Machine Learning CSE546

Kevin Jamieson University of Washington

September 27, 2018

Traditional algorithms

Social media mentions of Cats vs. Dogs

Reddit

Google

Top 100 /r/aww Submissions

Traditional algorithms

Social media mentions of Cats vs. Dogs

Reddit

Google

Top 100 /r/awrw Submissions

Write a program that sorts

tweets into those containing
"cat", "dog", or other

Traditional algorithms

Social media mentions of Cats vs. Dogs

Reddit
Google

Write a program that sorts tweets into those containing "cat", "dog", or other

Top 100 /r/awrw Submissions


```
cats = []
```

cats = []
dogs = []
dogs = []
other = []
other = []
for tweet in tweets:
for tweet in tweets:
if "cat" in tweet:
if "cat" in tweet:
cats.append (tweet)
cats.append (tweet)
elseif "dog" in tweet:
elseif "dog" in tweet:
dogs.append (tweet)
dogs.append (tweet)
else:
else:
other.append(tweet)
other.append(tweet)
return cats, dogs, other

```
    return cats, dogs, other
```

Twitter?

Machine learning algorithms

Write a program that sorts images into those containing "birds", "airplanes", or other.

Machine learning algorithms

Write a program that sorts image into those containing "birds", "airplanes", or other.

airplane
other
bird

```
birds = []
planes = []
other = []
for image in images:
    if bird in image:
        birds.append(image)
    elseif plane in image:
        planes.append(image)
    else:
        other.append (tweet)
return birds, planes, other
```


Machine learning algorithms

Write a program that sorts image into those containing "birds", "airplanes", or other.


```
birds = []
planes = []
other = []
for image in images:
    if bird in image:
        birds.append(image)
    elseif plane in image:
        planes.append(image)
    else:
        other.append (tweet)
    return birds, planes, other
```


Machine learning algorithms

Write a program that sorts image into those containing "birds", "airplanes", or other.

Machine learning algorithms

Write a program that sorts imag\& into those containing "birds", "airplanes", or other.


```
birds = []
planes = []
other = []
for image in images:
    if bird in image:
        birds.append(image)
    elseif plane in image:
        planes.append(image)
    else:
    other.append (tweet)
```

return birds, planes, other

Machine learning algorithms

Write a program that sorts imag\& into those containing "birds", "airplanes", or other.

airplane other bird


```
birds = []
planes = []
other = []
```

for image in images:
if bird in image:
birds.append (image)
elseif plane in image:
planes.append (image)
else:
other. append (tweet)
return birds, planes, other

The decision rule of
if "cat" in tweet:
is hard coded by expert.
The decision rule of
if bird in image: is LEARNED using DATA

Machine Learning Ingredients

- Data: past observations
- Hypotheses/Models: devised to capture the patterns in data
- Prediction: apply model to forecast future observations

\approx Spotify

Discover Weekly
FOLLONINE

amazon prime

You may also like...

ML uses past data to make personalized predictions

Flavors of ML

Regression
Predict continuous value:
ex: stock market, credit score, temperature, Netflix rating

Classification
Predict categorical value: disease is this?

Unsupervised Learning

Predict structure:
tree of life from DNA, find similar images, community detection

Mix of statistics (theory) and algorithms (programming)

CSE546: Machine Learning

Lecture: Tuesday, Thursday 11:30-12:50 Room: KNE 220
Instructor: Kevin Jamieson
Contact: cse546-instructors@cs.washington.edu
Website: https://courses.cs.washington.edu/courses/cse546/18au/

What this class is:

- Fundamentals of ML: bias/variance tradeoff, overfitting, parametric models (e.g. linear), non-parametric models (e.g. kNN, trees), optimization and computational tradeoffs, unsupervised models (e.g. PCA), reinforcement learning
- Preparation for learning: the field is fast-moving, you will be able to apply the basics and teach yourself the latest
- Homeworks and project: use your research project for the class

What this class is not:

- Survey course: laundry list of algorithms, how to win Kaggle
- An easy course: familiarity with intro linear algebra and probability are assumed, homework will be time-consuming

Prerequisites

- Formally:

CSE 312, STAT 341, STAT 391 or equivalent

- Topics
- Linear algebra
- eigenvalues, orthogonal matrices, quadratic forms
- Multivariate calculus
- Probability and statistics

Distributions, densities, marginalization, moments

- Algorithms

Basic data structures, complexity

- "Can I learn these topics concurrently?"
- Use HWO and Optional Review to judge skills (more in a sec)
- See website for review materials!

Grading

- 5 homeworks (65\%)
\square Each contains both theoretical questions and will have programming
\square Collaboration okay. You must write, submit, and understand your answers and code (which we may run)
\square Do not Google for answers.
- Final project (35\%)
\square An ML project of your choice that uses real data

1. All code must be written in Python
 2. All written work must be typeset using LaTeX

See course website for tutorials and references.

Homeworks

\square HW 0 is out (10 points, Due next Thursday Midnight)
\square Short review, gets you using Python and LaTeX

- Work individually, treat as barometer for readiness

HW 1,2,3,4 (25 points each)
\square They are not easy or short. Start early.
\square Grade is minimum of the summed points and 100 points.
\square There is no credit for late work, receives 0 points.
\square You must turn in all 5 assignments (even if late for 0 points) or else you will not pass.

Projects (35\%)

- An opportunity/intro for research in machine learning
- Grading:
\square We seek some novel exploration.
\square If you write your own solvers, great. We takes this into account for grading.
\square You may use ML toolkits (e.g. TensorFlow, etc), but we expect more ambitious project (in terms of scope, data, etc).
\square If you use simpler/smaller datasets, then we expect a more involved analysis.
- Individually or groups of two or three.
- If in a group, the expectations are higher
- Must involve real data

Must be data that you have available to you by the time of the project proposals

- It's encouraged to be related to your research, but must be something new you did this quarter
- Not a project you worked on during the summer, last year, etc.
\square You also must have the data right now.

Optional Review

- Little rusty on linear algebra and probability?
- We will have a review to remind you of topics you once knew well. This is not a bootcamp.
- Monday evening? See Mattermost for finding a date...

Communication Channels

- Mattermost (secure, open-source Slack clone)
\square Announcements (office hour changes, due dates, etc.)
\square Questions (logistical or homework) - please participate and help others
\square All non-personal questions should go here
- E-mail instructors about personal issues and grading: cse546-instructors@cs.washington.edu
- Office hours limited to knowledge based questions. Use email for all grading questions.

Staff

- Six Great TAs, lots of office hours (subject to change)
- TA, Jifan Zhang (jifan@uw), Monday 3:30-4:30 PM, CSE 4th floor breakout
- TA, An-Tsu Chen (atc22@uw), Wednesday 4:00-5:00 PM, CSE 220
- TA, Pascal Sturmfels (psturm@uw), Wednesday 9:00AM-10:00 AM, CSE 220
- TA, Beibin Li (beibin@uw), Wednesday 1:30-2:30 PM, CSE 220
- TA, Alon Milchgrub (alonmil@uw), Thursday 10:00-11:00AM, CSE 220
- TA, Kung-Hung (Henry) Lu (henrylu@uw), Friday 12:30-1:30 PM, CSE 007
- Instructor, Tuesday 4:00-5:00 PM, CSE 666
\square Check website and Mattermost for changes and exceptions

Text Books

- Textbook (both free PDF):

The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Trevor Hastie, Robert Tibshirani, Jerome Friedman

\square Computer Age Statistical Inference: Algorithms, Evidence and Data Science, Bradley Efron, Trevor Hastie

Text Books

- Textbook (both free PDF):

The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Trevor Hastie, Robert Tibshirani, Jerome Friedman
\square Not free, but more useful for this class All of Statistics, Larry Wasserman

Enjoy!

- ML is becoming ubiquitous in science, engineering and beyond
- It's one of the hottest topics in industry today
- This class should give you the basic foundation for applying ML and developing new methods
- The fun begins...

Maximum Likelihood Estimation

Machine Learning - CSE546 Kevin Jamieson University of Washington

September 27, 2018

Your first consulting job

Billionaire: I have special coin, if I flip it, what's the probability it will be heads?

- You: Please flip it a few times: 5 times HTHHT

You: The probability is: $3 / 5$

- Billionaire: Why?

Coin - Binomial Distribution

- Data: sequence $D=(H H T H T \ldots)$, \mathbf{k} heads out of \mathbf{n} flips
- Hypothesis: $P($ Heads $)=\theta, P($ Tails $)=1-\theta$
\square Flips are i.i.d.:
$\mathbb{P}\left(x_{2}=H \mid x_{1}=\square\right)$ Independent events $\mathbb{P}(A \mid B)=\mathbb{P}(A)$
$=\mathbb{P}\left(X_{2}=H\right)$ Identically distributed according to Binomial distribution $\mathbb{P}(H 1 H T H T)=\mathbb{P}(H) \mathbb{P}(H) \mathbb{P}(T) \mathbb{P}(H) \mathbb{P}(7)$
$\begin{aligned} & =\theta \cdot \theta \cdot(1-\theta) \theta(1-\theta) \\ & =\theta^{k}(1-\theta)^{n-k}\end{aligned}$
- $P(\mathcal{D} \mid \theta)=\theta^{k}(1-\theta)^{\left.n-k-\theta^{k}(1-\theta)^{n}\right)}$

Maximum Likelihood Estimation

- Data: sequence $D=(H H T H T . .$.$) , \mathbf{k}$ heads out of \mathbf{n} flips
- Hypothesis: $P($ Heads $)=\theta, P($ Tails $)=1-\theta$

$$
P(\mathcal{D} \mid \theta)=\theta^{k}(1-\theta)^{n-k}
$$

- Maximum likelihood estimation (MLE): Choose θ that maximizes the probability of observed data:

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\frac{\arg \max _{\theta} P(\mathcal{D} \mid \theta)}{} \\
& =\underset{\theta}{\arg \max _{\theta} \log P(\mathcal{D} \mid \theta)}
\end{aligned}
$$

Your first learning algorithm

$$
\begin{aligned}
\hat{\theta}_{M L E} & =\arg \max _{\theta} \log P(\mathcal{D} \mid \theta) \\
= & \arg \max _{\theta} \log \theta^{k}(1-\theta)^{n-k} \\
& =k \log (\theta)+(n-k) \log (1-\theta)
\end{aligned}
$$

- Set derivative to zero:

$$
\frac{d}{d \theta} \log P(\mathcal{D} \mid \theta)=0
$$

$$
\begin{aligned}
& \frac{\partial}{\partial \theta}(h \log \theta+(n-L) \log (1-\theta))=\frac{k}{\theta}+\frac{n-k}{1-\theta}(-1)=\frac{k(1-\theta)-(n-L) \theta}{\theta(1-\theta)} \\
& k(1-\theta)=(n-h) \theta=0 \\
& k=n \theta \Rightarrow \theta=\frac{k}{n}
\end{aligned}
$$

How many flips do I need?

$$
\widehat{\theta}_{M L E}=\frac{k}{n}
$$

- You: flip the coin 5 times. Billionaire: I got 3 heads.

$$
\hat{\theta}_{M L E}=3 / s
$$

- You: flip the coin 50 times. Billionaire: I got 20 heads.

$$
\widehat{\theta}_{M L E}=\frac{20}{50}=2 / 5
$$

- Billionaire: Which one is right? Why?

Simple bound
 (based on Hoeffding's inequality)

- For \mathbf{n} flips and \mathbf{k} heads the MLE is unbiased for true θ^{*} :

$$
\widehat{\theta}_{M L E}=\frac{k}{n} \quad \mathbb{E}\left[\hat{\theta}_{M L E}\right]=\theta^{*}
$$

- Hoeffding's inequality says that for any $\varepsilon>0$:

$$
\begin{aligned}
& P\left(\left|\hat{\theta}_{M L E}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 n \epsilon^{2}}=\delta \\
& \Rightarrow \varepsilon=\sqrt{\frac{\log (2 / \delta)}{2 n}} \\
& \Rightarrow \text { With probability } \geq 1-\delta, \quad\left|\hat{\theta}_{M L E}-\theta_{n}\right| \leq \sqrt{\frac{\log (2 / \delta)}{2 n}}
\end{aligned}
$$

PAC Learning

- PAC: Probably Approximate Correct
- Billionaire: I want to know the parameter θ^{*}, within $\varepsilon=0.1$, with probability at least $1-\delta=0.95$. How many flips?

$$
P\left(\left|\widehat{\theta}_{M L E}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 n \epsilon^{2}}
$$

What about continuous variables?

- Billionaire: What if I am measuring a continuous variable?
- You: Let me tell you about Gaussians...

Some properties of Gaussians

- affine transformation (multiplying by scalar and adding a constant)

$$
\begin{aligned}
& X \sim N\left(\mu, \sigma^{2}\right) \\
& Y=a X+b \rightarrow Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right) \\
& \mathbb{E}[\psi]=a \mathbb{E}[x]+b=a \mu+b
\end{aligned}
$$

- Sum of Gaussians
$\square X \sim N\left(\mu_{X}, \sigma^{2}{ }_{x}\right)$
$\square Y \sim N\left(\mu_{Y}, \sigma^{2}{ }_{Y}\right)$
$\square \mathrm{Z}=\mathrm{X}+\mathrm{Y} \quad \rightarrow \quad \mathrm{Z} \sim N\left(\mu_{\mathrm{X}}+\mu_{\mathrm{Y}}, \sigma^{2}{ }_{\mathrm{X}}+\sigma^{2}{ }_{\mathrm{Y}}\right)$

MLE for Gaussian

- Prob. of i.i.d. samples $D=\left\{x_{1}, \ldots, x_{N}\right\}$ (e.g., exam scores):

$$
\begin{aligned}
P(\mathcal{D} \mid \mu, \sigma) & =P\left(x_{1}, \ldots, x_{n} \mid \mu, \sigma\right) \\
& =\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \prod_{i=1}^{n} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

- Log-likelihood of data:

$$
\log P(\mathcal{D} \mid \mu, \sigma)=-n \log (\sigma \sqrt{2 \pi})-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}
$$

Your second learning algorithm: MLE for mean of a Gaussian

- What's MLE for mean?

$$
\begin{aligned}
& \frac{d}{d \mu} \log P(\mathcal{D} \mid \mu, \sigma)=\frac{d}{d \mu}\left[-n \log (\sigma \sqrt{2 \pi})-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& =-\sum_{i=1}^{n} \frac{2\left(x_{i}-\mu\right)}{2 d^{2}} \cdot(-1)=0 \\
& \sum_{i=1}^{n}\left(x_{i}-\mu\right)=0 \rightarrow \sum_{i=1}^{n} x_{i}=\sum \mu=n \mu \\
& \Rightarrow \mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

MLE for variance $\log (a b)=\log (a)+\log (b)$

- Again, set derivative to zero:

$$
\begin{aligned}
& \frac{d}{d \sigma} \log P(\mathcal{D} \mid \mu, \sigma)=\frac{d}{d \sigma}\left[-n \log (\sigma \sqrt{2 \pi})-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& =-\cap \frac{1}{\sigma}+\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{3}}=-n+\sum \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}=0 \\
& \sigma=\frac{1}{n} \sum\left(x_{i}-\mu\right)^{2} \\
& \hat{B}_{\text {MLE }}=\frac{1}{n}\left(x_{i}-\hat{\mu}_{\text {ML }}\right)^{3}
\end{aligned}
$$

Learning Gaussian parameters

- MLE:

$$
\begin{aligned}
& \widehat{\mu}_{M L E}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& \widehat{\sigma}^{2} \\
& M L E=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{M L E}\right)^{2}
\end{aligned}
$$

- MLE for the variance of a Gaussian is biased

$$
\mathbb{E}\left[\widehat{\sigma^{2}} M L E\right] \neq \sigma^{2}
$$

\square Unbiased variance estimator:

$$
{\widehat{\sigma^{2}}}_{\text {unbiased }}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{M L E}\right)^{2}
$$

Maximum Likelihood Estimation

Observe $X_{1}, X_{2}, \ldots, X_{n}$ drawn IID from $f(x ; \theta)$ for some "true" $\theta=\theta_{*}$
Likelihood function $L_{n}(\theta)=\prod_{i=1}^{n} f\left(X_{i} ; \theta\right)$
Log-Likelihood function $l_{n}(\theta)=\log \left(L_{n}(\theta)\right)=\sum_{i=1}^{n} \log \left(f\left(X_{i} ; \theta\right)\right)$
Maximum Likelihood Estimator (MLE) $\widehat{\theta}_{M L E}=\arg \max _{\theta} L_{n}(\theta)$

Maximum Likelihood Estimation

Observe $X_{1}, X_{2}, \ldots, X_{n}$ drawn IID from $f(x ; \theta)$ for some "true" $\theta=\theta_{*}$
Likelihood function $L_{n}(\theta)=\prod_{i=1}^{n} f\left(X_{i} ; \theta\right)$
Log-Likelihood function $l_{n}(\theta)=\log \left(L_{n}(\theta)\right)=\sum_{i=1}^{n} \log \left(f\left(X_{i} ; \theta\right)\right)$
Maximum Likelihood Estimator (MLE) $\widehat{\theta}_{M L E}=\arg \max _{\theta} L_{n}(\theta)$

Properties (under benign regularity conditions-smoothness, identifiability, etc.):

- Asymptotically consistent and normal: $\frac{\widehat{\theta}_{M L E}-\theta_{*}}{\widehat{s e}} \sim \mathcal{N}(0,1)$
- Asymptotic Optimality, minimum variance (see Cramer-Rao lower bound)

Recap

- Learning is...
\square Collect some data
- E.g., coin flips
- Choose a hypothesis class or model
- E.g., binomial

Choose a loss function

- E.g., data likelihood

Choose an optimization procedure

- E.g., set derivative to zero to obtain MLE
\square Justifying the accuracy of the estimate
- E.g., Hoeffding's inequality

House i attribute $=$ \{sq. feet, dist. to lake,...)
We know $x_{i} \in \mathbb{R}^{d}$ (d known attributes)
Observe final sale price $y_{i} \in \mathbb{R}$
Last month observations $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
Now we see houses $\left\{x_{j}\right\}_{j=1}^{m}$
Linear model $y_{i}=x_{i}^{T} \theta$ for some $\theta \in \mathbb{C}^{d}$.

$$
\begin{aligned}
& y_{i}=x_{i}^{\top} \theta+\varepsilon_{i}, \frac{\varepsilon_{i} \sim N\left(0, o^{\prime 2}\right)}{f\left(y \mid x_{i}, \theta\right)=\frac{1}{\sqrt{2 \pi d^{2}}} \exp \left(-\frac{\left(y-x_{i}^{\top} \theta\right)^{2}}{2 \sigma^{2}}\right)}
\end{aligned}
$$

$L_{n}(\theta)=\left(2 \pi \delta^{2}\right)^{-n / 2} \prod_{i=1}^{n} \exp \left(-\frac{\left(y-x_{i}^{T} \theta\right)^{2}}{2 \sigma^{2}}\right)$

$$
=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(\sum-\frac{\left(y-x_{i}^{\top} \theta\right)^{2}}{2 d^{2}}\right)
$$

$$
\begin{aligned}
l_{n}(\theta)= & -\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\sum_{i=1}^{n} \frac{\left(y_{i}-x_{i}^{\top} \theta\right)^{2}}{2 \sigma^{2}} \\
\nabla_{\theta} \ln (\theta)= & \sum_{i=1}^{n} \frac{\left(y_{i}-x_{i}^{\top} \theta\right) x_{i}=0}{\sigma^{2}}=0 \\
& \sum_{i=1}^{n} x_{i} y_{i}=\sum_{i=1}^{n} x_{i} x_{i}^{\top} \theta=\left(\sum_{i=1}^{n} x_{i} x_{i}^{\top}\right) \theta
\end{aligned}
$$

$$
\hat{\theta}_{M L E}=\left(\sum_{i=1}^{n} x_{i} x_{i}^{\top}\right)^{-1}\left(\sum x_{i} y_{i}\right)
$$

$$
\begin{aligned}
& X=\left(x_{1}, \ldots, x_{n}\right)^{\top}=\left[\begin{array}{c}
-x_{1}^{\top}- \\
\vdots \\
-x_{n}^{\top} \ldots
\end{array}\right] \quad y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \\
& Y=\underset{n \times 1}{X} \underset{n \times d d \times 1}{\theta_{*}^{*}}+\varepsilon_{n \times 1} \quad\|w\|_{2}^{2}:=\sum_{i=1}^{n}\left|w_{i}\right|^{2} \\
& \hat{\theta}=\underset{\theta}{\operatorname{argmin}} \sum\left(y_{i}-x_{i}^{\top} \theta\right)^{2}=\underset{\theta}{\operatorname{argmin}} \| \underbrace{y-X \theta \|_{2}^{2}} \\
& \rightarrow \nabla_{\theta}\|y-x \theta\|_{2}^{2}=-x^{\top} \cdot 2(y-x \theta)=0 \\
& X^{T} Y=X^{T} X \theta \rightarrow \tilde{\theta}=\left(X^{T} X\right)^{-1} X^{T} Y \\
& \hat{\theta}=\left(x^{\top} x\right)^{-1} x^{\top} y \\
& =\left(X^{\top} X\right)^{-1} X^{\top}\left(X \theta_{\theta}+\varepsilon\right) \\
& =\left(x^{\top} x\right)^{-1} X^{\top} x \theta^{*}+\left(X^{\top} X\right)^{-1} X^{\top} \varepsilon \\
& =\theta_{*}+\left(X^{\top} X\right)^{-1} X^{\top} \varepsilon \\
& \mathbb{E}\left[\hat{\theta}_{M L E}\right]=\theta_{*}+\left(X^{\top} X\right)^{-1} X^{\top} \mathbb{E}[\varepsilon]=\theta_{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\left[\left(\hat{\theta}_{M L E}-\mathbb{E}\left(\hat{\theta}_{M L E}\right\}\right)\left(\hat{\theta}_{M L E}-\mathbb{E}\left[\hat{\theta}_{M E E}\right]\right)^{\top}\right] \\
&=\mathbb{E}\left[\left(X^{\top} X\right)^{-1} X^{\top} \varepsilon \varepsilon^{\top} X\left(X^{\top} X\right)^{-1}\right] \\
&=\left(X^{\top} X\right)^{-1} X^{\top} \underbrace{\mathbb{E}}_{\underbrace{\top}\left[\varepsilon \varepsilon^{\top}\right]} X\left(X^{\top} X\right)^{-1} \\
&=\theta^{2}\left(X^{\top} X\right)^{-1} \\
& \hat{\theta}_{M L E}=N\left(\theta_{\$},\left(X^{\top} X\right)^{-1} \sigma^{2}\right)
\end{aligned}
$$

