Linear Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington Oct 2, 2018

The regression problem

Given past sales data on zillow.com, predict:
$y=$ House sale price from $x=$ \# sq. ft., zip code, date of sale, etc. $\}$

The regression problem

Given past sales data on zillow.com, predict: $y=$ House sale price from
$x=\{\#$ sq. ft., zip code, date of sale, etc. $\}$

Training Data:
$\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
$y_{i} \in \mathbb{R}$

Hypothesis: linear

$$
y_{i} \approx x_{i}^{T} w
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

The regression problem in matrix notation

$$
\begin{aligned}
& \widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \\
&=\arg \min _{w}(\mathbf{y}-\mathbf{X} w)^{T}(\mathbf{y}-\mathbf{X} w) \\
& \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{c}
x_{1}^{T} \\
\vdots \\
x_{n}^{T}
\end{array}\right]
\end{aligned}
$$

The regression problem in matrix notation

$$
\begin{gathered}
\widehat{w}_{L S}=\arg \min _{w}\|\mathbf{y}-\mathbf{X} w\|_{2}^{2} \\
=\arg \min _{w}(\mathbf{y}-\mathbf{X} w)^{T}(\mathbf{y}-\mathbf{X} w) \\
\nabla_{w}(\cdot)=-2 X^{\top}\left(\underline{\left.y-X_{w}\right)=0}\right. \\
X^{\top} y=X^{\top} X_{w}
\end{gathered}
$$

If $\left(x^{\top} x\right)^{-1}$ exists then $\hat{w}=\left(x^{\top} x\right)^{-1} x^{\top} y$

The regression problem in matrix notation

$$
\begin{aligned}
\widehat{w}_{L S} & =\arg \min _{w}\|\mathbf{y}-\mathbf{X} w\|_{2}^{2} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

What about an offset?

$$
\begin{aligned}
\widehat{w}_{L S}, \widehat{b}_{L S} & =\arg \min _{w, b} \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}^{T} w+b\right)\right)^{2} \\
& =\arg \min _{w, b}\|\mathbf{y}-(\mathbf{X} w+\mathbf{1} b)\|_{2}^{2}
\end{aligned}
$$

$$
\begin{gathered}
\widehat{w}_{L S}, \widehat{b}_{L S}=\arg \min _{w, b}\|\mathbf{y}-(\mathbf{X} w+\mathbf{1} b)\|_{2}^{2} \\
\nabla_{w}=2\left(X^{\top}\right)\left(y-\left(X_{w}+1 b\right)\right)=0 \\
x^{\top} y=X^{\top} X_{w}+X^{\top} 1 b \\
\nabla_{b}=21^{\top}\left(y-\left(X_{w}+1 b\right)\right)=0 \\
1_{y}^{\top}=1^{\top} X_{w}+n b \\
b=\frac{1}{n} \sum y_{i}-\frac{1}{n} 1^{\top} X w
\end{gathered}
$$

Dealing with an offset

$$
\begin{aligned}
& \widehat{w}_{L S}, \widehat{b}_{L S}=\arg \min _{w, b}\|\mathbf{y}-(\mathbf{X} w+\mathbf{1} b)\|_{2}^{2} \\
& \mathbf{X}^{T} \mathbf{X} \widehat{w}_{L S}+\widehat{b}_{L S} \mathbf{X}^{T} \mathbf{1}=\mathbf{X}^{T} \mathbf{y} \\
& \mathbf{1}^{T} \mathbf{X} \widehat{w}_{L S}+\widehat{b}_{L S} \mathbf{1}^{T} \mathbf{1}=\mathbf{1}^{T} \mathbf{y} \quad\left(1^{\top} X_{w}\right)^{\top}=\omega^{\top} \frac{X_{0}^{T}}{\sigma_{0}} \\
& \mu=\sum_{i=1}^{n} x_{i} \quad \sum_{i=1}^{n}\left(x_{i}-\mu\right)=\left(\sum x_{i}\right)-n \mu=0 \\
& =0 \\
& \text { If }=\mathbf{X}^{T} \mathbf{1}=0 \text { (ide., if each feature is mean-zero) then } \\
& \widehat{\widehat{w}}_{L S}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \\
& \widehat{b}_{L S}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \quad \text { Given a new } x \text {, predict } \quad \hat{w}^{\top}(x-\mu)+\hat{b}
\end{aligned}
$$

The regression problem in matrix notation

$$
\begin{aligned}
\widehat{w}_{L S} & =\arg \min _{w}\|\mathbf{y}-\mathbf{X} w\|_{2}^{2} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

But why least squares?
Consider $\quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ where $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$
$P(y \mid x, w, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y-x^{\top} \omega\right)^{2}}{2 \sigma^{2}}\right)$

Maximizing log-likelihood

Maximize:
$\log P(\mathcal{D} \mid w, \sigma)=\log \left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \prod_{i=1}^{n} e^{-\frac{\left(y_{i}-x_{i}^{T} w\right)^{2}}{2 \sigma^{2}}}$

MLE is LS under linear model

$$
\begin{aligned}
& \widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \\
& \widehat{w}_{M L E}=\arg \max _{w} P(\mathcal{D} \mid w, \sigma) \\
& \quad \text { if } \quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad \text { and } \quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right) \\
& \quad \widehat{w}_{L S}=\widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

Analysis of error

$$
\underline{\mathbf{Y}}=\mathbf{X} w+\epsilon
$$

if $y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ and $\epsilon_{i} \xlongequal{\text { i.i.d. }} \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\begin{aligned}
& \widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \\
&=\underbrace{\left(X^{\top} X\right)^{-1} X^{\top}\left(X_{w}\right.}+\varepsilon) \quad \hat{w}+\left(X^{\top} X\right)^{-1} X^{\top} \varepsilon \\
& \mathbb{E}[\hat{w}]=w\left[\varepsilon^{\top}\right]=\sigma^{2} I \\
& \mathbb{E}\left[(\hat{w}-w)(\hat{w}-w)^{\top}\right]=\mathbb{E}\left[\left(x^{\top} x\right)^{-1} x^{\top} \varepsilon \varepsilon^{\top} x\left(x^{\top} x\right)^{-1}\right] \\
&=\left(x^{\top} x\right)^{-1} X^{\top} \mathbb{E}\left[\varepsilon \varepsilon^{\top}\right] x\left(X^{\top} x\right)^{-1} \\
&=o^{2}\left(X^{\top} X\right)^{-1} \quad \hat{w} \sim N\left(w, \sigma^{2}(X T X)^{-1}\right)
\end{aligned}
$$

Analysis of error
 $\mathbf{Y}=\mathbf{X} w+\epsilon$

if $y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ and $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}(\mathbf{X} w+\epsilon) \\
& =w+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon
\end{aligned}
$$

$$
\operatorname{Cov}\left(\widehat{w}_{M L E}\right)=\mathbb{E}\left[(\widehat{w}-\mathbb{E}[\widehat{w}])(\widehat{w}-\mathbb{E}[\widehat{w}])^{T}\right]=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

$$
\widehat{w}_{M L E} \sim \mathcal{N}\left(w,\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)
$$

The regression problem

Given past sales data on zillow.com, predict: $y=$ House sale price from
$x=\{\#$ sq. ft., zip code, date of sale, etc. $\}$

Training Data:
$\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
$y_{i} \in \mathbb{R}$

Hypothesis: linear

$$
y_{i} \approx x_{i}^{T} w
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

The regression problem

Given past sales data on zillow.com, predict: $y=$ House sale price from
$x=\{\#$ sq. ft., zip code, date of sale, etc. $\}$

Training Data:
$\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
$y_{i} \in \mathbb{R}$

Hypothesis: linear

$$
y_{i} \approx x_{i}^{T} w
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

The regression problem

$\begin{array}{ll}\text { Training Data: } & x_{i} \in \mathbb{R}^{d} \\ \left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} & y_{i} \in \mathbb{R}\end{array}$
Hypothesis: linear

$$
y_{i} \approx x_{i}^{T} w
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

Transformed data:

The regression problem

Training Data:
$\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$

Hypothesis: linear
$y_{i} \approx x_{i}^{T} w$
Loss: least squares
$\min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$

Transformed data:

$h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ maps original features to a rich, possibly high-dimensional space

$$
\text { in d=1: } \quad h(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{p}(x)
\end{array}\right]=\left[\begin{array}{c}
x \\
x^{2} \\
\vdots \\
x^{p}
\end{array}\right]
$$

for $\mathrm{d}>1$, generate $\left\{u_{j}\right\}_{j=1}^{p} \subset \mathbb{R}^{d}$

$$
\begin{aligned}
h_{j}(x) & =\frac{1}{1+\exp \left(u_{j}^{T} x\right)} \\
h_{j}(x) & =\left(u_{j}^{T} x\right)^{2} \\
h_{j}(x) & =\cos \left(u_{j}^{T} x\right)
\end{aligned}
$$

$$
\hat{f}(x)=\sum_{k=0}^{p-1} f^{(k)}(0) \frac{1}{k!} x^{k}
$$

$$
h(x)=\left[\begin{array}{c}
h_{0}(x) \\
\vdots \\
h_{R_{R}}(x)
\end{array}\right]
$$

Given x, predict $\hat{\omega}^{\top} h(x) \quad h_{k}(x)=x^{k} \frac{1}{k!}$

$$
\begin{gathered}
x_{i} \longmapsto h\left(x_{i}\right) \quad \tilde{x}=\left[\begin{array}{c}
h\left(x_{1}\right)^{\top} \\
\vdots \\
h\left(x_{n}\right)^{\top}
\end{array}\right] \\
\hat{w}=\left(\tilde{x}^{\top} \tilde{X}\right)^{-1} \tilde{x}^{\top} y
\end{gathered}
$$

The regression problem

$\begin{array}{ll}\text { Training Data: } & x_{i} \in \mathbb{R}^{d} \\ \left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} & y_{i} \in \mathbb{R}\end{array}$
Hypothesis: linear
$y_{i} \approx x_{i}^{T} u$
Loss: least squares
$\min _{\chi^{M}} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$

Transformed data:

$$
h(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{p}(x)
\end{array}\right]
$$

Hypothesis: linear

$$
y_{i} \approx h\left(x_{i}\right)^{T} w \quad w \in \mathbb{R}^{p}
$$

Loss: least squares

$$
\min _{w} \sum_{i=1}^{n}\left(y_{i}-h\left(x_{i}\right)^{T} w\right)^{2}
$$

The regression problem

Training Data: $x_{i} \in \mathbb{R}^{d}$ $y_{i} \in \mathbb{R}$ $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}$

Transformed data:

$$
h(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{p}(x)
\end{array}\right]
$$

Hypothesis: linear
$y_{i} \approx h\left(x_{i}\right)^{T} w \quad w \in \mathbb{R}^{p}$
Loss: least squares
$\min _{w} \sum_{i=1}^{n}\left(y_{i}-h\left(x_{i}\right)^{T} w\right)^{2}$

The regression problem

Training Data: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
\[\begin{gathered} x_{i} \in \mathbb{R}^{d}
y_{i} \in \mathbb{R} \end{gathered} \]

small p fit

Transformed data:

$$
h(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{p}(x)
\end{array}\right]
$$

Hypothesis: linear
$y_{i} \approx h\left(x_{i}\right)^{T} w \quad w \in \mathbb{R}^{p}$
Loss: least squares
$\min _{w} \sum_{i=1}^{n}\left(y_{i}-h\left(x_{i}\right)^{T} w\right)^{2}$

The regression problem

$\begin{array}{ll}\text { Training Data: } & x_{i} \in \mathbb{R}^{d} \\ \left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} & y_{i} \in \mathbb{R}\end{array}$

large p fit

date of sale

Transformed data:

$$
h(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{p}(x)
\end{array}\right]
$$

Hypothesis: linear
$y_{i} \approx h\left(x_{i}\right)^{T} w \quad w \in \mathbb{R}^{p}$
Loss: least squares
$\min _{w} \sum_{i=1}^{n}\left(y_{i}-h\left(x_{i}\right)^{T} w\right)^{2}$
What's going on here?

Bias-Variance Tradeoff

Machine Learning - CSE546 Kevin Jamieson University of Washington

Oct 5, 2018

Statistical Learning $\quad P_{X Y}(X=x, Y=y)$

Goal: Predict Y given X
Find function η that minimizes

$$
\begin{aligned}
& \mathbb{E}_{X Y}\left[(Y-\eta(X))^{2}\right]=\mathbb{E}_{X}\left[\underline{\mathbb{E}}_{Y \mid X}\left[(Y-\eta(x))^{2} \mid X=x\right]\right] \\
& \eta(x)=\underset{c}{\operatorname{argmin}} \underset{Y Y \mid X}{\mathbb{E}}\left[(Y-c)^{2} \mid X=x\right] \\
& \begin{aligned}
\frac{d}{d c} \underset{Y \mid X}{\mathbb{E}}\left[(Y-c)^{2} \mid X=x\right] & =\mathbb{E}[Z(Y-c) \mid X=x]=0 \\
& =2 \mathbb{E}[Y \mid X=x]-2 c=0 \\
c & =\xi(x)=\mathbb{E}[Y \mid X=x]
\end{aligned}
\end{aligned}
$$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Goal: Predict \mathbf{Y} given \mathbf{X}

Find function η that minimizes

$$
\begin{array}{r}
\mathbb{E}_{X Y}\left[(Y-\eta(X))^{2}\right]=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}\left[(Y-\eta(x))^{2} \mid X=x\right]\right] \\
\eta(x)=\arg \min _{c} \mathbb{E}_{Y \mid X}\left[(Y-c)^{2} \mid X=x\right]=\mathbb{E}_{Y \mid X}[Y \mid X=x]
\end{array}
$$

Under LS loss, optimal predictor: $\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]$

Statistical Learning

 $\mathbb{E}_{X Y}\left[(Y-\eta(X))^{2}\right]$$$
P_{X Y}(X=x, Y=y)
$$

Statistical Learning

 $\mathbb{E}_{X Y}\left[(Y-\eta(X))^{2}\right]$$$
P_{X Y}(X=x, Y=y)
$$

$$
P_{X Y}\left(Y=y \mid X=x_{0}\right)
$$

$$
P_{X Y}\left(Y=y \mid X=x_{1}\right)
$$

Statistical Learning $\mathbb{E}_{X Y}\left[(Y-\eta(X))^{2}\right]$

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

$$
P_{X Y}\left(Y=y \mid X=x_{0}\right)
$$

$$
P_{X Y}\left(Y=y \mid X=x_{1}\right)
$$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

But we only have samples: $\left(x_{i}, y_{i}\right) \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ for $i=1, \ldots, n$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

But we only have samples: $\left(x_{i}, y_{i}\right) \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ for $i=1, \ldots, n$ and are restricted to a function class (e.g., linear) so we compute:

$$
\widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

But we only have samples: $\left(x_{i}, y_{i}\right) \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ for $i=1, \ldots, n$ and are restricted to a function class (e.g., linear) so we compute:

$$
\widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

We care about future predictions: $\mathbb{E}_{X Y}\left[(Y-\widehat{f}(X))^{2}\right]$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

But we only have samples: $\left(x_{i}, y_{i}\right) \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ for $i=1, \ldots, n$ and are restricted to a function class (e.g., linear) so we compute:

$$
\widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

Each draw $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ results in different \widehat{f}

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

But we only have samples: $\left(x_{i}, y_{i}\right) \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ for $i=1, \ldots, n$ and are restricted to a function class (e.g., linear) so we compute:

$$
\widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

Each draw $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ results in different \widehat{f}

Bias-Variance Tradeoff

$$
\begin{aligned}
& \eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x] \quad \widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
& \mathbb{E}_{Y \mid X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(Y-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right] \mid X=x\right]=\mathbb{E}_{Y \mid X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(Y-\eta(x)+\eta(x)-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right] \mid X=x\right] \\
& =\mathbb{E}_{Y \mid X}\left[\mathbb{E}_{D}\left[(Y-z(x))^{2}+2(Y-z(x))\left(\eta(x)-\hat{f}_{D}(x)\right)+\left(z(x)-\hat{f}_{D}(x)\right)^{2} \mid X=x\right)\right] \\
& =\mathbb{E}_{Y \mid X}\left[(Y-\gamma(x))^{2} \mid X=x\right]+2 \mathbb{E}_{D}\left[\mathbb{E}_{Y \mid X}\left[(Y-\gamma(x))\left(\gamma(x)-\hat{f}_{D}(x)\right)\right]\right]+\mathbb{E}_{D}\left[\left(z(x)-\hat{f}_{\theta}\right)^{2}\right]^{2} \\
& \mathbb{E}_{Y \mid X}[(Y-\xi(X)) \mid X=x]=\mathbb{E}_{Y \mid X}[Y \mid X=x]-\xi(x)=0
\end{aligned}
$$

Bias-Variance Tradeoff

$$
\begin{array}{r}
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x] \quad \widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
\mathbb{E}_{Y \mid X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(Y-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right] \mid X=x\right]=\mathbb{E}_{Y \mid X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(Y-\eta(x)+\eta(x)-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right] \mid X=x\right] \\
= \\
\mathbb{E}_{Y \mid X}\left[\mathbb { E } _ { \mathcal { D } } \left[(Y-\eta(x))^{2}+2(Y-\eta(x))\left(\eta(x)-\widehat{f}_{\mathcal{D}}(x)\right)\right.\right. \\
\left.\left.+\left(\eta(x)-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right] \mid X=x\right] \\
= \\
\underbrace{\mathbb{E}_{Y \mid X}\left[(Y-\eta(x))^{2} \mid X=x\right]}_{\begin{array}{c}
\text { irreducible error }
\end{array}}+\frac{\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right]}{\text { Caused by stochastic } \quad \begin{array}{l}
\text { Caused by either using too "simple" } \\
\text { of a model or not enough }
\end{array}} \\
\text { data to learn the model accurately }
\end{array}
$$

Bias-Variance Tradeoff

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x] \quad \widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

$\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right]=\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{\mathcal{f}_{\mathcal{D}}}(x)\right]+\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]-\widehat{\mathcal{f}_{\mathcal{D}}}(x)\right)^{2}\right]$

$$
\begin{aligned}
&=\mathbb{E}_{D}\left[\left(\xi(x)-\mathbb{E}_{D}\left[\hat{f}_{D}(x)\right]\right)^{2}\right]+2 \underline{\mathbb{E}_{D}}\left[\left(\frac{\left(z(x)-\mathbb{E}_{D}\left[\hat{f}_{0}(x)\right)\right.}{}\right)\left(\mathbb{E}_{D}\left[\hat{f}_{0}(x)\right]-\hat{f}_{D}(z)\right)\right] \\
&+\mathbb{E}_{D}\left[\left(\mathbb{E}_{D}\left[\hat{f}_{D}(x)\right]-\hat{f}_{0}(x)\right)^{2}\right]
\end{aligned}
$$

Bias-Variance Tradeoff

$$
\begin{gathered}
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x] \quad \widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right]=\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]+\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right] \\
=\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]\right)^{2}+2\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]\right)\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)\right. \\
\left.\quad+\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right] \\
=\frac{\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]\right)^{2}}{\text { biased squared }}+\frac{\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right]}{\text { variance }}
\end{gathered}
$$

Bias-Variance Tradeoff

$$
\mathbb{E}_{Y \mid X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(Y-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right] \mid X=x\right]=\mathbb{E}_{Y \mid X}\left[(Y-\eta(x))^{2} \mid X=x\right]
$$

irreducible error

$$
+\frac{\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]\right)^{2}}{\text { biased squared }}+\frac{\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right]}{\text { variance }}
$$

Example: Linear LS $\mathbf{Y}=\mathbf{X} w+\epsilon$

if $\quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ and $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=w+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon
$$

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]=\mathbb{E}\left[x^{\top} w+\varepsilon \mid X=x\right]=x^{\top} w
$$

$$
\begin{aligned}
\hat{f}_{\mathcal{D}}(x) & =\hat{\omega}^{\top} x \quad \begin{array}{l}
\mathbb{E}_{D}\left[\hat{f}_{D}(x)\right]=\mathbb{E}_{D \mid x}\left[\mathbb{E}_{Y \mid x}\left[\hat{\omega}^{\top} x \mid x=2\right]\right. \\
\end{array}=\mathbb{E}_{0 \mid x}\left[\omega^{\top} x\right]=\omega^{\top} x
\end{aligned}
$$

Example: Linear LS $\quad \mathbf{Y}=\mathbf{X} w+\epsilon$

if $\quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ and $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ $\widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=w+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon$
$\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]$
$\widehat{f_{\mathcal{D}}}(x)=\widehat{w}^{T} x=w^{T} x+\epsilon^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x$
$\frac{\mathbb{E}_{X Y}\left[(\widehat{Y-\eta(x)})^{2} \mid X=x\right]}{\text { irreducible error }}=\sigma^{2} \quad \frac{\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{\mathcal{F}}_{\mathcal{D}}(x)\right]\right)^{2}}{\text { biased squared }}=0$

Example: Linear LS $\quad \mathbf{Y}=\mathbf{X} w+\epsilon$

if $\quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ and $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$
$\widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=w+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon$
$\widehat{f_{\mathcal{D}}}(x)=\widehat{w}^{T} x=w^{T} x+\epsilon^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x$
$\underline{\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]-{\widehat{f_{\mathcal{D}}}}(x)\right)^{2}\right]}=\mathbb{E}_{\mathrm{D}}\left[x^{\top}\left(X^{\top} X\right)^{-1} \mathrm{X}^{\top} \underline{\varepsilon \varepsilon^{\top}} \mathrm{X}\left(X^{\top} X\right)^{-1} x\right]$
variance

$$
=\mathbb{E}_{x_{0}}\left[x^{\top}\left(X^{\top} X\right)^{-1} x\right] \sigma^{2}
$$

Example: Linear LS $\quad \mathbf{Y}=\mathbf{X} w+\epsilon$

if $\quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ and $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=w+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon
$$

$$
\widehat{f}_{\mathcal{D}}(x)=\widehat{w}^{T} x=w^{T} x+\epsilon^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x
$$

$\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{\mathcal{F}_{\mathcal{D}}}(x)\right]-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right]=\mathbb{E}_{\mathcal{D}}\left[x^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon \epsilon^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x\right]$
variance

$$
\begin{aligned}
& =\sigma^{2} x^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x \\
& =\sigma^{2} \operatorname{Trace}\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x x^{T}\right)
\end{aligned}
$$

$$
\mathbf{X}^{T} \mathbf{X}=\sum_{i=1}^{n} x_{i} x_{i}^{T} \xrightarrow{n} \text { large } n \Sigma \quad \quad \Sigma=\mathbb{E}\left[X X^{T}\right], \quad X \sim P_{X}
$$

$\mathbb{E}_{X=x}\left[\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right]\right]=\frac{\sigma^{2}}{n} \mathbb{E}_{X}\left[\operatorname{Trace}\left(\Sigma^{-1} X X^{T}\right)\right]=\frac{d \sigma^{2}}{n}$

Example: Linear LS $\quad \mathbf{Y}=\mathbf{X} w+\epsilon$

if $\quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ and $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ $\widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=w+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon$
$\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]$
$\widehat{f_{\mathcal{D}}}(x)=\widehat{w}^{T} x=w^{T} x+\epsilon^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x$
$\frac{\mathbb{E}_{X Y}\left[(Y-\eta(x))^{2} \mid X=x\right]}{\text { irreducible error }}=\sigma^{2} \quad \frac{\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]\right)^{2}}{\text { biased squared }}=0$
$\mathbb{E}_{X=x} \frac{\left[\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right]\right]}{\text { variance }}=\frac{d \sigma^{2}}{n}$

