Warm up
Homework due tonight! 11:59 PM
$B, \quad B^{\prime 2}:=A: \quad A A=B$

Let $X \sim \mathcal{N}(\mu, \Sigma)$ where $X \in \mathbb{R}^{d}$

1. Let $Y=A X+b$. For what $\widetilde{\mu}, \widetilde{\Sigma}$ is $Y \sim \mathcal{N}(\widetilde{\mu}, \widetilde{\Sigma})$

$$
\tilde{\mu}=\mathbb{E}[y]=A \mathbb{E}[x]+b
$$

$\widetilde{\Sigma}=\mathbb{E}$

$$
=A \mu+b
$$

$$
=\mathbb{E}\left[A(x-\mu)(x-\mu)^{\top} A^{\top}\right]=A \sum A^{\top}
$$

2. Suppose I can generate independent Gaussian $Z=\mathbb{E}\left[A\left(x-\mu(x) A^{\top}(0,1)\right.\right.$
(e.g., numpy.random.randn). How can I use this to generate X ?

$$
Z=\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{d}
\end{array}\right] \quad \hat{x}=\mu+\sum^{2} z
$$

$$
\mathbb{E}[\hat{x}]=\mu, \mathbb{E}\left[(\hat{x}-\mathbb{E} \hat{x}](\hat{x}-\mathbb{E} \hat{x})^{T}\right]
$$

3. What is $\mathbb{E}\left[X^{T} \Sigma^{-1} X\right] ? \mathbb{E}\left[X^{\top} \Sigma^{-1 / 2} \Sigma^{-z_{2}} X\right]$

$$
=\mathbb{E}\left[\Sigma^{1 / 2} Z Z^{\top} \Sigma^{i / 2}\right]
$$

$A \operatorname{sen} x=0$

$$
\begin{aligned}
& \square \square[=0=\mathbb{E}\left[\left(\Sigma^{-1 / 2} X\right)^{\top}\left(\underline{\Sigma^{1 / 2}} x\right)\right]=\sum^{T} \\
&=\mathbb{E}\left[\operatorname{Trace}\left(X^{\top} \Sigma^{-1} X\right)\right]=\mathbb{E}\left[\operatorname{Tr}\left(X X^{\top} \Sigma^{-1}\right)\right]=\operatorname{Tr}\left(\Sigma^{\top} \Sigma^{-1}\right)=\operatorname{Tr}(I)=d \\
& \operatorname{Tr}(A B)=\operatorname{Tr}(B A)
\end{aligned}
$$

Bias-Variance Tradeoff

Machine Learning - CSE546 Kevin Jamieson University of Washington

Oct 4, 2018

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Goal: Predict Y given X

Find function η that minimizes

$$
\mathbb{E}_{X Y}\left[(Y-\eta(X))^{2}\right]
$$

Statistical Learning
 $$
P_{X Y}(X=x, Y=y)
$$

Goal: Predict Y given X

Find function η that minimizes

$$
\begin{gathered}
\mathbb{E}_{X Y}\left[(Y-\eta(X))^{2}\right]
\end{gathered}=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}\left[(Y-\eta(x))^{2} \mid X=x\right]\right], ~ \begin{gathered}
\eta(x)=\arg \min _{c} \mathbb{E}_{Y \mid X}\left[(Y-c)^{2} \mid X=x\right]=\mathbb{E}_{Y \mid X}[Y \mid X=x]
\end{gathered}
$$

Under LS loss, optimal predictor: $\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]$

Statistical Learning

 $\mathbb{E}_{X Y}\left[(Y-\eta(X))^{2}\right]$$$
P_{X Y}(X=x, Y=y)
$$

Statistical Learning

 $\mathbb{E}_{X Y}\left[(Y-\eta(X))^{2}\right]$$$
P_{X Y}(X=x, Y=y)
$$

$$
P_{X Y}\left(Y=y \mid X=x_{0}\right)
$$

$$
P_{X Y}\left(Y=y \mid X=x_{1}\right)
$$

Statistical Learning $\mathbb{E}_{X Y}\left[(Y-\eta(X))^{2}\right]$

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

$$
P_{X Y}\left(Y=y \mid X=x_{0}\right)
$$

$$
P_{X Y}\left(Y=y \mid X=x_{1}\right)
$$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

But we only have samples: $\left(x_{i}, y_{i}\right) \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ for $i=1, \ldots, n$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

But we only have samples: $\left(x_{i}, y_{i}\right) \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ for $i=1, \ldots, n$ and are restricted to a function class (e.g., linear) so we compute:

$$
\widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

But we only have samples: $\left(x_{i}, y_{i}\right) \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ for $i=1, \ldots, n$ and are restricted to a function class (e.g., linear) so we compute:

$$
\widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

We care about future predictions: $\mathbb{E}_{X Y}\left[(Y-\widehat{f}(X))^{2}\right]$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

But we only have samples: $\left(x_{i}, y_{i}\right) \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ for $i=1, \ldots, n$ and are restricted to a function class (e.g., linear) so we compute:

$$
\widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

Each draw $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ results in different $\widehat{f_{D}}$

Statistical Learning

$$
P_{X Y}(X=x, Y=y)
$$

Ideally, we want to find:

$$
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]
$$

But we only have samples: $\left(x_{i}, y_{i}\right) \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ for $i=1, \ldots, n$ and are restricted to a function class (e.g., linear) so we compute:

$$
\widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

Each draw $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ results in different \widehat{f}

Bias-Variance Tradeoff

$$
\begin{gathered}
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x] \quad \widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
\mathbb{E}_{Y \mid X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(Y-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right] \mid X=x\right]=\mathbb{E}_{Y \mid X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(Y-\eta(x)+\eta(x)-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right] \mid X=x\right]
\end{gathered}
$$

Bias-Variance Tradeoff

$$
\begin{array}{r}
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x] \quad \widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
\begin{array}{l}
\mathbb{E}_{Y \mid X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(Y-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right] \mid X=x\right]=\mathbb{E}_{Y \mid X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(Y-\eta(x)+\eta(x)-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right] \mid X=x\right]
\end{array} \\
=\mathbb{E}_{Y \mid X}\left[\mathbb { E } _ { \mathcal { D } } \left[(Y-\eta(x))^{2}+2(Y-\eta(x))\left(\eta(x)-\widehat{f}_{\mathcal{D}}(x)\right)\right.\right. \\
\left.\left.+\left(\eta(x)-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right] \mid X=x\right] \\
=\underbrace{\begin{array}{c}
\text { Caused by either using too "simple" } \\
\text { of a model or not enough } \\
\text { data to learn the model accurately }
\end{array}}_{\begin{array}{c}
\text { irreducible error } \\
\text { Caused by stochastic } \\
\text { label noise }
\end{array}}
\end{array}
$$

Bias-Variance Tradeoff

$$
\widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

$$
\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right]=\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]+\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right]
$$

Bias-Variance Tradeoff

$$
\begin{gathered}
\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x] \quad \widehat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right]=\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]+\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right] \\
=\mathbb{E}_{\mathcal{D}}\left[\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]\right)^{2}+2\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]\right)\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)\right. \\
\left.\quad+\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right] \\
=\frac{\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]\right)^{2}}{\text { biased squared }}+\frac{\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right]}{\text { variance }}
\end{gathered}
$$

Bias-Variance Tradeoff

$$
\mathbb{E}_{Y \mid X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(Y-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right] \mid X=x\right]=\mathbb{E}_{Y \mid X}\left[(Y-\eta(x))^{2} \mid X=x\right]
$$

irreducible error

$$
+\frac{\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]\right)^{2}}{\text { biased squared }}+\frac{\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f_{\mathcal{D}}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right]}{\text { variance }}
$$

Example: Linear LS $\quad \mathbf{Y}=\mathbf{X} w+\epsilon$

$$
\text { if } \begin{aligned}
& \left.\widehat{w}_{M L E}=x_{i}^{T} w+\epsilon_{i} \text { and } \mathbf{X}_{i} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{i . d .} \mathcal{Y}\left(0, \sigma^{2}\right) \\
& \left.\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]=\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon \\
& \widehat{f}_{\mathcal{D}}(x)=\hat{w}^{\top} x
\end{aligned}
$$

Example: Linear LS $\quad \mathbf{Y}=\mathbf{X} w+\epsilon$

if $\quad y_{i}=\underline{x_{i}^{T} w}+\epsilon_{i} \quad$ and $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ $\widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=w+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon$
$\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x] \not \omega^{\top} x$
$\widehat{\hat{f}_{\mathcal{D}}}(x)=\widehat{w}^{T} x=w^{T} x+\underline{\epsilon}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x$
$\frac{\mathbb{E}_{X Y}\left[\left(\widehat{\left.(Y-\eta(x))^{2} \mid X=x\right]}\right.\right.}{\text { irreducible error }}=\sigma^{2} \quad \frac{\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]\right)^{2}}{\text { biased squared }}=0$

$$
\mathbb{E}_{D}\left[\hat{f}_{D}(x)\right]=w^{\top} x
$$

Example: Linear LS $\quad \mathbf{Y}=\mathbf{X} w+\epsilon$

$$
\begin{aligned}
& \text { if } y_{i}=x_{i}^{T} w+\epsilon_{i} \text { and } \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right) \\
& \widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=w+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon \\
& \widehat{f_{\mathcal{D}}}(x)=\widehat{w}^{T} x=\underline{w^{T} x+\epsilon^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x} \\
& \frac{\left.\mathbb{E}_{\mathcal{D}}\left[\left(\widehat{\mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x)\right.}\right]-\widehat{f_{\mathcal{D}}}(x)\right)^{2}\right]}{\text { variance }}=\mathbb{E}_{D}\left[\left(\varepsilon^{\top} X\left(X^{\top} x\right)^{-1} x\right)^{2}\right] \\
& =\mathbb{E}_{D}\left[x^{\top}\left(X^{\top} X\right)^{-1} X^{\top} \varepsilon \varepsilon^{\top} X\left(X^{\top} X\right)^{-1} x\right] \\
& =\sigma^{2} \mathbb{E}_{D}\left[x^{\top}\left(X^{\top} X\right)^{-1} X^{\top} X\left(X^{\top} X\right)^{-1} x\right]=\sigma^{2} \mathbb{E}_{D}\left[x^{\top}\left(X^{\top} X\right)^{-1} x\right] \\
& =\sigma^{2} \mathbb{E}_{D}\left[\operatorname{Trace}\left(\left(x^{\top} x\right)^{-1} x x^{\top}\right)\right] \\
& =\sigma^{2} \operatorname{Trace}\left(\frac{1}{n} \Sigma^{-1} x x^{\top}\right)
\end{aligned}
$$

$$
\begin{aligned}
& X^{\top} X=n \frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top} \quad \mathbb{E}\left[x_{0} x_{i}^{\top}\right]=\Sigma \\
& \xrightarrow[n \rightarrow \infty]{ } \quad \text { Assume } x^{\top} x=n \Sigma \\
& \Rightarrow \mathbb{E}_{D}\left[\left(\mathbb{E}_{0}\left[\hat{f}_{0}(X)\right]-\hat{f}_{0}(X)\right)^{2}\right]=\frac{\partial^{2}}{n} \operatorname{Tr}\left(\Sigma^{-1} \Sigma\right) \\
& =\frac{\sigma^{2}}{n} \operatorname{Tr}(I) \\
& =\frac{d \sigma^{2}}{n}
\end{aligned}
$$

Example: Linear LS $\quad \mathbf{Y}=\mathbf{X} w+\epsilon$

if $\quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ and $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=w+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon
$$

$$
\widehat{f_{\mathcal{D}}}(x)=\widehat{w}^{T} x=w^{T} x+\epsilon^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x
$$

$$
\mathbf{X}^{T} \mathbf{X}=\sum_{i=1}^{n} x_{i} x_{i}^{T} \xrightarrow{n} \text { large } n \Sigma \quad \quad \Sigma=\mathbb{E}\left[X X^{T}\right], \quad X \sim P_{X}
$$

$$
\mathbb{E}_{X=x}\left[\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right]\right]=\frac{\sigma^{2}}{n} \mathbb{E}_{X}\left[\operatorname{Trace}\left(\Sigma^{-1} X X^{T}\right)\right]=\frac{d \sigma^{2}}{n}
$$

$$
\begin{aligned}
& \text { variance } \quad=\underset{\underset{z(x, c)}{\mathcal{D}}}{\mathbb{D}}\left[\sigma^{2} x^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x\right] \\
& =\sigma^{2} \mathbb{E}_{\mathcal{D}}\left[\operatorname{Trace}\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x x^{T}\right)\right]
\end{aligned}
$$

Example: Linear LS $\quad \mathbf{Y}=\mathbf{X} w+\epsilon$

if $\quad y_{i}=x_{i}^{T} w+\epsilon_{i} \quad$ and $\quad \epsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ $\widehat{w}_{M L E}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=w+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \epsilon$
$\eta(x)=\mathbb{E}_{Y \mid X}[Y \mid X=x]$
$\widehat{f_{\mathcal{D}}}(x)=\widehat{w}^{T} x=w^{T} x+\epsilon^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x$
$\frac{\mathbb{E}_{X Y}\left[(Y-\eta(x))^{2} \mid X=x\right]}{\text { irreducible error }}=\sigma^{2} \quad \frac{\left(\eta(x)-\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]\right)^{2}}{\text { biased squared }}=0$
$\mathbb{E}_{X=x} \frac{\left[\mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\widehat{f}_{\mathcal{D}}(x)\right]-\widehat{f}_{\mathcal{D}}(x)\right)^{2}\right]\right]}{\text { variance }}=\frac{d \sigma^{2}}{n}$

Overfitting

Machine Learning - CSE546 Kevin Jamieson University of Washington

Oct 4, 2018

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
\square More complex class \rightarrow less bias
\square More complex class \rightarrow more variance
- But in practice??

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
\square More complex class \rightarrow less bias
\square More complex class \rightarrow more variance
- But in practice??
- Before we saw how increasing the feature space can increase the complexity of the learned estimator:

$$
\begin{aligned}
& \mathcal{F}_{1} \subset \mathcal{F}_{2} \\
& \subset \mathcal{F}_{3} \subset \ldots \\
& \widehat{f}_{\mathcal{D}}^{(k)}=\arg \min _{f \in \mathcal{F}_{k}} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

Complexity grows as k grows

Training set error as a function of model complexity

$\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \ldots \quad \mathcal{D}^{\text {i.i.d. }} P_{X Y} \quad$ TRAIN error:
$\hat{f}_{\mathcal{D}}^{(k)}=\arg \min _{f \in \mathcal{F}_{k}} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \quad \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-\hat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}$
TRUE error:
$\mathbb{E}_{X Y}\left[\left(Y-\hat{f}_{\mathcal{D}}^{(k)}(X)\right)^{2}\right]$

Training set error as a function of model complexity

$\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \ldots \quad \mathcal{D}^{\text {i.i.d. }} P_{X Y} \quad$ TRAIN error:
$\hat{f}_{\mathcal{D}}^{(k)}=\arg \min _{f \in \mathcal{F}_{k}} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \quad \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-\widehat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}$
TRUE error:

$$
\mathbb{E}_{X Y}\left[\left(Y-\hat{f}_{\mathcal{D}}^{(k)}(X)\right)^{2}\right]
$$

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{T}}\left(y_{i}-\hat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

Training set error as a function of model complexity

$$
\begin{aligned}
& \mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \ldots \quad \mathcal{D}^{i . i . d .} P_{X Y} \\
& \hat{f}_{\mathcal{D}}^{(k)}=\arg \min _{f \in \mathcal{F}_{k}} \frac{1}{\mathcal{D} \mid} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

TRAIN error:

$$
\frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-\widehat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}
$$

TRUE error:

$$
\mathbb{E}_{X Y}\left[\left(Y-\hat{f}_{\mathcal{D}}^{(k)}(X)\right)^{2}\right]
$$

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i} \in \mathcal{T}\right.}\left(y_{i}-\widehat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

Training set error as a function of model complexity

$\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \ldots \quad \mathcal{D}^{i . i . d .} P_{X Y} \quad$ TRAIN error:
$\hat{f}_{\mathcal{D}}^{(k)}=\arg \min _{f \in \mathcal{F}_{k}} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \quad \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-\widehat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}$

TRUE error:

$$
\mathbb{E}_{X Y}\left[\left(Y-\hat{f}_{\mathcal{D}}^{(k)}(X)\right)^{2}\right]
$$

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{T}}\left(y_{i}-\hat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

Important: $\mathcal{D} \cap \mathcal{T}=\emptyset$

Test set error

- Given a dataset, randomly split it into two parts:

Training data: \mathcal{D}
Test data: \mathcal{T}

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

- Use training data to learn predictor
- e.g., $\frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-f_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}$
- use training data to pick complexity k
- Use test data to report predicted performance

$$
\frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{T}}\left(y_{i}-\hat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}
$$

How many points do I use for training/testing?

- Very hard question to answer!
- Too few training points, learned model is bad

Too few test points, you never know if you reached a good solution

- Bounds, such as Hoeffding's inequality can help:

$$
P\left(\left|\hat{\theta}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 N \epsilon^{2}}
$$

- More on this later the quarter, but still hard to answer
- Typically:
- If you have a reasonable amount of data 90/10 splits are common

If you have little data, then you need to get fancy (e.g., bootstrapping)

Regularization

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 4, 2016

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$

$$
=\arg \min _{w}(\mathbf{y}-\mathbf{y}-\mathbf{X} w)^{T}(\mathbf{y}-\mathbf{X} w)
$$

when $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ exists.... $=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$

Regularization in Linear Regression

Recall Least Squares:

$$
\begin{aligned}
\widehat{w}_{L S} & =\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} / w\right)^{2} \\
& =\operatorname{aro} \min \left(\mathbf{v}-\mathbf{X}_{w} r^{T}(\mathbf{v}-\right.
\end{aligned}
$$

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$

$$
=\arg \min _{w}(\mathbf{y}-\mathbf{X} w)^{T}(\mathbf{y}-\mathbf{X} w)
$$

$$
=\arg \min _{w} w^{T}\left(\mathbf{X}^{T} \mathbf{X}\right) w-2 y^{T} \mathbf{X} w
$$

What if $x_{i} \in \mathbb{R}^{d}$ and $d>n$?

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$
When $x_{i} \in \mathbb{R}^{d}$ and $d>n$ the objective function is flat in some directions:

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$
When $x_{i} \in \mathbb{R}^{d}$ and $d>n$ the objective function is flat in some directions:

Implies optimal solution is underconstrained and unstable due to lack of curvature:

- small changes in training data result in large changes in solution
- often the magnitudes of w are "very large"

Regularization imposes "simpler" solutions by a "complexity" penalty

Ridge Regression

- Old Least squares objective:
$\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$ $+\ldots+\square$
- Ridge Regression objective:

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Minimizing the Ridge Regression Objective

$$
\begin{gathered}
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2} \\
z_{w} w_{w}\left\|X_{w}-Y\right\|_{2}^{2}+\lambda\|w\|_{2}^{2} \quad\|z\|_{2}^{2}=z^{\top} z \\
\nabla_{w}=2 X^{\top}\left(X_{w}-Y\right)+\downarrow \lambda w=0 \\
x^{\top} X_{w}+\lambda w \\
\left(X^{\top} X+\lambda I\right)_{w}=X^{\top} Y \\
\hat{W}_{\text {Rage }}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y
\end{gathered}
$$

Shrinkage Properties $\quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)$

$$
\widehat{w}_{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- Assume: $\mathbf{X}^{T} \mathbf{X}=n L$ and $\mathbf{y}=\mathbf{X} w+\boldsymbol{\epsilon}$

$$
\begin{aligned}
\hat{w} & =\left(x^{\top} x+\lambda I\right)^{-1} x^{\top} x_{w} w\left(x^{\top} x+\lambda I\right)^{-1} x^{\top} \varepsilon \\
& =\left(x^{\top} x+\lambda I\right)^{-1}\left(x^{\top} x+\lambda I-\lambda I\right) w+\left(x^{\top} x^{\top}+\lambda I\right)^{-1} x^{\top} \varepsilon \\
& =w-\lambda\left(x x^{\top} x+\lambda I\right)^{-1} w+\left(x^{\top} x+\lambda I\right)^{-x^{\top} \tau} \\
& =w-\lambda(n I+\lambda I)^{-1} w+(n I+\lambda I)^{-1} x^{\varepsilon} \\
& =w-\frac{\lambda}{n+\lambda} w+\frac{1}{n+\lambda} x^{\top} \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\|\hat{\omega}-w\|_{2}^{2}=\left\|\frac{\lambda}{n+\lambda} w\right\|_{2}^{2}+2\left(\frac{\lambda}{n+\lambda} w\right)^{\top} \mathbb{E}\left[\frac{1}{n+\lambda} x^{\top} \varepsilon\right]=0 \\
& +\mathbb{E}\left[\frac{1}{(n+\lambda)^{2}} \underline{\left.\varepsilon^{\top} X X^{\top} \varepsilon\right]}\right. \\
& =\frac{\lambda^{2}}{(n+\lambda)^{2}}\|\omega\|_{2}^{2}+\frac{1}{(n+\lambda)^{2}} \mathbb{E}\left[\operatorname{Tr}\left(X^{\top} \varepsilon \varepsilon^{\top} X\right)\right] \\
& =\frac{\lambda^{2}}{(n+\lambda)^{2}}\|\omega\|_{2}^{2}+\frac{\sigma^{2}}{(n+\lambda)^{2}} \operatorname{Tr}\left(X^{\top} X\right), \quad \operatorname{Tr}(n I)=n d \\
& \frac{=\underbrace{\frac{\lambda^{2}}{(n+\lambda)^{2}}\|\omega\|_{2}^{2}}_{\text {bias }}+\frac{\frac{n d \sigma^{2}}{(n+\lambda)^{2}}}{\underbrace{\left(\omega \omega \|_{2}^{2}\right.}_{\text {variance }}}}{\lambda}
\end{aligned}
$$

Shrinkage Properties $\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$

$$
\widehat{w}_{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- Assume: $\mathbf{X}^{T} \mathbf{X}=n I$ and $\mathbf{y}=\mathbf{X} w+\boldsymbol{\epsilon}$

$$
\begin{aligned}
\widehat{w}_{\text {ridge }} & =\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T}(\mathbf{X} w+\boldsymbol{\epsilon}) \\
& =\frac{n}{n+\lambda} w+\frac{1}{n+\lambda} \mathbf{X}^{T} \boldsymbol{\epsilon}
\end{aligned}
$$

$$
\mathbb{E}\left\|\widehat{w}_{\text {ridge }}-w\right\|^{2}=\frac{\lambda^{2}}{(n+\lambda)^{2}}\|w\|^{2}+\frac{d n \sigma^{2}}{(n+\lambda)^{2}} \quad \lambda^{*}=\frac{d \sigma^{2}}{\|w\|^{2}}
$$

Ridge Regression: Effect of Regularization

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

- Solution is indexed by the regularization parameter λ
- Larger λ
- Smaller λ
- As $\lambda \rightarrow 0$
- As $\lambda \rightarrow \infty$

Ridge Regression: Effect of Regularization

$$
\begin{aligned}
& \mathcal{D}^{i . i . d .} P_{X Y} \\
& \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}=\arg \min _{w} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
\end{aligned}
$$

TRAIN error:

$$
\frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}
$$

TRUE error:

$$
\mathbb{E}\left[\left(Y-X^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}\right]
$$

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}
\end{aligned}
$$

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

Ridge Regression: Effect of Regularization

$\mathcal{D} \stackrel{i . i . d .}{\sim} P_{X Y}$
$\widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}=\arg \min _{w} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}$

TRAIN error:

$$
\frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, r i d g e}^{(\lambda)}\right)^{2}
$$

TRUE error:

$$
\mathbb{E}\left[\left(Y-X^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}\right]
$$

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}
\end{aligned}
$$

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

Ridge Coefficient Path

From
Kevin Murphy textbook

- Typical approach: select λ using cross validation, up next

What you need to know...

- Regularization
\square Penalizes for complex models
- Ridge regression
$\square L_{2}$ penalized least-squares regression
\square Regularization parameter trades off model complexity with training error

Cross-Validation

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 4, 2016

How... How... How???????

- How do we pick the regularization constant $\lambda . .$.
- How do we pick the number of basis functions...
- We could use the test data, but...

How... How... How???????

- How do we pick the regularization constant $\lambda .$.
- How do we pick the number of basis functions...
- We could use the test data, but...
- Never ever train on the test data

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
$\square-$ training data
$\square D \mathrm{j}-\operatorname{training}$ data with j th data point $\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)$ moved to validation set
- Learn classifier $f_{D \mathrm{Jj}}$ with $D \backslash \mathrm{j}$ dataset
- Estimate true error as squared error on predicting $\mathbf{y}_{\mathbf{j}}$:
- Unbiased estimate of error ${ }_{\text {true }}\left(f_{D I j}\right)$!

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
- D - training data
$\square D \mathrm{j}$ - training data with j th data point $\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)$ moved to validation set
- Learn classifier $f_{D \mathrm{Jj}}$ with $D \backslash \mathrm{j}$ dataset
- Estimate true error as squared error on predicting $\mathbf{y}_{\mathbf{j}}$:
- Unbiased estimate of error ${ }_{\text {true }}\left(\boldsymbol{f}_{D \mathrm{Dj}}\right)$!
- LOO cross validation: Average over all data points j :

For each data point you leave out, learn a new classifier $f_{D j}$

$$
\text { error }_{L O O}=\frac{1}{n} \sum_{j=1}^{n}\left(y_{j}-f_{\mathcal{D} \backslash j}\left(x_{j}\right)\right)^{2}
$$

LOO cross validation is (almost) unbiased estimate of true error of h_{D} !

- When computing LOOCV error, we only use \mathbf{N}-1 data points
\square So it's not estimate of true error of learning with N data points
\square Usually pessimistic, though - learning with less data typically gives worse answer
- LOO is almost unbiased! Use LOO error for model selection!!!
\square E.g., picking λ

Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
\square Learns in only 1 second
- Computing LOO will take about 1 day!!!

Use \boldsymbol{k}-fold cross validation

- Randomly divide training data into k equal parts
- D_{1}, \ldots, D_{k}
- For each i
\square Learn classifier $f_{D I D i}$ using data point not in D_{i}
\square Estimate error of $f_{D D i}$ on validation set D_{i} :

$$
\operatorname{error}_{\mathcal{D}_{i}}=\frac{1}{\left|\mathcal{D}_{i}\right|} \sum_{\left(x_{j}, y_{j}\right) \in \mathcal{D}_{i}}\left(y_{j}-f_{\mathcal{D} \backslash \mathcal{D}_{i}}\left(x_{j}\right)\right)^{2}
$$

Use \boldsymbol{k}-fold cross validation

- Randomly divide training data into k equal parts
D_{1}, \ldots, D_{k}
- For each i
\square Learn classifier $f_{D \mid D i}$ using data point not in D_{i}
\square Estimate error of $f_{D I D i}$ on validation set D_{i} :

$$
\operatorname{error}_{\mathcal{D}_{i}}=\frac{1}{\left|\mathcal{D}_{i}\right|} \sum_{\left(x_{j}, y_{j}\right) \in \mathcal{D}_{i}}\left(y_{j}-f_{\mathcal{D} \backslash \mathcal{D}_{i}}\left(x_{j}\right)\right)^{2}
$$

- k-fold cross validation error is average over data splits:

$$
\text { error }_{k-\text { fold }}=\frac{1}{k} \sum_{i=1}^{k} \operatorname{error}_{\mathcal{D}_{i}}
$$

- k-fold cross validation properties:
\square Much faster to compute than LOO
More (pessimistically) biased - using much less data, only $n(k-1) / k$
- Usually, k=10

Recap

- Given a dataset, begin by splitting into
- Model selection: Use k-fold cross-validation on TRAIN to train predictor and choose magic parameters such as λ

VAL-3 TRAIN-3

- Model assessment: Use TEST to assess the accuracy of the model you output
- Never ever ever ever ever train or choose parameters based on the test data

Example

- Given 10,000-dimensional data and n examples, we pick a subset of 50 dimensions that have the highest correlation with labels in the training set:

$$
50 \text { indices } \mathrm{j} \text { that have largest } \frac{\left|\sum_{i=1}^{n} x_{i, j} y_{i}\right|}{\sqrt{\sum_{i=1}^{n} x_{i, j}^{2}}}
$$

- After picking our 50 features, we then use CV to train ridge regression with regularization λ
- What's wrong with this procedure?

Recap

- Learning is...
\square Collect some data
- E.g., housing info and sale price
\square Randomly split dataset into TRAIN, VAL, and TEST
- E.g., $80 \%, 10 \%$, and 10%, respectively
\square Choose a hypothesis class or model
- E.g., linear with non-linear transformations
\square Choose a loss function
- E.g., least squares with ridge regression penalty on TRAIN
\square Choose an optimization procedure
- E.g., set derivative to zero to obtain estimator, cross-validation on VAL to pick num. features and amount of regularization
\square Justifying the accuracy of the estimate
- E.g., report TEST error with Bootstrap confidence interval

