Wa 'm up ,, Homework due tonight! 11:59 PM
B, B=A: AA=E

Let X ~ N (p, ) where X € R?

1. Let Y = AX +b. For what 1,2 is Y ~ N ([, %)

= E(v] AE[XX*E T < [ (- Eon)(r-6CraY" ] = [ [(Ax-Ap)(A%s
A T EBlA-p) = p)AT ] = AT AT
2. Suppose Can generate independent Gaussians Z ~ N (0, 1)

(e.g., numpy.random.randn). How can I use this to generate X7

4

2[?] §~,L+z"‘z- ﬂﬂ"u ELe-e53- zen*J

—=[l-= r[(z*'wz )]

o lratr ] B[R (o )] iz )T
Tr(ABD=Te(BA)
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Statistical Learning
"
Goal: Predict Y given X

Find function n that minimizes

Exy [(Y —n(X))’]
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Statistical Learning  r,(x =2 v =y
"
Goal: Predict Y given X

Find function n that minimizes

Exy (Y = n(X))] = Ex By x[(Y —n(2))*|X = ]|

n(z) = argmin By x (Y — ¢)’|X = z] = By x[Y|X = 2]
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Statistical Learning vy - 5x))?
" S

Puvi(X =8,V =g




Statistical Learning vy - 5x))?
" S

©2018 Kevin Jamieson



Statistical Learning vy - 5x))?
" S

Puv (X =0,¥V =g Ideally, we want to find:
| n(z) = By x[Y[X = z

Pxy (Y = y|X = xo)
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Statistical Learning

Puv (X =0,¥V =g Ideally, we want to find:
n(z) = By x[Y[X = z




Statistical Learning

Puv (X =0,¥V =g Ideally, we want to find:
n(z) = By x[Y[X = z

But we only have samples:
(:cz,y@) Z.fz\'-fd. PXY fior ¢ = 1,...,77,
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Statistical Learning

Puv (X =0,¥V =g Ideally, we want to find:
n(z) = By x[Y[X = z

But we only have samples:
(l’z,y@) Z.fz\'-fd. PXY flor ¢ = 1,...,77,

and are restricted to a
function class (e.g., linear)
SO we compute:

= e
f=argmin— ) (y; — f(x:))

JFeF m =
1=1
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Statistical Learning

Puv (X =0,¥V =g Ideally, we want to find:
n(z) = By x[Y[X = z

But we only have samples:
(l’z,y@) Z.fz\'-fd. PXY flor ¢ = 1,...,77,
and are restricted to a
function class (e.g., linear)
SO we compute:

Py i s

f = argmin — Z(yz = fi@:))

eFn
X / =l

P

We care about future predictions: Exy[(Y — f(X))?]
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Statistical Learning
" S

PXy(X:.I‘,Y:y)

X

Ideally, we want to find:
n(z) = Ey|x[Y|X = z]

But we only have samples:
(xi,y@-) z.’z\.}d. PXY for ¢ = 1,...,’/?,

and are restricted to a
function class (e.g., linear)
SO we compute:

2 e

f=argmin =~ ¥ (y; — f(x:))’

JFeF m =
1=1

Each draw D = {(x;,y;) }_; results in different ]?D
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Statistical Learning
" I
ny(X :QZ‘,Y :y)

Each draw D = {(x;,y;) }7_

©2018 Kevin Jamieson

Ideally, we want to find:
n() = Eyx[Y|X =

But we only have samples:
(xi,yi) z.’z\.}d. PXY for ¢ = 1,...,’/?,
and are restricted to a
function class (e.g., linear)
SO we compute:
o e
f=argmin— > (y; — f(x:))’

JFeF m =
1=1

results in different ]?



Bias-Variance Tradeoff
» B
nz) =By x[Y|X =z f = argmin = > (yi — f2))

JFEF m

=il

By x[Ep[(Y — fp(2))’]|X = 2] = By x[Ep[(Y — n(x) + n(z) — fp(x))*)|X = 2]
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Bias-Variance Tradeoff
S

n

1

n(z) = By x[Y]X = 2] f = argmin - ;(yi — f(z:))®
By x[Ep[(Y — fp(2))’]|X = 2] = By x[Ep[(Y — n(x) + n(z) - fp(x))?]|X = 2]

—Em [EDKY = (@) +2(Y ~ (@) (n(x) - fp( )
+ (n(2) = Fo (@)X = 2]
=Ey x[(Y —1(2))*| X = 2] + Ep[(n(z) — fo(x))*

irreducible error learning error
Caused by stochastic =~ Caused by either using too “simple”
label noise of a model or not enough

data to learn the model accurately

©2018 Kevin Jamieson



Bias-Variance Tradeoff
BN
n(z) = Eyx[Y|X = 2] f=argmin =3 (yi — f(2:))°




Bias-Variance Tradeoff
» B
n(x) = EY|X[Y|X = g f= arg?éljrg . Z = f@))”

=il

Ep[(n(z) — fp(«))*] = Ep|(n(z) — Ep[fn(x)] + Ep[fo(x)] — fp(2))’

|
=Ep[(n(z) - Ep[fp(w)]) +2(n(z) — Ep[fp(2)]))Ep[fp(z)] — fo(z))
+ (Eplfp(z)] — fo(2))?]

=(n(z) — Ep[fp(2)])* + Ep[(Ep[fp(2)] — fn(x))?]

biased squared variance




Bias-Variance Tradeoff
n _

Ey x[Ep[(Y — fo(z

)X = 2] =

+(n(x)

— Ep|fp(2)))* + Ep[(Ep|fp ()

biased squared

Ey i x|(Y —n(z

irreducible error

‘X—x

— f())’]

variance

—— bias?
—— variance
— f{otal

ne
complexity



Example: LinearLS Y =Xw +e¢

|
. i,
if [y;=a]w+e [and ¢ <~ N(0,07)
Opre = (X'X) ' X'Y = w + (XTX) 1 X e

77(33) — Ey|X[Y‘X — LU] = DCTL\/

fo(x) = 07



Example: LinearLS Y =Xw +e¢

"
if yi::ﬁp/wj—ei and e,,;”d/\/'(()a)

Wyre = (XTX)IXTY =w+ (XTX)1XTe

1) = By x[Y]X = 2] ")

jA’p( =0z =wlz + X(XTX)™ 7

¢
\/\/————\ s
Exy[(Y —n(@)?|X =a]=02  (1(z) —Ep[fp(2)])* =0
irreducible error biased squared

E, L7, (312w



Example: LinearLS Y =Xw +e¢

fo@) ="z =w's+ £ X(XTX) s

T:

Eol(Enlfo(®)] - fole))?| = E, [ (erX(x0 %" ]
B [ar (50X e 2 X( ) x| ]
S E, [ 2 () ) 3 =1, [ (0]

2 0, [ Teaee (X007 sx" )]

—f
- 2 T 1 T >
B* | race (nhi XX
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V\

XTX =n ;t x! UE B 27//
", nf tAsswné XTX"’”TJ
(%) Ry
= E[(B1A01-£00)] g 7 (FT)

—’—J((JI\

_ do?
TN




Example: LinearLS Y =Xw +e¢

" JEE
if y;=2lw+e and g b N(0,07)

Wyre = (XIX)IXTY =w+ (XTX)_lXTe
fo@) ="z =wlz + £ X(XTX) '
Ep[(Epfp(2)] - [p(#))*] = Epla” (X"X) ' X" e X (X" X)a]

variance —Ep [OQCCT (XTX) — 1:13]
(%)

= ¢?Ep[Trace((XTX) tzzT)]

mn
lar
XTX =) "z " 5% 0y »=E[XX7T], X~ Px

1=1
Ex— [Eol(Eplfo(®)] - Fo())*] = TEx[Trace(s X XT)] = “-



Example: LinearLS Y =Xw +e¢

" JEE——
if y;=x]w+e and eiZZdN(OU)

Wyre = (XIX)IXTY =w+ (XTX)_lXTe
n(x) = ]Ey|X[Y\X = x|
fp( )=w'r=wlz+ X(XTX)

Exy[(Y —n@)?]|X =2]=02  (0(z) —Ep[fp(2)])* =0

” d

irreducible error biased squared

Ex—s [Epl(Ep[fo(x)] - fo(z))2] = 4

variance




Overfitting
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Bias-Variance Tradeoff

" JE
= Choice of hypothesis class introduces learning bias
More complex class — less bias
More complex class = more variance

= But in practice??



Bias-Variance Tradeoff

* J
= Choice of hypothesis class introduces learning bias
More complex class — less bias
More complex class = more variance

= But in practice??
= Before we saw how increasing the feature space can
iIncrease the complexity of the learned estimator:

F1 CFoCF3C...
]?g{) = arg min 1 Z (y; — f(x))?

JEk ‘D‘ (zi,y:)ED

Complexity grows as k grows



Training set error as a function of

. model ComEIexitx

F1CFa2CF3C... D bLh Pxy  TRAIN error:
1 1
o) mmgmin o 37 - f@)? o Yo = Jp) @)’

JE7 |D| (ri,y:)€ED (zi,y:) €D

TRUE error:
Exy[(Y — f5)(X))?]



Training set error as a function of

] model ComEIexitx

F1CFa2CF3C... D bLh Pxy  TRAIN error:

1
P9 —argmin S (g — fla)? B 2 i )y

TE7% |D| (z4,y:) €D (z4i,y:) €D

TRUE error:
Exy[(Y — f5)(X))?]

TEST error:

1.7.d.
T ~ PXY

|—;| S i - TP @)?

Important: DNT =)

Complexity (k)



. model ComEIexitx

Training set error as a function of

Fi1CFy CF3C...
1
ﬁ()k) = arg min
feFk
(zi,y:) €D
?_J. <igh Blas
ow Vararce

1.0

08

0.8

0.4

0.0

D

ii.d.
~" Pxy

@ Z (yi — f(:))?

Low Bias
High Varance

- Each line is i.i.d. draw of D or T

0 5

©2018 Kevin Jamieson

10

15 20

Complexity (k)

2§

30 35

Plot from Hastie et al

TRAIN error:
1
o 2 - o) (@:))?
(zi,y:) €D
TRUE error:
Exy[(Y — ]?fl()k)(X))Q]

TEST error:

ii.d.
T '~ Pxy

|—;| S (i — P9 ())?

Important: DNT =)

29



Training set error as a function of

. model ComEIexitx

F1CFa2CF3C... D bLh Pxy  TRAIN error:
1 1
B =agmin = > (- f@)? Y Wi Jp (@)

JETk |D| (zi,y:)ED | | (zi,y:) €D
TRUE error:
TRAIN error is optimistically Exy[(Y — fl(;k)(X))Q]
biased because it is evaluated _
on the data it trained on. TEST| TEST error:

error is unbiased only if T is T "5 Pyy

never used to train the model 1 ( (k) 2
— vi — fp (x5))

or even pick the complexity k. 7 (xi%g i

Important: DNT =0

©2018 Kevin Jamieson 30



Test set error
" JAE—
= Given a dataset, randomly split it into two parts:
Training data: D
Test data:
= Use training data to learn predictor

eg, L i @)

(xi,y:)€ED

= use training data to pick complexity k

Important: DNT =0

= Use test data to report predicted performance

1 k
i ST i 1Y) (@)
(xi,y:)ET

©2018 Kevin Jamieson



How many points do | use for

] traininﬂ/testinﬁ?

Very hard question to answer!
Too few training points, learned model is bad
Too few test points, you never know if you reached a good solution

Bounds, such as Hoeffding’s inequality can help:

P(0—0"|>¢) < 272N

More on this later the quarter, but still hard to answer
Typically:

If you have a reasonable amount of data 90/10 splits are common

If you have little data, then you need to get fancy (e.g., bootstrapping)

©2018 Kevin Jamieson 32
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Regularization in Linear Regression
" S

n

N . 2
Recall Least Squares: ;g = arg mmz (y; — z w)
w .

1=1
= argmin(y — Xw)! (y — Xw)

when (X1 X) !exists.... = (X'X) ' X'y



Regularization in Linear Regression

NN




Regularization in Linear Regression

Recall Least Squares: ;g = arg muijnzn: (yi — ZI?ZTw)Z
= arg muijn(i;l— Xw)! (y — Xw)
In general: = arg Ir’hijn w! (XTI X)w — 2y" Xw
’/+ \ + ...+ = =\ - d

(g1 — aTw)? + (y2 — 2 w)? + - + (g — 2Tw)? =Y (y; — 2T w)?
1 =1

n

What if z; € R? and d > n?

©2017 Kevin Jamieson 36



Regularization in Linear Regression
" S

mn
. . 2
Recall Least Squares: g = arg min E (y; — z w)
w
i—1

When z; € R? and d > n the objective function is flat in some directions:

©2017 Kevin Jamieson 37



Regularization in Linear Regression
"

mn
. . 2
Recall Least Squares: g = arg min E (y; — z w)
w
i—1

When z; € R? and d > n the objective function is flat in some directions:

Implies optimal solution is underconstrained ’ /

and unstable due to lack of curvature:

» small changes in training data result in large
changes in solution

« often the magnitudes of w are “very large”

Regularization imposes “simpler” solutions by a
“complexity” penalty

©2017 Kevin Jamieson 38



Ridge Regression

= Old Least squares objective:

Wrg = arg m1n Z — x;-rw)Z
N —_—
\ e
= Ridge Regression objective:
2
wmdge — argmmz —QZ?”LU) _I_)‘Hw”g

1=1
—— A

+ \+...+_ +)\\ . i
\ s— —




Minimizing the Ridge Regression Objective
"
Wridge = arg muijnz (yi — x?w)Z + MJwl|3

2 ﬂ%”,_zt z'?

)y -+ Ml

V. = KXT[XW“\/> td A =0
XXw + hw = XMy
(XTX+ AT = XT\/

‘f/ﬂw& = (XTx+ AIY'XT}/



Shrinkage Properties ¢ ~ A(0,021)
" S
Wridge = (X' X+ M) "' X"y

= Assume: XTX — n,[ and l = Xw + €
5= (e AT XX + (X xe ATY X

- (AT (X AL AT Yo + (KAL) KTe

s W —AXTXHAT) W+ [xTx<AT) X<

AW ‘/\(nI+>\I>—lW -G(mI*/\I) Xfi

- A I T
- W m.{_/\\’\/'* N+ A X'e




Elo-wli = 125w ll, +Z(f>~“’TE = N

+ lE (,Ti,\g‘ e’ X Xré ]
= D ¢ s B[ (e
nEN) (n € N> H:£/F<XT€£, X>J

Tr(D)=nd




Shrinkage Properties ¢~ A(0,0

" JEE—
Wridge = (XX + X)Xy
= Assume: XTX — n,] and y = Xw + €

ﬂ]\'m'alge — (XTX + )\[)_1XT(XU} + 6)

21)



Ridge Regression: Effect of Regularization
" JEE—

n
~ . 2
Wridge — al'g mu%nz (yz - x;rw) + )‘”ng
=1

= Solution is indexed by the regularization parameter A
= Larger A

= Smaller A
= AsA=> O

= ASA >

©2017 Kevin Jamieson 43



Ridge Regression: Effect of Regularization

"
i.g.d.
D " Pyys TRAIN error:
A~ > 1 1 w
e —argmin o S G-slul Al =S (g — 2T @), )
(zi,y:)€ED D‘ (x;,y:)ED | ’
TRUE error:
T ~(N) 2
E[(Y - X wD,m’dge) ]
TEST error:
i.i.d.
T '~ Pxy
1 ~(\
T Z (yz - xzrw%,)ridge)z
T
(zi,y:)€ED

Important: DNT =)
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Ridge Regression: Effect of Regularization
* JEE—

D "~ Pxy
(A o1
w7(.),)7’idge = arg min \’ﬁ Z (y; — o] w)? + A |w]|

(z4,y:)€D
o <igh Blas Low Bias
. wow Vararce High Varance
e
®
©
o
-
<o
g
g - Each line is i.i.d. draw of D or T
| | | I

1.1.d.

10 15 20 2§

’ Iargse A 1/

©2017 Kevilt Jamieson

30 35
small A

TRAIN error:

1 ~
‘ ‘ Z (y% - x?wg;\,)ridge)Q
(zi,y:) €D

TRUE error:
~(
E[(Y — X705, 45)°

TEST error:
i.i.d.
T '~ Pxy
1
m Z (?Ji—xz‘T@g)mdge)z
(zi,y:)€D

Important: DNT =0

45



Ridge Coefficient Path

From
Kevin Murphy
textbook

o 5 10

1/

= Typical approach: select A using cross validation, up next

©2017 Kevin Jamieson 46



What you need to know...

" JE
= Regularization
Penalizes for complex models
= Ridge regression
L, penalized least-squares regression

Regularization parameter trades off model complexity
with training error

©2017 Kevin Jamieson
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Cross-Validation

Machine Learning — CSE546
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" JEE—
= How do we pick the reqularization constant A...
= How do we pick the number of basis functions...

= \We could use the test data, but...



How... How... How?7?7?7?7?7°?7
» BN

= How do we pick the reqularization constant A...
= How do we pick the number of basis functions...

= \We could use the test data, but...

= Never ever ever ever ever ever ever ever ever
EeVver ever ever ever ever ever ever ever ever
EeVer ever ever ever ever ever ever ever ever
train on the test data

©2017 Kevin Jamieson
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(LOOQO) Leave-one-out cross validation
" S

= Consider a validation set with 1 example:

D — training data

D\j — training data with jth data point (x; ,y;) moved to validation set
= Learn classifier fy; with D\j dataset
= Estimate true error as squared error on predicting y;:

Unbiased estimate of error . (fpy)!

©2017 Kevin Jamieson 51



(LOOQO) Leave-one-out cross validation

Consider a validation set with 1 example:

D — training data

D\j — training data with jth data point (x; ,y;) moved to validation set
Learn classifier fy; with D\j dataset

Estimate true error as squared error on predicting y;:
Unbiased estimate of error . (fpy)!

LOO cross validation: Average over all data points j:
For each data point you leave out, learn a new classifier fp,
Estimate error as: n

1
erroryoo = E Z(yg — fD\j(wj))Q
j=1

©2017 Kevin Jamieson 52



LOO cross validation is (almost)
unbiased estimate of true error of h)
"

= When computing LOOCYV error, we only use N-1 data points
So it’s not estimate of true error of learning with N data points
Usually pessimistic, though — learning with less data typically gives worse answer

= LOO is almost unbiased! Use LOO error for model selection!!!
E.g., picking A

©2017 Kevin Jamieson 53



Computational cost of LOO
"
= Suppose you have 100,000 data points

= You implemented a great version of your learning
algorithm

Learns in only 1 second

= Computing LOO will take about 1 day!!!



Use k-fold cross validation
" A

= Randomly divide training data into k equal parts
D.,....D,

= Foreachi
Learn classifier f,5; using data point not in D,

Estimate error of f;,;; on validation set D;:

> (i — fowp, (x5))?

(zj,y5)€D;

Train Tnin Villdation Train

. eITorp, = D,

©2017 Kevin Jamieson
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Use k-fold cross validation
" A

= Randomly divide training data into k equal parts
D,,....D,

= Foreachi
Learn classifier f,5; using data point not in D,
Estimate error of f;,;; on validation set D;:

2
EeITorp, = D, Z (yj - fD\Di (xy))
_ _z (2;,y5)€D; _
= k-fold cross validation error is average over data splits:
1k
ETTOT]. fold — Z Z 87’?’(_)7’pi
i=1

= k-fold cross validation properties:
Much faster to compute than LOO
More (pessimistically) biased — using much less data, only n(k-1)/k

Usually, k =10

©2017 Kevin Jamieson
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Recap

"
. Given a dataset, begin by splitting into

TRAIN TEST

= Model selection: Use k-fold cross-validation on
TRAIN to train predictor and choose magic

parameters such as A
_ TRAN . S TRAIN-2 VAL TRAIN-2

= Model assessment; Use TEST to assess the
accuracy of the model you output

= Never ever ever ever ever train or choose
parameters based on the test data



Example
"
= Given 10,000-dimensional data and n examples,
we pick a subset of 50 dimensions that have the
highest correlation with labels in the training set:

n
|2 i1 TijYil
50 indices j that have largest n 5
\/Zizl Li g

= After picking our 50 features, we then use CV to
train ridge regression with regularization A

= What's wrong with this procedure?



Recap

= Learning is...

Collect some data
= E.g., housing info and sale price

Randomly split dataset into TRAIN, VAL, and TEST
= E.g., 80%, 10%, and 10%, respectively
Choose a hypothesis class or model
= E.g., linear with non-linear transformations
Choose a loss function
= E.g., least squares with ridge regression penalty on TRAIN
Choose an optimization procedure

= E.g., set derivative to zero to obtain estimator, cross-validation on
VAL to pick num. features and amount of regularization

Justifying the accuracy of the estimate
= E.g., report TEST error with Bootstrap confidence interval

©2017 Kevin Jamieson
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