
Warm up
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Let X ⇠ N (µ,⌃) where X 2 Rd

1. Let Y = AX + b. For what eµ, e⌃ is Y ⇠ N (eµ, e⌃)

2. Suppose I can generate independent Gaussians Z ⇠ N (0, 1)
(e.g., numpy.random.randn). How can I use this to generate X?

3. What is E[XT⌃�1X]?

Homework due tonight! 11:59 PM
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Statistical Learning
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PXY (X = x, Y = y)

Goal: Predict Y given X

Find function ⌘ that minimizes

EXY [(Y � ⌘(X))2]
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PXY (X = x, Y = y)

Goal: Predict Y given X

EXY [(Y � ⌘(X))2]

Find function ⌘ that minimizes

= EX

h
EY |X [(Y � ⌘(x))2|X = x]

i

⌘(x) = argmin
c

EY |X [(Y � c)2|X = x] = EY |X [Y |X = x]

Under LS loss, optimal predictor: ⌘(x) = EY |X [Y |X = x]

D



Statistical Learning

©2017 Kevin Jamieson

x

y

PXY (X = x, Y = y)

EXY [(Y � ⌘(X))2]
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x

y

PXY (X = x, Y = y)

x0 x1

PXY (Y = y|X = x0)

PXY (Y = y|X = x1)

EXY [(Y � ⌘(X))2]



Statistical Learning
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PXY (Y = y|X = x0)

PXY (Y = y|X = x1)
x

y

PXY (X = x, Y = y)

x0 x1

Ideally, we want to find:

EXY [(Y � ⌘(X))2]

⌘(x) = EY |X [Y |X = x]
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x

y

PXY (X = x, Y = y) Ideally, we want to find:

⌘(x) = EY |X [Y |X = x]
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x

y

PXY (X = x, Y = y) Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

⌘(x) = EY |X [Y |X = x]



Statistical Learning
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x

y

PXY (X = x, Y = y)

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

⌘(x) = EY |X [Y |X = x]



Statistical Learning
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x

y

PXY (X = x, Y = y)

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

We care about future predictions: EXY [(Y � bf(X))2]

⌘(x) = EY |X [Y |X = x]



Statistical Learning
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x

y

PXY (X = x, Y = y)

Each draw D = {(xi, yi)}ni=1 results in di↵erent bf

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

⌘(x) = EY |X [Y |X = x]

D



Statistical Learning
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x

y

PXY (X = x, Y = y)

Each draw D = {(xi, yi)}ni=1 results in di↵erent bf

ED[ bf(x)]
bf = argmin

f2F

1

n

nX

i=1

(yi � f(xi))
2

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

⌘(x) = EY |X [Y |X = x]



Bias-Variance Tradeoff
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bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2⌘(x) = EY |X [Y |X = x]

EY |X [ED[(Y � bfD(x))2]
��X = x] = EY |X [ED[(Y � ⌘(x) + ⌘(x)� bfD(x))2]

��X = x]



Bias-Variance Tradeoff
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irreducible error 
Caused by stochastic  

label noise

learning error 
Caused by either using too “simple”  

of a model or not enough  
data to learn the model accurately

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2⌘(x) = EY |X [Y |X = x]

EY |X [ED[(Y � bfD(x))2]
��X = x] = EY |X [ED[(Y � ⌘(x) + ⌘(x)� bfD(x))2]

��X = x]

=EY |X

h
ED[(Y � ⌘(x))2 + 2(Y � ⌘(x))(⌘(x)� bfD(x))

+ (⌘(x)� bfD(x))2]
��X = x

i

=EY |X [(Y � ⌘(x))2
��X = x] + ED[(⌘(x)� bfD(x))2]



Bias-Variance Tradeoff
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ED[(⌘(x)� bfD(x))2] = ED[(⌘(x)� ED[ bfD(x)] + ED[ bfD(x)]� bfD(x))2]

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2⌘(x) = EY |X [Y |X = x]



Bias-Variance Tradeoff
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=(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]

=ED[(⌘(x)� ED[ bfD(x)])2 + 2(⌘(x)� ED[ bfD(x)])(ED[ bfD(x)]� bfD(x))

+ (ED[ bfD(x)]� bfD(x))2]

ED[(⌘(x)� bfD(x))2] = ED[(⌘(x)� ED[ bfD(x)] + ED[ bfD(x)]� bfD(x))2]

biased squared variance

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2⌘(x) = EY |X [Y |X = x]



Bias-Variance Tradeoff

biased squared variance

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]

irreducible error

EY |X [ED[(Y � bfD(x))2]
��X = x] = EY |X [(Y � ⌘(x))2

��X = x]
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Example: Linear LS
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if yi = xT
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

bwMLE = (XTX)�1XTY

Y = Xw + ✏

= w + (XTX)�1XT ✏

bfD(x) = bwTx = wTx+ ✏TX(XTX)�1x

⌘(x) = EY |X [Y |X = x] a TW

Tx
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Example: Linear LS
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if yi = xT
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

bwMLE = (XTX)�1XTY

Y = Xw + ✏

= w + (XTX)�1XT ✏

bfD(x) = bwTx = wTx+ ✏TX(XTX)�1x

⌘(x) = EY |X [Y |X = x]

EXY [ED[(Y � bfD(x))2]
��X = x] = EXY [(Y � ⌘(x))2

��X = x]= �2

irreducible error biased squared

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]= 0

w

In

IE LEGD w Tx
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Example: Linear LS
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if yi = xT
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

bwMLE = (XTX)�1XTY

Y = Xw + ✏

= w + (XTX)�1XT ✏

bfD(x) = bwTx = wTx+ ✏TX(XTX)�1x

variance

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]= ED[x
T (XTX)�1XT ✏✏TX(XTX)�1x]

TE
ED Cet Xlix xD

Eo xtcxxtxteetxcxtx5 sc
o4Eo xicxtxtxtxfxxx3 EE.GE xIx
OYE Trace Xix xxt

62 Trace E xxi



XTX n.FI xixiTELx.xIJTTnEyT zT AssumeXtX nE

CX.Y Ra
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Example: Linear LS
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if yi = xT
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

bwMLE = (XTX)�1XTY

Y = Xw + ✏

= w + (XTX)�1XT ✏

bfD(x) = bwTx = wTx+ ✏TX(XTX)�1x

variance

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]= ED[x
T (XTX)�1XT ✏✏TX(XTX)�1x]

XTX =
nX

i=1

xix
T
i

n large! n⌃ ⌃ = E[XXT ], X ⇠ PX

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]EX=x

⇥ ⇤
=

�2

n
EX [Trace(⌃�1XXT )] =

d�2

n

= ED[�
2xT (XTX)�1x]

= �2ED[Trace((X
TX)�1xxT )]

tx e

exE
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Example: Linear LS
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if yi = xT
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

bwMLE = (XTX)�1XTY

Y = Xw + ✏

= w + (XTX)�1XT ✏

bfD(x) = bwTx = wTx+ ✏TX(XTX)�1x

⌘(x) = EY |X [Y |X = x]

EXY [ED[(Y � bfD(x))2]
��X = x] = EXY [(Y � ⌘(x))2

��X = x]= �2

irreducible error biased squared

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]= 0

variance

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]EX=x

⇥ ⇤
=

�2

n
EX [Trace(⌃�1XXT )] =

d�2

n
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Bias-Variance Tradeoff

■ Choice of hypothesis class introduces learning bias 
More complex class → less bias 
More complex class → more variance 

■ But in practice?? 



Bias-Variance Tradeoff

■ Choice of hypothesis class introduces learning bias 
More complex class → less bias 
More complex class → more variance 

■ But in practice??  
■ Before we saw how increasing the feature space can 

increase the complexity of the learned estimator:

F1 ⇢ F2 ⇢ F3 ⇢ . . .

Complexity grows as k grows

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

Complexity (k)

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

TEST error: 

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

Complexity (k)

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

TEST error: 

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;Each line is i.i.d. draw of D or T

Plot from Hastie et al



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

TEST error: 

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;

TRAIN error is optimistically 
biased because it is evaluated 
on the data it trained on. TEST 
error is unbiased only if T is 
never used to train the model 
or even pick the complexity k. 



Test set error
■ Given a dataset, randomly split it into two parts:  

Training data: 
Test data: 

■ Use training data to learn predictor 
■ e.g.,  
■ use training data to pick complexity k 

■ Use test data to report predicted performance

©2018 Kevin Jamieson  31

D
T Important: D \ T = ;

1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2



How many points do I use for 
training/testing?

■ Very hard question to answer! 
Too few training points, learned model is bad 
Too few test points, you never know if you reached a good solution 

■ Bounds, such as Hoeffding’s inequality can help: 

■ More on this later the quarter, but still hard to answer 
■ Typically: 

If you have a reasonable amount of data 90/10 splits are common  
If you have little data, then you need to get fancy (e.g., bootstrapping) 
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Regularization
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Kevin Jamieson 
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Regularization in Linear Regression
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Recall Least Squares:

= (XTX)�1XTywhen                       exists…. (XTX)�1

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

= argmin
w

(y �Xw)T (y �Xw)



Regularization in Linear Regression
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bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

Recall Least Squares:

= argmin
w

(y �Xw)T (y �Xw)

In general: = argmin
w

wT (XTX)w � 2yTXw

tf



Regularization in Linear Regression
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Recall Least Squares:

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)(y1 � xT
1 w)

2 + (y2 � xT
2 w)

2 + · · ·+ (yn � xT
nw)

2 =
nX

i=1

(yi � xT
i w)

2

What if xi 2 Rd and d > n?

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

= argmin
w

(y �Xw)T (y �Xw)

In general: = argmin
w

wT (XTX)w � 2yTXw



Regularization in Linear Regression
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Recall Least Squares:

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

When xi 2 Rd and d > n the objective function is flat in some directions:



Regularization in Linear Regression
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Recall Least Squares:

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

When xi 2 Rd and d > n the objective function is flat in some directions:

Implies optimal solution is underconstrained 
and unstable due to lack of curvature: 
• small changes in training data result in large 

changes in solution 
• often the magnitudes of w are “very large”

Regularization imposes “simpler” solutions by a 
“complexity” penalty



Ridge Regression

 39

■ Old Least squares objective:  

■ Ridge Regression objective: 

©2017 Kevin Jamieson

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22



Minimizing the Ridge Regression Objective
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bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

2 41Xu yH Huh
HellE Ez

I 21 4 Xu y Hw O

XTXW t.tw XTy
XTXt XI w XTy

Ridge XTXt XI Xty



Shrinkage Properties

 41

■ Assume:                                 and  

©2017 Kevin Jamieson

bwridge = (XTX+ �I)�1XTy

XTX = nI y = Xw + ✏

✏ ⇠ N (0,�2I)

xtxt.LI XTXwtCXTXthIYxTe
CxtxthI5 xtXII lI w CXTXttI5 XE

w HXTX i.LI w t XX HI XTE

w t n I II w In It TITHE

w n w Xtc



T

EHi wth Il w l l z w Ef X

ELITE EXX
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Shrinkage Properties

 42

■ Assume:                                 and 

©2017 Kevin Jamieson

bwridge = (XTX+ �I)�1XTy

XTX = nI y = Xw + ✏

✏ ⇠ N (0,�2I)

bwridge = (XTX+ �I)�1XT (Xw + ✏)

=
n

n+ �
w +

1

n+ �
XT ✏

Ek bwridge � wk2 =
�2

(n+ �)2
kwk2 + dn�2

(n+ �)2
�⇤ =

d�2

kwk2



Ridge Regression: Effect of Regularization

 43

■ Solution is indexed by the regularization parameter λ 
■ Larger λ 

■ Smaller λ  

■ As λ ! 0 

■ As λ !∞ 

©2017 Kevin Jamieson

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22



Ridge Regression: Effect of Regularization
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TRAIN error: 

TRUE error: 

TEST error: 

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;

1

|D|
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2bw(�)

D,ridge = argmin
w

1

|D|
X

(xi,yi)2D

(yi � xT
i w)

2 + �||w||22

1

|T |
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2

E[(Y �XT bw(�)
D,ridge)

2]



Ridge Regression: Effect of Regularization
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TRAIN error: 

TRUE error: 

TEST error: 

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;Each line is i.i.d. draw of D or T

1

|D|
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2bw(�)

D,ridge = argmin
w

1

|D|
X

(xi,yi)2D

(yi � xT
i w)

2 + �||w||22

1

|T |
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2

E[(Y �XT bw(�)
D,ridge)

2]

1/� small λlarge λ



Ridge Coefficient Path

■ Typical approach: select λ using cross validation, up next

 46

From  
Kevin Murphy 
textbook

©2017 Kevin Jamieson

1/�



What you need to know…

■ Regularization 
Penalizes for complex models 

■ Ridge regression 
L2 penalized least-squares regression 
Regularization parameter trades off model complexity 
with training error

 47©2017 Kevin Jamieson
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Cross-Validation

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 
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How… How… How???????

 49©2017 Kevin Jamieson

■ How do we pick the regularization constant λ… 
■ How do we pick the number of basis functions… 

■ We could use the test data, but… 



How… How… How???????

■ How do we pick the regularization constant λ… 
■ How do we pick the number of basis functions… 

■ We could use the test data, but… 
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■ Never ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
train on the test data



(LOO) Leave-one-out cross validation

■ Consider a validation set with 1 example: 
D – training data 
D\j – training data with j th data point (xj ,yj) moved to validation set 

■ Learn classifier fD\j with D\j dataset 
■ Estimate true error as squared error on predicting yj: 

Unbiased estimate of errortrue(fD\j)! 

 51©2017 Kevin Jamieson



(LOO) Leave-one-out cross validation

■ Consider a validation set with 1 example: 
D – training data 
D\j – training data with j th data point (xj ,yj) moved to validation set 

■ Learn classifier fD\j with D\j dataset 
■ Estimate true error as squared error on predicting yj: 

Unbiased estimate of errortrue(fD\j)! 

■ LOO cross validation: Average over all data points j: 
For each data point you leave out, learn a new classifier fD\j 
Estimate error as: 
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errorLOO =
1

n

nX

j=1

(yj � fD\j(xj))
2



LOO cross validation is (almost)  
unbiased estimate of true error of hD!

■ When computing LOOCV error, we only use N-1 data points 
So it’s not estimate of true error of learning with N data points 
Usually pessimistic, though – learning with less data typically gives worse answer 

■ LOO is almost unbiased! Use LOO error for model selection!!! 
E.g., picking λ
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Computational cost of LOO

■ Suppose you have 100,000 data points 
■ You implemented a great version of your learning 

algorithm 
Learns in only 1 second  

■ Computing LOO will take about 1 day!!! 
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 Use k-fold cross validation

■ Randomly divide training data into k equal parts 
D1,…,Dk 

■ For each i 
Learn classifier fD\Di using data point not in Di  
Estimate error of fD\Di on validation set Di: 

■
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errorDi =
1

|Di|
X

(xj ,yj)2Di

(yj � fD\Di
(xj))

2



 Use k-fold cross validation

■ Randomly divide training data into k equal parts 
D1,…,Dk 

■ For each i 
Learn classifier fD\Di using data point not in Di  
Estimate error of fD\Di on validation set Di: 

■ k-fold cross validation error is average over data splits: 

■ k-fold cross validation properties: 
Much faster to compute than LOO 
More (pessimistically) biased – using much less data, only n(k-1)/k 
Usually, k = 10
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errorDi =
1

|Di|
X

(xj ,yj)2Di

(yj � fD\Di
(xj))

2



Recap

■ Given a dataset, begin by splitting into  

■ Model selection: Use k-fold cross-validation on 
TRAIN to train predictor and choose magic 
parameters such as λ 
 

■ Model assessment: Use TEST to assess the 
accuracy of the model you output 
■ Never ever ever ever ever train or choose 

parameters based on the test data
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TESTTRAIN

TRAIN

TRAIN-1 VAL-1

TRAIN-3VAL-3

TRAIN-2VAL-2TRAIN-2



Example

■ Given 10,000-dimensional data and n examples, 
we pick a subset of 50 dimensions that have the 
highest correlation with labels in the training set: 
 
 

■ After picking our 50 features, we then use CV to 
train ridge regression with regularization λ  

■ What’s wrong with this procedure?
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50 indices j that have largest 
|
Pn

i=1 xi,jyi|qPn
i=1 x

2
i,j



Recap

■ Learning is… 
Collect some data 
■ E.g., housing info and sale price 

Randomly split dataset into TRAIN, VAL, and TEST 
■ E.g., 80%, 10%, and 10%, respectively 

Choose a hypothesis class or model 
■ E.g., linear with non-linear transformations 

Choose a loss function 
■ E.g., least squares with ridge regression penalty on TRAIN 

Choose an optimization procedure 
■ E.g., set derivative to zero to obtain estimator, cross-validation on 

VAL to pick num. features and amount of regularization 
Justifying the accuracy of the estimate 
■ E.g., report TEST error with Bootstrap confidence interval
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