
Warm up
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Fix any a, b, c > 0.

2. What is the x 2 R that minimizes max{�ax+ b, cx}

1. What is the x 2 R that minimizes ax2 + bx+ c
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Bias-Variance Tradeoff

■ Choice of hypothesis class introduces learning bias 
More complex class → less bias 
More complex class → more variance 

■ But in practice??  
■ Before we saw how increasing the feature space can 

increase the complexity of the learned estimator:

F1 ⇢ F2 ⇢ F3 ⇢ . . .

Complexity grows as k grows

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2



Training set error as a function of 
model complexity

©2018 Kevin Jamieson  4

F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

Complexity (k)

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

TEST error: 

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

Complexity (k)

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

TEST error: 

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;Each line is i.i.d. draw of D or T

Plot from Hastie et al



Training set error as a function of 
model complexity
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F1 ⇢ F2 ⇢ F3 ⇢ . . . TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

TEST error: 

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;

TRAIN error is optimistically 
biased because it is evaluated 
on the data it trained on. TEST 
error is unbiased only if T is 
never used to train the model 
or even pick the complexity k. 



Test set error
■ Given a dataset, randomly split it into two parts:  

Training data: 
Test data: 

■ Use training data to learn predictor 
■ e.g.,  
■ use training data to pick complexity k 

■ Use test data to report predicted performance
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D
T Important: D \ T = ;

1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2
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Regularization in Linear Regression
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Recall Least Squares:

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

When xi 2 Rd and d > n the objective function is flat in some directions:

Implies optimal solution is underconstrained 
and unstable due to lack of curvature: 
• small changes in training data result in large 

changes in solution 
• often the magnitudes of w are “very large”

Regularization imposes “simpler” solutions by a 
“complexity” penalty



Ridge Regression
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■ Old Least squares objective:  

■ Ridge Regression objective: 
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+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22



Shrinkage Properties
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■ Assume:                                 and 
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bwridge = (XTX+ �I)�1XTy

XTX = nI y = Xw + ✏

✏ ⇠ N (0,�2I)

bwridge = (XTX+ �I)�1XT (Xw + ✏)

=
n

n+ �
w +

1

n+ �
XT ✏

Ek bwridge � wk2 =
�2

(n+ �)2
kwk2 + dn�2

(n+ �)2
�⇤ =

d�2

kwk2

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22



Ridge Regression: Effect of Regularization
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■ Solution is indexed by the regularization parameter λ 
■ Larger λ 

■ Smaller λ  

■ As λ ! 0 

■ As λ !∞ 
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bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22



Ridge Regression: Effect of Regularization

 14©2018 Kevin Jamieson

TRAIN error: 

TRUE error: 

TEST error: 

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;

1

|D|
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2bw(�)

D,ridge = argmin
w

1

|D|
X

(xi,yi)2D

(yi � xT
i w)

2 + �||w||22

1

|T |
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2

E[(Y �XT bw(�)
D,ridge)

2]



Ridge Regression: Effect of Regularization
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TRAIN error: 

TRUE error: 

TEST error: 

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;Each line is i.i.d. draw of D or T

1

|D|
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2bw(�)

D,ridge = argmin
w

1

|D|
X

(xi,yi)2D

(yi � xT
i w)

2 + �||w||22

1

|T |
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2

E[(Y �XT bw(�)
D,ridge)

2]

1/� small λlarge λ



Ridge Coefficient Path

■ Typical approach: select λ using cross validation, up next
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From  
Kevin Murphy 
textbook
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1/�



What you need to know…

■ Regularization 
Penalizes for complex models 

■ Ridge regression 
L2 penalized least-squares regression 
Regularization parameter trades off model complexity 
with training error
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How… How… How???????
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■ How do we pick the regularization constant λ… 
■ How do we pick the number of basis functions… 

■ We could use the test data, but… 



How… How… How???????

■ How do we pick the regularization constant λ… 
■ How do we pick the number of basis functions… 

■ We could use the test data, but… 
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■ Never ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
train on the test data



(LOO) Leave-one-out cross validation

■ Consider a validation set with 1 example: 
D – training data 
D\j – training data with j th data point (xj ,yj) moved to validation set 

■ Learn classifier fD\j with D\j dataset 
■ Estimate true error as squared error on predicting yj: 

Unbiased estimate of errortrue(fD\j)! 
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(LOO) Leave-one-out cross validation

■ Consider a validation set with 1 example: 
D – training data 
D\j – training data with j th data point (xj ,yj) moved to validation set 

■ Learn classifier fD\j with D\j dataset 
■ Estimate true error as squared error on predicting yj: 

Unbiased estimate of errortrue(fD\j)! 

■ LOO cross validation: Average over all data points j: 
For each data point you leave out, learn a new classifier fD\j 
Estimate error as: 
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errorLOO =
1

n

nX

j=1

(yj � fD\j(xj))
2



LOO cross validation is (almost)  
unbiased estimate of true error of hD!

■ When computing LOOCV error, we only use N-1 data points 
So it’s not estimate of true error of learning with N data points 
Usually pessimistic, though – learning with less data typically gives worse answer 

■ LOO is almost unbiased! Use LOO error for model selection!!! 
E.g., picking λ
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Computational cost of LOO

■ Suppose you have 100,000 data points 
■ You implemented a great version of your learning 

algorithm 
Learns in only 1 second  

■ Computing LOO will take about 1 day!!! 
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 Use k-fold cross validation

■ Randomly divide training data into k equal parts 
D1,…,Dk 

■ For each i 
Learn classifier fD\Di using data point not in Di  
Estimate error of fD\Di on validation set Di: 

■
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errorDi =
1

|Di|
X

(xj ,yj)2Di

(yj � fD\Di
(xj))

2



 Use k-fold cross validation

■ Randomly divide training data into k equal parts 
D1,…,Dk 

■ For each i 
Learn classifier fD\Di using data point not in Di  
Estimate error of fD\Di on validation set Di: 

■ k-fold cross validation error is average over data splits: 

■ k-fold cross validation properties: 
Much faster to compute than LOO 
More (pessimistically) biased – using much less data, only n(k-1)/k 
Usually, k = 10
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errorDi =
1

|Di|
X

(xj ,yj)2Di

(yj � fD\Di
(xj))

2



Recap

■ Given a dataset, begin by splitting into  

■ Model selection: Use k-fold cross-validation on 
TRAIN to train predictor and choose magic 
parameters such as λ 
 

■ Model assessment: Use TEST to assess the 
accuracy of the model you output 
■ Never ever ever ever ever train or choose 

parameters based on the test data
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TESTTRAIN

TRAIN

TRAIN-1 VAL-1

TRAIN-3VAL-3

TRAIN-2VAL-2TRAIN-2



Example

■ Given 10,000-dimensional data and n examples, 
we pick a subset of 50 dimensions that have the 
highest correlation with labels in the training set: 
 
 

■ After picking our 50 features, we then use CV to 
train ridge regression with regularization λ  

■ What’s wrong with this procedure?
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50 indices j that have largest 
|
Pn

i=1 xi,jyi|qPn
i=1 x

2
i,j



Recap

■ Learning is… 
Collect some data 
■ E.g., housing info and sale price 

Randomly split dataset into TRAIN, VAL, and TEST 
■ E.g., 80%, 10%, and 10%, respectively 

Choose a hypothesis class or model 
■ E.g., linear with non-linear transformations 

Choose a loss function 
■ E.g., least squares with ridge regression penalty on TRAIN 

Choose an optimization procedure 
■ E.g., set derivative to zero to obtain estimator, cross-validation on 

VAL to pick num. features and amount of regularization 
Justifying the accuracy of the estimate 
■ E.g., report TEST error
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Sparsity
■ Vector w is sparse, if many entries are zero 

■ Very useful for many tasks, e.g.,  
Efficiency:  If size(w) = 100 Billion, each prediction is expensive: 
■ If part of an online system, too slow 
■ If w is sparse, prediction computation only depends on number of non-zeros 

■
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bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2



Sparsity
■ Vector w is sparse, if many entries are zero 

■ Very useful for many tasks, e.g.,  
Efficiency:  If size(w) = 100 Billion, each prediction is expensive: 
■ If part of an online system, too slow 
■ If w is sparse, prediction computation only depends on number of non-zeros 

Interpretability:  What are the  
relevant dimension to make a  
prediction? 
■ E.g., what are the parts of the  

brain associated with particular  
words? 

■

 32

Figure from
 Tom

 M
itchell

©2018 Kevin Jamieson

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2



Sparsity
■ Vector w is sparse, if many entries are zero 

■ Very useful for many tasks, e.g.,  
Efficiency:  If size(w) = 100 Billion, each prediction is expensive: 
■ If part of an online system, too slow 
■ If w is sparse, prediction computation only depends on number of non-zeros 

Interpretability:  What are the  
relevant dimension to make a  
prediction? 
■ E.g., what are the parts of the  

brain associated with particular  
words? 

■
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Figure from
 Tom

 M
itchell
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bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

■ How do we find “best” 
subset among all possible?



Greedy model selection algorithm

■ Pick a dictionary of features 
e.g., cosines of random inner products 

■ Greedy heuristic: 
Start from empty (or simple) set of features F0 = ∅ 
Run learning algorithm for current set of features Ft 
■ Obtain weights for these features 

Select next best feature hi(x)* 

■ e.g., hj(x) that results in lowest training error learner when 
using Ft + {hj(x)*} 

Ft+1 " Ft + {hi(x)*} 
Recurse
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Greedy model selection

■ Applicable in many other settings: 
Considered later in the course: 
■ Logistic regression: Selecting features (basis functions) 
■ Naïve Bayes: Selecting (independent) features P(Xi|Y) 
■ Decision trees: Selecting leaves to expand 

■ Only a heuristic! 
Finding the best set of k features is computationally 
intractable! 
Sometimes you can prove something strong about it… 

■
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 When do we stop???

■ Greedy heuristic: 
… 
Select next best feature Xi

* 
■ E.g. hj(x) that results in lowest training error 

learner when using Ft + {hj(x)*} 

Recurse When do you stop???
■ When training error is low enough? 
■ When test set error is low enough? 
■ Using cross validation?
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Is there a more principled approach?



Recall Ridge Regression
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■ Ridge Regression objective: 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+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22



Ridge vs. Lasso Regression
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■ Ridge Regression objective: 
 
 
 
 
 
 

■ Lasso objective: 
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+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwlasso = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||1



Penalized Least Squares
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bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1



Penalized Least Squares
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bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

For any � � 0 for which bwr achieves the minimum, there exists a ⌫ � 0 such that

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

subject to r(w)  ⌫



Penalized Least Squares
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bwr = argmin
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�
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i w
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+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

For any � � 0 for which bwr achieves the minimum, there exists a ⌫ � 0 such that
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�
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�2

subject to r(w)  ⌫


