Announcements

- My office hours TODAY 3:30 pm - 4:30 pm CSE 666
- Poster Session - Pick one
- First poster session TODAY 4:30 pm - 7:30 pm CSE Atrium
- Second poster session December 12 4:30 pm - 7:30 pm CSE Atrium
- Support your peers and check out the posters!
- Poster description from website:
"We will hold a poster session in the Atrium of the Paul Allen Center. Each team will be given a stand to present a poster summarizing the project motivation, methodology, and results. The poster session will give you a chance to show off the hard work you put into your project, and to learn about the projects of your peers. We will provide poster boards that are 32×40 inches. Both one large poster or several pinned pages are OK (fonts should be easily readable from 5 feet away)."
- Course Evaluation: https://uw.iasystem.org/survey/200308 (or on MyUW)
- Other anonymous Google form course feedback: https://bit.ly/2rmdYAc
- Homework 3 Problem 5 "revisited".
- Optional. Can only increase your grade, but will not hurt it.

\equiv Spotify

Discover Weekly FOLLOWING

amazon prime

You may also like...

ML uses past data to make personalized predictions

NETFIX

\equiv Spotify

Discover Weekly
FOLLOWING

amazon prime

You may also like...

ML uses past data to make personalized predictions

Basics of Fair ML

You work at a bank that gives loans based on credit score.

You have historical data: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
credit score $x_{i} \in \mathbb{R}$
paid back loan $y_{i} \in\{0,1\}$
is paid bach
If the loan $\left(y_{i}=1\right)$ you receive $\$ 300$ in interest
If the loan defaults $\left(y_{i}=0\right)$ you lose $\$ 700$
For some threshold t

$$
\begin{aligned}
\text { Profit }= & 300 \cdot \mathbb{P}\left(x_{i}>t \mid y_{i}=1\right) \\
& -700 \cdot \mathbb{P}\left(x_{i}>t \mid y_{i}=0\right)
\end{aligned}
$$

Basics of Fair ML

You work at a bank that gives loans based on credit score. Boss tells you "make sure it doesn't discriminate on race"

You have historical data: $\left\{\left(x_{i}, a_{i}, y_{i}\right)\right\}_{i=1}^{n}$
credit score $x_{i} \in \mathbb{R}$
paid back loan $y_{i} \in\{0,1\}$
$\underset{\text { race }}{ } a_{i} \in\{$ asian, white, hispanic, black $\}$
If the $\left(y_{i}=1\right)$ you receive $\$ 300$ in interest If the loan defaults $\left(y_{i}=0\right)$ you lose $\$ 700$

Basics of Fair ML

You work at a bank that gives loans based on credit score. Boss tells you "make sure it doesn't discriminate on race"

You have historical data: $\left\{\left(x_{i}, a_{i}, y_{i}\right)\right\}_{i=1}^{n}$
credit score $x_{i} \in \mathbb{R}$
paid back loan $y_{i} \in\{0,1\}$
race $a_{i} \in\{$ asian, white, hispanic, black $\}$

- Fairness through unawareness. Ignore a_{i}, everyone gets same threshold
- Pro: simple,
- Con: features are often

$$
\mathbb{P}\left(x_{i}>t \mid a_{i}=\square\right)=\mathbb{P}\left(x_{i}>t\right)
$$ proxy for protected group

Basics of Fair ML

You work at a bank that gives loans based on credit score. Boss tells you "make sure it doesn't discriminate on race"

You have historical data: $\left\{\left(x_{i}, a_{i}, y_{i}\right)\right\}_{i=1}^{n}$
credit score $x_{i} \in \mathbb{R}$
paid back loan $y_{i} \in\{0,1\}$
race $a_{i} \in\{$ asian, white, hispanic, black $\}$

- Demographic parity. proportion of loans to each group is the same
- Pro: sounds fair,
- Con: groups more likely

$$
\mathbb{P}\left(x_{i}>t_{\square} \mid a_{i}=\square\right)=\mathbb{P}\left(x_{i}>t_{\diamond} \mid a_{i}=\diamond\right)
$$ to pay back loans penalized

Basics of Fair ML

You work at a bank that gives loans based on credit score. Boss tells you "make sure it doesn't discriminate on race"

You have historical data: $\left\{\left(x_{i}, a_{i}, y_{i}\right)\right\}_{i=1}^{n}$
credit score $x_{i} \in \mathbb{R}$
paid back loan $y_{i} \in\{0,1\}$
race $a_{i} \in\{$ asian, white, hispanic, black $\}$

Basics of Fair ML

You work at a bank that gives loans based on credit score. Boss tells you "make sure it doesn't discriminate on race"

You have historical data: $\left\{\left(x_{i}, a_{i}, y_{i}\right)\right\}_{i=1}^{n}$
credit score $x_{i} \in \mathbb{R}$
paid back loan $y_{i} \in\{0,1\}$

$$
P(x>t \mid y=1)=\frac{\mathbb{P}(x>t, y=1)}{\mathbb{P}(y=1)}
$$

race $a_{i} \in\{$ asian, white, hispanic, black $\}$

- Equal opportunity. proportion of those who would pay back loans equal
- Pro: Bayes optimal if conditional distributions are the same, TPR=equal
- Con: needs one class to be "good", another "bad"

$$
\mathbb{P}\left(x_{i}>t_{\square} \mid y_{i}=1, a_{i}=\square\right)=\mathbb{P}\left(x_{i}>t_{\diamond} \mid y_{i}=1, a_{i}=\diamond\right)
$$

Basics of Fair ML

You work at a bank that gives loans based on credit score. Boss tells you "make sure it doesn't discriminate on race"

You have historical data: $\left\{\left(x_{i}, a_{i}, y_{i}\right)\right\}_{i=1}^{n}$
credit score $x_{i} \in \mathbb{R}$ paid back loan $y_{i} \in\{0,1\}$
race $a_{i} \in\{$ asian, white, hispanic, black $\}$
Per-group ROC curve

Fairness, Accountability, and Transparency in Machine Learning www.fatml.org

Trees

Machine Learning - CSE546
Kevin Jamieson
University of Washington
December 4, 2018

Trees

$$
f(x)=\sum_{m=1}^{M} c_{m} I\left(x \in R_{m}\right)
$$

Build a binary tree, splitting along axes

Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
\square Use, for example, information gain to select attribute
\square Split on $\arg \max _{i} I G\left(X_{i}\right)=\arg \max _{i} H(Y)-H\left(Y \mid X_{i}\right)$
- Recurse
- Prune

$$
f(x)=\sum_{m=1}^{M} c_{m} I\left(x \in R_{m}\right)
$$

Trees

- Trees
- have low bias, high variance
- deal with categorial variables well
- intuitive, interpretable
- good software exists
- Some theoretical guarantees

Random Forests

Machine Learning - CSE546
Kevin Jamieson
University of Washington
December 4, 2018

Random Forests

Tree methods have low bias but high variance.

One way to reduce variance is to construct a lot of "lightly correlated" trees and average them:
"Bagging:" Bootstrap aggregating

Random Forrests

Algorithm 15.1 Random Forest for Regression or Classification.

1. For $b=1$ to B :
(a) Draw a bootstrap sample \mathbf{Z}^{*} of size N from the training data.
(b) Grow a random-forest tree T_{b} to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size $n_{\min }$ is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.
2. Output the ensemble of trees $\left\{T_{b}\right\}_{1}^{B}$.

To make a prediction point x :
Regression: $\hat{f}_{\mathrm{rf}}^{B}(x)=\frac{1}{B} \sum_{b=1}^{B} T_{b}(x)$.
Classification: Let $\hat{C}_{b}(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\mathrm{rf}}^{B}(x)=$ majority vote $\left\{\hat{C}_{b}(x)\right\}_{1}^{B}$ \square

Random Forests

- Random Forests
- have low bias, low variance
- deal with categorial variables well
- not that intuitive or interpretable
- Notion of confidence estimates
- good software exists
- Some theoretical guarantees
- works well with default hyperparameters

Boosting

Machine Learning - CSE546
 Kevin Jamieson
 University of Washington

December 4, 2018

Boosting

- 1988 Kearns and Valiant: "Can weak learners be combined to create a strong learner?"

Weak learner definition (informal):
An algorithm \mathcal{A} is a weak learner for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1,1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1 / 2-\gamma$

Boosting

- 1988 Kearns and Valiant: "Can weak learners be combined to create a strong learner?"

Weak learner definition (informal):
An algorithm \mathcal{A} is a weak learner for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1,1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1 / 2-\gamma$

- 1990 Robert Schapire: "Yup!"
- 1995 Schapire and Freund: "Practical for 0/1 loss" AdaBoost

Boosting

- 1988 Kearns and Valiant: "Can weak learners be combined to create a strong learner?"

Weak learner definition (informal):
An algorithm \mathcal{A} is a weak learner for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1,1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1 / 2-\gamma$

- 1990 Robert Schapire: "Yup!"
- 1995 Schapire and Freund: "Practical for 0/1 loss" AdaBoost
- 2001 Friedman: "Practical for arbitrary losses"

Boosting

- 1988 Kearns and Valiant: "Can weak learners be combined to create a strong learner?"

Weak learner definition (informal):
An algorithm \mathcal{A} is a weak learner for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1,1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1 / 2-\gamma$

- 1990 Robert Schapire: "Yup!"
- 1995 Schapire and Freund: "Practical for 0/1 loss" AdaBoost
- 2001 Friedman: "Practical for arbitrary losses"
- 2014 Tianqi Chen: "Scale it up!" XGBoost

Boosting and Additive Models

Machine Learning - CSE546
Kevin Jamieson
University of Washington
December 4, 2018

Additive models

- Consider the first algorithm we used to get good classification for MNIST. Given: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,1\}$
- Generate random functions: $\phi_{t}: \mathbb{R}^{d} \rightarrow \mathbb{R} \quad t=1, \ldots, p$
- Learn some weights: $\widehat{w}=\arg \min _{w} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, \sum_{t=1}^{p} w_{t} \phi_{t}\left(x_{i}\right)\right)$
- Classify new data: $f(x)=\operatorname{sign}\left(\sum_{t=1}^{p} \widehat{w}_{t} \phi_{t}(x)\right)$

Additive models

- Consider the first algorithm we used to get good classification for MNIST. Given: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,1\}$
- Generate random functions: $\phi_{t}: \mathbb{R}^{d} \rightarrow \mathbb{R} \quad t=1, \ldots, p$
- Learn some weights: $\widehat{w}=\arg \min _{w} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, \sum_{t=1}^{p} w_{t} \phi_{t}\left(x_{i}\right)\right)$
- Classify new data: $f(x)=\operatorname{sign}\left(\sum_{t=1}^{p} \widehat{w}_{t} \phi_{t}(x)\right)$

An interpretation:
Each $\phi_{t}(x)$ is a classification rule that we are assigning some weight \widehat{w}_{t}

Additive models

- Consider the first algorithm we used to get good classification for MNIST. Given: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,1\}$
- Generate random functions: $\phi_{t}: \mathbb{R}^{d} \rightarrow \mathbb{R} \quad t=1, \ldots, p$
- Learn some weights: $\widehat{w}=\arg \min _{w} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, \sum_{t=1}^{p} w_{t} \phi_{t}\left(x_{i}\right)\right)$
- Classify new data: $f(x)=\operatorname{sign}\left(\sum_{t=1}^{p} \widehat{w}_{t} \phi_{t}(x)\right)$

An interpretation:
Each $\phi_{t}(x)$ is a classification rule that we are assigning some weight \widehat{w}_{t}

$$
\widehat{w}, \widehat{\phi}_{1}, \ldots, \widehat{\phi}_{t}=\arg \min _{w, \phi_{1}, \ldots, \phi_{p}} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, \sum_{t=1}^{p} w_{t} \phi_{t}\left(x_{i}\right)\right)
$$

is in general computationally hard

Forward Stagewise Additive models

$b(x, \gamma)$ is a function with parameters $\gamma \quad$ Examples: $b(x, \gamma)=\frac{1}{1+e^{-\gamma^{T} x}}$

```
Algorithm 10.2 Forward Stagewise Additive Modeling.
    \(b(x, \gamma)=\gamma_{1} \mathbf{1}\left\{x_{3} \leq \gamma_{2}\right\}\)
1. Initialize \(f_{0}(x)=0\).
2. For \(m=1\) to \(M\) :
```

(a) Compute

$$
\left(\beta_{m}, \gamma_{m}\right)=\arg \min _{\beta, \gamma} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \gamma\right)\right) .
$$

(b) Set $f_{m}(x)=f_{m-1}(x)+\beta_{m} b\left(x ; \gamma_{m}\right)$.

Idea: greedily add one function at a time

Forward Stagewise Additive models

$b(x, \gamma)$ is a function with parameters $\gamma \quad$ Examples: $b(x, \gamma)=\frac{1}{1+e^{-\gamma^{T} x}}$

```
Algorithm 10.2 Forward Stagewise Additive Modeling.
    \(b(x, \gamma)=\gamma_{1} \mathbf{1}\left\{x_{3} \leq \gamma_{2}\right\}\)
1. Initialize \(f_{0}(x)=0\).
2. For \(m=1\) to \(M\) :
```

(a) Compute

$$
\left(\beta_{m}, \gamma_{m}\right)=\arg \min _{\beta, \gamma} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \gamma\right)\right) .
$$

(b) Set $f_{m}(x)=f_{m-1}(x)+\beta_{m} b\left(x ; \gamma_{m}\right)$.

Idea: greedily add one function at a time

AdaBoost: $b(x, \gamma)$: classifiers to $\{-1,1\}$

$$
L(y, f(x))=\exp (-y f(x))
$$

Forward Stagewise Additive models

$b(x, \gamma)$ is a function with parameters $\gamma \quad$ Examples: $b(x, \gamma)=\frac{1}{1+e^{-\gamma^{T} x}}$
Algorithm 10.2 Forward Stagewise Additive Modeling.

1. Initialize $f_{0}(x)=0$.
2. For $m=1$ to M :
(a) Compute

$$
\left(\beta_{m}, \gamma_{m}\right)=\arg \min _{\beta, \gamma} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \gamma\right)\right)
$$

(b) Set $f_{m}(x)=f_{m-1}(x)+\beta_{m} b\left(x ; \gamma_{m}\right)$.

Idea: greedily add one function at a time
Boosted Regression Trees: $\quad L(y, f(x))=(y-f(x))^{2}$
$b(x, \gamma)$: regression trees

Forward Stagewise Additive models

$b(x, \gamma)$ is a function with parameters $\gamma \quad$ Examples: $b(x, \gamma)=\frac{1}{1+e^{-\gamma^{T} x}}$
Algorithm 10.2 Forward Stagewise Additive Modeling.
$b(x, \gamma)=\gamma_{1} \mathbf{1}\left\{x_{3} \leq \gamma_{2}\right\}$

1. Initialize $f_{0}(x)=0$.
2. For $m=1$ to M :
(a) Compute

$$
\left(\beta_{m}, \gamma_{m}\right)=\arg \min _{\beta, \gamma} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \gamma\right)\right)
$$

(b) Set $f_{m}(x)=f_{m-1}(x)+\beta_{m} b\left(x ; \gamma_{m}\right)$.

Idea: greedily add one function at a time

Boosted Regression Trees: $\quad L(y, f(x))=(y-f(x))^{2}$

$$
\begin{aligned}
L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \gamma\right)\right) & =\left(y_{i}-f_{m-1}\left(x_{i}\right)-\beta b\left(x_{i} ; \gamma\right)\right)^{2} \\
& =\left(r_{i m}-\beta b\left(x_{i} ; \gamma\right)\right)^{2}, \quad r_{i m}=y_{i}-f_{m-1}\left(x_{i}\right)
\end{aligned}
$$

Forward Stagewise Additive models

$b(x, \gamma)$ is a function with parameters $\gamma \quad$ Examples: $b(x, \gamma)=\frac{1}{1+e^{-\gamma^{T} x}}$

```
Algorithm 10.2 Forward Stagewise Additive Modeling.
1. Initialize \(f_{0}(x)=0\).
2. For \(m=1\) to \(M\) :
(a) Compute
\[
\left(\beta_{m}, \gamma_{m}\right)=\arg \min _{\beta, \gamma} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \gamma\right)\right) .
\]
```

$b(x, \gamma)=\gamma_{1} \mathbf{1}\left\{x_{3} \leq \gamma_{2}\right\}$
(b) Set $f_{m}(x)=f_{m-1}(x)+\beta_{m} b\left(x ; \gamma_{m}\right)$.

> Idea: greedily add one function at a time

Boosted Logistic Trees: $\quad L(y, f(x))=y \log (f(x))+(1-y) \log (1-f(x))$

$$
b(x, \gamma): \text { regression trees }
$$

Computationally hard to update

Gradient Boosting

Least squares, exponential loss easy. But what about cross entropy? Huber?

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize $f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{N} L\left(y_{i}, \gamma\right)$.
2. For $m=1$ to M :
(a) For $i=1,2, \ldots, N$ compute

$$
r_{i m}=-\left[\frac{\partial L\left(y_{i}, f\left(x_{i}\right)\right)}{\partial f\left(x_{i}\right)}\right]_{f=f_{m-1}}
$$

(b) Fit a regression tree to the targets $r_{i m}$ giving terminal regions $R_{j m}, j=1,2, \ldots, J_{m}$.
(c) For $j=1,2, \ldots, J_{m}$ compute

$$
\gamma_{j m}=\arg \min _{\gamma} \sum_{x_{i} \in R_{j m}} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\gamma\right)
$$

(d) Update $f_{m}(x)=f_{m-1}(x)+\sum_{j=1}^{J_{m}} \gamma_{j m} I\left(x \in R_{j m}\right)$.
3. Output $\hat{f}(x)=f_{M}(x)$.

LS fit regression tree to n-dimensional gradient, take a step in that direction

Gradient Boosting

Least squares, 0/1 loss easy. But what about cross entropy? Huber?

AdaBoost uses 0/1 loss, all other trees are minimizing binomial deviance

Additive models

- Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.

Additive models

- Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.
- Computationally efficient with "weak" learners. But can also use trees! Boosting can scale.
- Kind of like sparsity?

Additive models

- Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.
- Computationally efficient with "weak" learners. But can also use trees! Boosting can scale.
- Kind of like sparsity?
- Gradient boosting generalization with good software packages (e.g., XGBoost). Effective on Kaggle
- Robust to overfitting and can be dealt with with "shrinkage" and "sampling"

Bagging versus Boosting

- Bagging averages many low-bias, lightly dependent classifiers to reduce the variance
- Boosting learns linear combination of high-bias, highly dependent classifiers to reduce error
- Empirically, boosting appears to outperform bagging

Which algorithm do I use?

TABLE 10.1. Some characteristics of different learning methods. Key: $\boldsymbol{\Delta}=$ good, $\stackrel{\text { fair, and }}{\boldsymbol{\nabla}}=$ poor.

Characteristic	Neural Nets	SVM	Trees	MARS	$\mathrm{k}-\mathrm{NN},$ Kernels
Natural handling of data of "mixed" type	∇	∇	A	A	∇
Handling of missing values	∇	∇	A	A	A
Robustness to outliers in input space	∇	∇	A	∇	A
Insensitive to monotone transformations of inputs	∇	∇	A	∇	∇
Computational scalability (large N)	∇	∇	A	A	∇
Ability to deal with irrelevant inputs	∇	∇	A	A	∇
Ability to extract linear combinations of features	A	A	∇	∇	\checkmark
Interpretability	∇	∇	$\stackrel{\rightharpoonup}{*}$	Δ	∇
Predictive power	A	A	∇	\checkmark	A

X-sample space $\mid P_{x y}$ distribution on $x \times y$
$y=\{0,13$
Given $f: X \rightarrow\{0,1\}$, sample $\left.\left\{x_{i}, y\right\}\right\}_{i=1}^{n}$
De five
Empirical Loss: $\hat{R}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{f\left(x_{i}\right)_{\left.i y_{j}\right\}}\right.$
The Loss: $R(f)=\underset{\rho_{x y}}{\mathbb{F}}[f(x) \neq y]$
Empirical Risk Minimization

$$
\hat{f}=\min _{f \in H} \hat{R}_{\hat{R}_{\text {logistic }}(\text { liner, tres, }} \hat{R}_{n}(f)
$$

\rightarrow How well does \hat{f} generalize?

PAC Learning
all functions $x \rightarrow 20,12$
A hypothesis class $H \leq y^{X}$ is
PAC-learnable if there exists an function $m_{H_{H}}:[0,1]^{2} \rightarrow \mathbb{N}$, and an algorithm A, such that: For every $\varepsilon, \delta \in(0,1)$ and every $P_{\underline{x x}}$, when Gunning A on $m \geq m_{H}(\varepsilon, \delta)$ i.i.d examples from $P_{x y}$ the algorithm returns $h \in H$ sit. w/ probubility $>1-\delta$
$\sim R(h) \xrightarrow{R(h) \leq \min } \underset{h^{\prime} \in H}{ } R\left(h^{\prime}\right)+\varepsilon$ $h^{\prime} \in \mathcal{H}$ \& generalization

