Warm up

Fix any $a, b, c>0$.

1. What is the $x \in \mathbb{R}$ that minimizes $a x^{2}+b x+c$
2. What is the $x \in \mathbb{R}$ that minimizes $\max \{-a x+b, c x\}$

Overfitting

Machine Learning - CSE546 Kevin Jamieson University of Washington Oct 9, 2018

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
\square More complex class \rightarrow less bias
\square More complex class \rightarrow more variance
- But in practice??
- Before we saw how increasing the feature space can increase the complexity of the learned estimator:

$$
\begin{aligned}
& \mathcal{F}_{1} \subset \mathcal{F}_{2} \\
& \subset \mathcal{F}_{3} \subset \ldots \\
& \widehat{f}_{\mathcal{D}}^{(k)}=\arg \min _{f \in \mathcal{F}_{k}} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

Complexity grows as k grows

Training set error as a function of model complexity

$\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \ldots \quad \mathcal{D}^{i . i . d .} P_{X Y}$
$\hat{f}_{\mathcal{D}}^{(k)}=\arg \min _{f \in \mathcal{F}_{k}} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$

TRAIN error:

$$
\frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-\hat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}
$$

TRUE error:
$\mathbb{E}_{X Y}\left[\left(Y-\hat{f}_{\mathcal{D}}^{(k)}(X)\right)^{2}\right]$

Training set error as a function of model complexity

$\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \ldots \quad \mathcal{D} \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ TRAIN error:
$\widehat{f}_{\mathcal{D}}^{(k)}=\arg \min _{f \in \mathcal{F}_{k}} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \quad \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-\widehat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}$
TRUE error:
$\mathbb{E}_{X Y}\left[\left(Y-\hat{f}_{\mathcal{D}}^{(k)}(X)\right)^{2}\right]$
TEST error:

$$
\begin{aligned}
& \mathcal{T} \stackrel{i . i . d .}{\sim} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i} \in \mathcal{T}\right.}\left(y_{i}-\widehat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

Training set error as a function of model complexity

$$
\begin{array}{ll}
\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \ldots & \mathcal{D} \stackrel{i . i . d .}{\sim} P_{X Y}
\end{array} \quad \text { TRAIN error: }
$$

TRUE error:

$\mathbb{E}_{X Y}\left[\left(Y-\hat{f}_{\mathcal{D}}^{(k)}(X)\right)^{2}\right]$

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{T}}\left(y_{i}-\hat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

Important: $\mathcal{D} \cap \mathcal{T}=\emptyset$

Training set error as a function of model complexity

$\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \ldots \quad \mathcal{D} \stackrel{i . i . d .}{\sim} P_{X Y} \quad$ TRAIN error:
$\widehat{f}_{\mathcal{D}}^{(k)}=\arg \min _{f \in \mathcal{F}_{k}} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \quad \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-\widehat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}$
TRUE error:
$\mathbb{E}_{X Y}\left[\left(Y-\widehat{f}_{\mathcal{D}}^{(k)}(X)\right)^{2}\right]$ biased because it is evaluated on the data it trained on. TEST error is unbiased only if T is never used to train the model or even pick the complexity k.

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{T}}\left(y_{i}-\widehat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

Important: $\mathcal{D} \cap \mathcal{T}=\emptyset$

Test set error

- Given a dataset, randomly split it into two parts:

Training data: \mathcal{D}
\square Test data: \mathcal{T}

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

- Use training data to learn predictor
- e.g., $\frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-\hat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}$
- use training data to pick complexity k
- Use test data to report predicted performance

$$
\frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{T}}\left(y_{i}-\widehat{f}_{\mathcal{D}}^{(k)}\left(x_{i}\right)\right)^{2}
$$

Regularization

Machine Learning - CSE546 Kevin Jamieson University of Washington October 9, 2016

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$
When $x_{i} \in \mathbb{R}^{d}$ and $d>n$ the objective function is flat in some directions:

Implies optimal solution is underconstrained and unstable due to lack of curvature:

- small changes in training data result in large changes in solution
- often the magnitudes of w are "very large"

Regularization imposes "simpler" solutions by a "complexity" penalty

Ridge Regression

- Old Least squares objective:
$\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$

- Ridge Regression objective:

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Shrinkage Properties $\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$

$$
\begin{gathered}
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2} \\
\widehat{w}_{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{gathered}
$$

- Assume: $\mathbf{X}^{T} \mathbf{X}=n I$ and $\mathbf{y}=\mathbf{X} w+\boldsymbol{\epsilon}$

$$
\begin{aligned}
\widehat{w}_{\text {ridge }} & =\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T}(\mathbf{X} w+\boldsymbol{\epsilon}) \\
& =\frac{n}{n+\lambda} w+\frac{1}{n+\lambda} \mathbf{X}^{T} \boldsymbol{\epsilon}
\end{aligned}
$$

$$
\mathbb{E}\left\|\widehat{w}_{\text {ridge }}-w\right\|^{2}=\frac{\lambda^{2}}{(n+\lambda)^{2}}\|w\|^{2}+\frac{d n \sigma^{2}}{(n+\lambda)^{2}} \quad \lambda^{*}=\frac{d \sigma^{2}}{\|w\|^{2}}
$$

Ridge Regression: Effect of Regularization

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

- Solution is indexed by the regularization parameter λ
- Larger λ
- Smaller λ
- As $\lambda \rightarrow 0$
- As $\lambda \rightarrow \infty$

Ridge Regression: Effect of Regularization

$$
\begin{aligned}
& \mathcal{D}^{i . i . d .} P_{X Y} \\
& \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}=\arg \min _{w} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
\end{aligned}
$$

TRAIN error:

$$
\frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, r i d g e}^{(\lambda)}\right)^{2}
$$

TRUE error:

$$
\mathbb{E}\left[\left(Y-X^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}\right]
$$

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}
\end{aligned}
$$

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

Ridge Regression: Effect of Regularization

$\mathcal{D} \stackrel{i . i . d .}{\sim} P_{X Y}$
$\widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}=\arg \min _{w} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}$

TRAIN error:

$$
\frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, \text {,ridge }}^{(\lambda)}\right)^{2}
$$

TRUE error:

$$
\mathbb{E}\left[\left(Y-X^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}\right]
$$

TEST error:

$$
\begin{aligned}
& \mathcal{T}^{i . i . d .} P_{X Y} \\
& \frac{1}{|\mathcal{T}|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}}\left(y_{i}-x_{i}^{T} \widehat{w}_{\mathcal{D}, \text { ridge }}^{(\lambda)}\right)^{2}
\end{aligned}
$$

$$
\text { Important: } \mathcal{D} \cap \mathcal{T}=\emptyset
$$

Ridge Coefficient Path

From
Kevin Murphy textbook

- Typical approach: select λ using cross validation, up next

What you need to know...

- Regularization
\square Penalizes for complex models
- Ridge regression
$\square \mathrm{L}_{2}$ penalized least-squares regression
\square Regularization parameter trades off model complexity with training error

Cross-Validation

Machine Learning - CSE546 Kevin Jamieson University of Washington October 9, 2016

How... How... How???????

- How do we pick the regularization constant $\lambda .$.
- How do we pick the number of basis functions...
- We could use the test data, but...

How... How... How???????

- How do we pick the regularization constant $\lambda .$.
- How do we pick the number of basis functions...
- We could use the test data, but...
- Never ever train on the test data

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
- D - training data
- $D \mathrm{j}$ - training data with j th data point $\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)$ moved to validation set
- Learn classifier $f_{D \mathrm{Jj}}$ with $D \backslash \mathrm{j}$ dataset
- Estimate true error as squared error on predicting $\mathbf{y}_{\mathbf{j}}$:
- Unbiased estimate of error ${ }_{\text {true }}\left(\boldsymbol{f}_{D \mathrm{D})}\right)$!

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
- D - training data
$\square D \mathrm{j}$ - training data with j th data point $\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)$ moved to validation set
- Learn classifier $f_{D \mathrm{j}}$ with $D \backslash \mathrm{j}$ dataset
- Estimate true error as squared error on predicting $\mathbf{y}_{\mathbf{j}}$:
- Unbiased estimate of error ${ }_{\text {true }}\left(f_{D j}\right)$!
- LOO cross validation: Average over all data points j :
\square For each data point you leave out, learn a new classifier $f_{D \mathrm{j}}$
- Estimate error as:

$$
\operatorname{error}_{L O O}=\frac{1}{n} \sum_{j=1}^{n}\left(y_{j}-f_{\mathcal{D} \backslash j}\left(x_{j}\right)\right)^{2}
$$

LOO cross validation is (almost) unbiased estimate of true error of h_{D} !

- When computing LOOCV error, we only use \mathbf{N}-1 data points
\square So it's not estimate of true error of learning with N data points
\square Usually pessimistic, though - learning with less data typically gives worse answer
- LOO is almost unbiased! Use LOO error for model selection!!!
\square E.g., picking λ

Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
\square Learns in only 1 second
- Computing LOO will take about 1 day!!!

Use k-fold cross validation

- Randomly divide training data into k equal parts
- D_{1}, \ldots, D_{k}
- For each i
\square Learn classifier $f_{D I D i}$ using data point not in D_{i}
\square Estimate error of $f_{D I D i}$ on validation set D_{i} :

$$
\operatorname{error}_{\mathcal{D}_{i}}=\frac{1}{\left|\mathcal{D}_{i}\right|} \sum_{\left(x_{j}, y_{j}\right) \in \mathcal{D}_{i}}\left(y_{j}-f_{\mathcal{D} \backslash \mathcal{D}_{i}}\left(x_{j}\right)\right)^{2}
$$

Use k-fold cross validation

- Randomly divide training data into k equal parts
D_{1}, \ldots, D_{k}
- For each i

Learn classifier $f_{D \mid D i}$ using data point not in D_{i}
\square Estimate error of $f_{D I D i}$ on validation set D_{i} :

$$
\operatorname{error}_{\mathcal{D}_{i}}=\frac{1}{\left|\mathcal{D}_{i}\right|} \sum_{\left(x_{j}, y_{j}\right) \in \mathcal{D}_{i}}\left(y_{j}-f_{\mathcal{D} \backslash \mathcal{D}_{i}}\left(x_{j}\right)\right)^{2}
$$

- k-fold cross validation error is average over data splits:
- k-fold cross validation properties:
\square Much faster to compute than LOO
\square More (pessimistically) biased - using much less data, only $n(k-1) / k$
- Usually, k=10

Recap

- Given a dataset, begin by splitting into
- Model selection: Use k-fold cross-validation on TRAIN to train predictor and choose magic parameters such as λ

VAL-3 TRAIN-3

- Model assessment: Use TEST to assess the accuracy of the model you output
- Never ever ever ever ever train or choose parameters based on the test data

Example

- Given 10,000-dimensional data and n examples, we pick a subset of 50 dimensions that have the highest correlation with labels in the training set:

$$
50 \text { indices } \mathrm{j} \text { that have largest } \frac{\left|\sum_{i=1}^{n} x_{i, j} y_{i}\right|}{\sqrt{\sum_{i=1}^{n} x_{i, j}^{2}}}
$$

- After picking our 50 features, we then use CV to train ridge regression with regularization λ
- What's wrong with this procedure?

Recap

- Learning is...
\square Collect some data
- E.g., housing info and sale price
- Randomly split dataset into TRAIN, VAL, and TEST
- E.g., 80\%, 10\%, and 10\%, respectively
\square Choose a hypothesis class or model
- E.g., linear with non-linear transformations
\square Choose a loss function
- E.g., least squares with ridge regression penalty on TRAIN
\square Choose an optimization procedure
- E.g., set derivative to zero to obtain estimator, cross-validation on VAL to pick num. features and amount of regularization
\square Justifying the accuracy of the estimate
- E.g., report TEST error

Simple Variable Selection LASSO: Sparse Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 9, 2016

Sparsity

$$
\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

- Vector w is sparse, if many entries are zero
- Very useful for many tasks, e.g.,

Efficiency: If size(w) = 100 Billion, each prediction is expensive:

- If part of an online system, too slow
- If w is sparse, prediction computation only depends on number of non-zeros

Sparsity

$$
\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

- Vector w is sparse, if many entries are zero
- Very useful for many tasks, e.g.,
\square Efficiency: If size(w) = 100 Billion, each prediction is expensive:
- If part of an online system, too slow
- If \mathbf{w} is sparse, prediction computation only depends on number of non-zeros
\square Interpretability: What are the relevant dimension to make a prediction?
- E.g., what are the parts of the brain associated with particular words?

Sparsity

$$
\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

- Vector w is sparse, if many entries are zero
- Very useful for many tasks, e.g.,
\square Efficiency: If size(w) = 100 Billion, each prediction is expensive:
- If part of an online system, too slow
- If \mathbf{w} is sparse, prediction computation only depends on number of non-zeros
\square Interpretability: What are the relevant dimension to make a prediction?
- E.g., what are the parts of the brain associated with particular words?
- How do we find "best" subset among all possible?

Greedy model selection algorithm

- Pick a dictionary of features
\square e.g., cosines of random inner products
Greedy heuristic:
\square Start from empty (or simple) set of features $F_{0}=\varnothing$
\square Run learning algorithm for current set of features F_{t}
- Obtain weights for these features
\square Select next best feature $\mathbf{h}_{\mathbf{i}}(\mathbf{x})^{*}$
- e.g., $h_{j}(x)$ that results in lowest training error learner when using $F_{t}+\left\{h_{j}(x)^{*}\right\}$
$\square F_{t+1} \leftarrow F_{t}+\left\{\mathrm{h}_{\mathrm{i}}(\mathrm{x})^{*}\right\}$
\square Recurse

Greedy model selection

- Applicable in many other settings:
\square Considered later in the course:
- Logistic regression: Selecting features (basis functions)
- Naïve Bayes: Selecting (independent) features $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}\right)$
- Decision trees: Selecting leaves to expand
- Only a heuristic!
\square Finding the best set of k features is computationally intractable!
\square Sometimes you can prove something strong about it...

When do we stop???

Greedy heuristic:
\square Select next best feature $\mathbf{X}_{\mathbf{i}}^{*}$

- E.g. $\mathrm{h}_{\mathrm{j}}(\mathrm{x})$ that results in lowest training error learner when using $F_{t}+\left\{\mathrm{h}_{\mathrm{j}}(\mathrm{x})^{*}\right\}$
\square Recurse
When do you stop???
- When training error is low enough?
- When test set error is low enough?
- Using cross validation?

Is there a more principled approach?

Recall Ridge Regression

- Ridge Regression objective:

$$
\widehat{w}_{r i d g e}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Ridge vs. Lasso Regression

- Ridge Regression objective:

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

$+\lambda$

- Lasso objective:

$$
\widehat{w}_{\text {lasso }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{1}
$$

$+\lambda$

Penalized Least Squares

$$
\begin{aligned}
& \text { Ridge }: r(w)=\|w\|_{2}^{2} \quad \text { Lasso }: r(w)=\|w\|_{1} \\
& \qquad \widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda r(w)
\end{aligned}
$$

Penalized Least Squares

$$
\begin{aligned}
& \text { Ridge : } r(w)=\|w\|_{2}^{2} \quad \text { Lasso : } r(w)=\|w\|_{1} \\
& \qquad \widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda r(w)
\end{aligned}
$$

For any $\lambda \geq 0$ for which \widehat{w}_{r} achieves the minimum, there exists a $\nu \geq 0$ such that

$$
\widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \quad \text { subject to } r(w) \leq \nu
$$

Penalized Least Squares

$$
\begin{aligned}
& \text { Ridge }: r(w)=\|w\|_{2}^{2} \quad \text { Lasso }: r(w)=\|w\|_{1} \\
& \qquad \widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda r(w)
\end{aligned}
$$

For any $\lambda \geq 0$ for which \widehat{w}_{r} achieves the minimum, there exists a $\nu \geq 0$ such that

$$
\widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \quad \text { subject to } r(w) \leq \nu
$$

