

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Sanity check: styles
should cluster together
and similar styles
should be close.

IPA

Pale ale
Brown ale

Porter

Stout

Doppelbock

Belgian dark
Lambic

Wheat

Belgian light
Wit

Light lager

Pilsner

Amber
Blond

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Sanity check: styles
should cluster together
and similar styles
should be close.

IPA

Pale ale
Brown ale

Porter

Stout

Doppelbock

Belgian dark
Lambic

Wheat

Belgian light
Wit

Light lager

Pilsner

Amber
Blond

©Kevin Jamieson 44

Feature generation for
images

Machine Learning – CSE4546
Kevin Jamieson
University of Washington

November 20, 2017

©Kevin Jamieson

Contains slides from…

■ LeCun & Ranzato
■ Russ Salakhutdinov
■ Honglak Lee
■ Google images…

 45

©Kevin Jamieson

Convolution of images

 46

(Note to EEs: deep learning uses the word “convolution”
to mean what is usually known as “cross-correlation”,
e.g., neither signal is flipped)

Slide credit: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Image I
Filter K

I ⇤K

©Kevin Jamieson

Convolution of images

 47

(Note to EEs: deep learning uses the word “convolution”
to mean what is usually known as “cross-correlation”,
e.g., neither signal is flipped)

K

Image I

I ⇤K

©Kevin Jamieson 48

Convolution of images

filters Hk
convolved image
Hk ⇤X

flatten
into vector

2

64
vec(H1 ⇤X)
vec(H2 ⇤X)

...

3

75

Input image X

©Kevin Jamieson

Stacking convolved images

 49

64 filters

6

6

3 27

27

©Kevin Jamieson

Stacking convolved images

 50

64 filters

6

6

3 27

27

Apply Non-linearity to
the output of each
layer, Here: ReLu
(rectified linear unit)

Other choices: sigmoid, arctan

©Kevin Jamieson

Pooling

 51

Pooling reduces the
dimension and can be
interpreted as “This filter had
a high response in this
general region”

27x27x64
14x14x64

©Kevin Jamieson

Pooling Convolution layer

 52

14x14x64

64 filters

6

6

3 27

27

MaxPool with
2x2 filters
and stride 2

Convolve
with 64 6x6x3 filters

©Kevin Jamieson

Full feature pipeline

 53

14x14x64

64 filters

6

6

3 27

27

Convolve
with 64 6x6x3 filters

MaxPool with
2x2 filters
and stride 2

Flatten into a single
vector of size
14*14*64=12544

How do we choose the filters?
- Hand design them (digital signal processing, c.f. wavelets)
- Learn them (deep learning)

How do we choose all the hyperparameters?

©Kevin Jamieson

Some hand-created image features

 54

SIFT Spin Image

RIFTHoG

Texton GLOH

Slide from Honglak Lee

©Kevin Jamieson 2017 55

ML Street Fight

Machine Learning – CSE546
Kevin Jamieson
University of Washington

November 20, 2017
©Kevin Jamieson 2017

©Kevin Jamieson

Mini case study

 56

Inspired by Coates and Ng (2012)

Input is CIFAR-10 dataset: 50000 examples of 32x32x3 images

1. Construct set of patches by random selection from images
2. Standardize patch set (de-mean, norm 1, whiten, etc.)
3. Run k-means on random patches
4. Convolve each image with all patches (plus an offset)
5. Push through ReLu
6. Solve least squares for multiclass classification
7. Classify with argmax

©Kevin Jamieson

Mini case study

 57

Methods of standardization:

©Kevin Jamieson

Mini case study

 58

Dealing with class imbalance:

©Kevin Jamieson

Mini case study

 59

Dealing with outliers:

©Kevin Jamieson

Mini case study

 60

Dealing with outliers:

argmin
↵

nX

i=1

`huber

0

@
X

j

k(xi, xj)↵j � yi

1

A+ �
X

i,j

↵i↵jk(xi, xj)argmin
↵

nX

i=1

0

@
X

j

k(xi, xj)↵j � yi

1

A
2

+ �
X

i,j

↵i↵jk(xi, xj)

`huber(z) =

(
1
2z

2 if |z|  1

|z|� 1
2 otherwise

©Kevin Jamieson

Mini case study

 61

Dealing with hyperparameters:

©Kevin Jamieson 2017 62

Hyperparameter
Optimization

Machine Learning – CSE546
Kevin Jamieson
University of Washington

November 20, 2017
©Kevin Jamieson 2017

Training set \Eval setNin = 784

Nout = 10
Nhid

hyperparameters

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [101, 103]

hyperparameters

Nin = 784

Nout = 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [101, 103]

Nhid
Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

bf

hyperparameters

Nin = 784

Nout = 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [101, 103]

Nhid
Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

bf

hyperparameters

Nin = 784

Nout = 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [101, 103]

Nhid
Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

Nin = 784

Nout = 10
Nhid

Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

How do we choose
hyperparameters to train

and evaluate?

How do we choose hyperparameters to train
and evaluate?

Grid search:
Hyperparameters
on 2d uniform grid

How do we choose hyperparameters to train
and evaluate?

Grid search:
Hyperparameters
on 2d uniform grid

Random search:
Hyperparameters
randomly chosen

How do we choose hyperparameters to train
and evaluate?

Grid search:
Hyperparameters
on 2d uniform grid

Random search:
Hyperparameters
randomly chosen

Bayesian Optimization:
Hyperparameters

adaptively chosen

1

2

3

4

5

6

7
8

9

10

11
12

13

14
15

16

Bayesian Optimization:
Hyperparameters

adaptively chosen

1

2

3

4

5

6

7
8

9

10

11
12

13

14
15

16

How does it work?

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

epochs

ev
al

-lo
ss

How computation time
was spent?

András György and Levente Kocsis. Efficient multi-start strategies for local search algorithms. JAIR, 41, 2011.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014.

Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for computationally adaptive model selection. COLT, 2012.

Domhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by
extrapolation of learning curves. In IJCAI, 2015.

Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. ICLR 2016.

Recent work attempts to speed up hyperparameter evaluation by
stopping poor performing settings before they are fully trained.

Hyperparameter Optimization

In general, hyperparameter optimization is
non-convex optimization and little is
known about the underlying function (only
observe validation loss)

Tools for different purposes:
- Very few evaluations: use random search (and pray) or be clever
- Few evaluations and long-running computations: see refs on last slide
- Moderate number of evaluations (but still exp(#params)) and high

accuracy needed: use Bayesian Optimization
- Many evaluations possible: use random search. Why overthink it?

Your time is valuable, computers are cheap:
Do not employ “grad student descent” for hyper parameter search.
Write modular code that takes parameters as input and automate this
embarrassingly parallel search. Use crowd resources (see pywren)

