Warm up

Fix any a, b, c > 0.

1. What is the $x \in \mathbb{R}$ that minimizes $ax^2 + bx + c$

2. What is the $x \in \mathbb{R}$ that minimizes $\max\{-ax+b, cx\}$

Overfitting

Machine Learning – CSE546 Kevin Jamieson University of Washington

Oct 9, 2018

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - □ More complex class \rightarrow less bias
 - □ More complex class \rightarrow more variance
- But in practice??
- Before we saw how increasing the feature space can increase the complexity of the learned estimator:

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots$$
$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Complexity grows as k grows

 $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots \quad \mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$ $\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f\in\mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i)\in\mathcal{D}} (y_i - f(x_i))^2$

TRAIN error: $\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$

TRUE error: $\mathbb{E}_{XY}[(Y - \hat{f}_{\mathcal{D}}^{(k)}(X))^2]$

 $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots \quad \mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$ $\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f\in\mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i,y_i)\in\mathcal{D}} (y_i - f(x_i))^2$

TRAIN error: $\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$

TRUE error: $\mathbb{E}_{XY}[(Y - \hat{f}_{\mathcal{D}}^{(k)}(X))^2]$

TEST error: $\mathcal{T} \stackrel{i.i.d.}{\sim} P_{XY}$ $\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \hat{f}_{\mathcal{D}}^{(k)}(x_i))^2$

Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

Complexity (k)

 $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots \quad \mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$ $\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f\in\mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i,y_i)\in\mathcal{D}} (y_i - f(x_i))^2$

TRAIN error:

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

TRUE error: $\mathbb{E}_{XY}[(Y - \widehat{f}_{\mathcal{D}}^{(k)}(X))^2]$

TEST error: $\mathcal{T} \stackrel{i.i.d.}{\sim} P_{XY}$ $\frac{1}{|\mathcal{T}|} \sum_{(x_i,y_i)\in\mathcal{T}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$ Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

6

$$\overline{\mathcal{F}}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots \quad \mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$
$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

TRAIN error: $\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$

TRAIN error is **optimistically biased** because it is evaluated on the data it trained on. **TEST error** is **unbiased** only if *T* is never used to train the model or even pick the complexity k.

TRUE error: $\mathbb{E}_{XY}[(Y - \widehat{f}_{\mathcal{D}}^{(k)}(X))^2]$

TEST error: $\mathcal{T} \stackrel{i.i.d.}{\sim} P_{XY}$ $\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \hat{f}_{\mathcal{D}}^{(k)}(x_i))^2$ Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

Test set error

Given a dataset, randomly split it into two parts:

□ Training data: *D*□ Test data: *T*

Important:
$$\mathcal{D} \cap \mathcal{T} = \emptyset$$

Use training data to learn predictor

• e.g.,
$$\frac{1}{|\mathcal{D}|} \sum_{(x_i,y_i)\in\mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

- use training data to pick complexity k
- Use test data to report predicted performance

$$\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

Regularization

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 9, 2016

Regularization in Linear Regression

Recall Least Squares: $\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$

When $x_i \in \mathbb{R}^d$ and d > n the objective function is flat in some directions:

Implies optimal solution is *underconstrained* and unstable due to lack of curvature:

 small changes in training data result in large changes in solution

• often the *magnitudes* of *w* are "very large"

Regularization imposes "simpler" solutions by a "complexity" penalty

Ridge Regression

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{N} (y_i - x_i^T w)^2$$

n

Ridge Regression objective:

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{N} \left(y_i - x_i^T w \right)^2 + \lambda ||w||_2^2$$

$$+ \cdots + \cdots + \cdots + \lambda$$

 n_{i}

Shrinkage Properties $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

 $\widehat{w}_{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}$
Assume: $\mathbf{X}^T \mathbf{X} = nI$ and $\mathbf{y} = \mathbf{X}w + \boldsymbol{\epsilon}$

$$\widehat{w}_{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T (\mathbf{X}w + \boldsymbol{\epsilon})$$
$$= \frac{n}{n+\lambda} w + \frac{1}{n+\lambda} \mathbf{X}^T \boldsymbol{\epsilon}$$

$$\mathbb{E}\|\widehat{w}_{ridge} - w\|^2 = \frac{\lambda^2}{(n+\lambda)^2} \|w\|^2 + \frac{dn\sigma^2}{(n+\lambda)^2} \qquad \lambda^* = \frac{d\sigma^2}{\|w\|^2}$$

Ridge Regression: Effect of Regularization

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2 + \lambda ||w||_2^2$$

- Solution is indexed by the regularization parameter λ
- Larger λ
- Smaller λ
- As $\lambda \rightarrow 0$
- As $\lambda \rightarrow \infty$

Ridge Regression: Effect of Regularization

$$\mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$
$$\widehat{w}_{\mathcal{D},ridge}^{(\lambda)} = \arg\min_{w} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

TRAIN error:

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T \widehat{w}_{\mathcal{D}, ridge}^{(\lambda)})^2$$

TRUE error:

$$\mathbb{E}[(Y - X^T \widehat{w}_{\mathcal{D},ridge}^{(\lambda)})^2]$$

TEST error:

$$\mathcal{T} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T \widehat{w}_{\mathcal{D}, ridge}^{(\lambda)})^2$$

Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

Ridge Regression: Effect of Regularization

 $\mathcal{D} \overset{i.i.d.}{\sim} P_{XY}$ $\widehat{w}_{\mathcal{D},ridge}^{(\lambda)} = \arg\min_{w} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$

TRAIN error:

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T \widehat{w}_{\mathcal{D}, ridge}^{(\lambda)})^2$$

TRUE error:

$$\mathbb{E}[(Y - X^T \widehat{w}_{\mathcal{D},ridge}^{(\lambda)})^2]$$
TEST error:

$$\mathcal{T} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\frac{1}{|\mathcal{T}|} \sum_{(x_i,y_i)\in\mathcal{D}} (y_i - x_i^T \widehat{w}_{\mathcal{D},ridge}^{(\lambda)})^2$$
Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

Ridge Coefficient Path

Typical approach: select λ using cross validation, up next

What you need to know...

- Regularization
 - Penalizes for complex models
- Ridge regression
 - L₂ penalized least-squares regression
 - Regularization parameter trades off model complexity with training error

Cross-Validation

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 9, 2016

How... How... How???????

- How do we pick the regularization constant λ...
- How do we pick the number of basis functions...
- We could use the test data, but...

How... How... How???????

- How do we pick the regularization constant λ ...
- How do we pick the number of basis functions...
- We could use the test data, but...

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
 - \Box *D* training data
 - Dj training data with *j* th data point (\mathbf{x}_i , \mathbf{y}_i) moved to validation set
- Learn classifier $f_{D\setminus i}$ with $D\setminus j$ dataset
- Estimate true error as squared error on predicting y_i:
 - Unbiased estimate of error_{true}(**f**_{D\j})!

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
 - \Box *D* training data
 - Dj training data with *j* th data point (\mathbf{x}_i , \mathbf{y}_i) moved to validation set
- Learn classifier $f_{D\setminus i}$ with $D\setminus j$ dataset
- Estimate true error as squared error on predicting y_i:
 - Unbiased estimate of error_{true}(*f*_{*D*\j})!

- LOO cross validation: Average over all data points *j*:
 - For each data point you leave out, learn a new classifier f_{D\i}

$$\operatorname{error}_{LOO} = \frac{1}{n} \sum_{j=1}^{n} (y_j - f_{\mathcal{D}\setminus j}(x_j))^2$$

 \boldsymbol{n}

LOO cross validation is (almost) unbiased estimate of true error of h_D !

- When computing LOOCV error, we only use N-1 data points
 - □ So it's not estimate of true error of learning with *N* data points
 - Usually pessimistic, though learning with less data typically gives worse answer
- LOO is almost unbiased! Use LOO error for model selection!!!
 E.g., picking λ

Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm

□ Learns in only 1 second

Computing LOO will take about 1 day!!!

Use k-fold cross validation

- Randomly divide training data into k equal parts
 D₁,...,D_k
- For each *i*
 - Learn classifier $f_{D\setminus D_i}$ using data point not in D_i
 - Estimate error of $f_{D \setminus D_i}$ on validation set D_i :

1	2	3	-4	5
Train	Tain	Validation	Train	Tain

$$\operatorname{error}_{\mathcal{D}_i} = \frac{1}{|\mathcal{D}_i|} \sum_{(x_j, y_j) \in \mathcal{D}_i} (y_j - f_{\mathcal{D} \setminus \mathcal{D}_i}(x_j))^2$$

Use k-fold cross validation

- Randomly divide training data into k equal parts
 D₁,...,D_k
- For each *i*
 - Learn classifier $f_{D \setminus D_i}$ using data point not in D_i
 - Estimate error of $f_{D \setminus D_i}$ on validation set D_i :

$$\operatorname{error}_{\mathcal{D}_i} = \frac{1}{|\mathcal{D}_i|} \sum_{(x_j, y_j) \in \mathcal{D}_i} (y_j - f_{\mathcal{D} \setminus \mathcal{D}_i}(x_j))^2$$

$$error_{k-fold} = \frac{1}{k} \sum_{i=1}^{k} error_{\mathcal{D}_i}$$

1

Train

2

Thin

з.

Validation

Train

- *k*-fold cross validation properties:
 - Much faster to compute than LOO
 - More (pessimistically) biased using much less data, only n(k-1)/k
 - Usually, k = 10

5

Train

- Model assessment: Use TEST to assess the accuracy of the model you output
 - Never ever ever ever train or choose parameters based on the test data

Example

 Given 10,000-dimensional data and n examples, we pick a subset of 50 dimensions that have the highest correlation with labels in the training set:

50 indices j that have largest

$$\frac{\left|\sum_{i=1}^{n} x_{i,j} y_{i}\right|}{\sqrt{\sum_{i=1}^{n} x_{i,j}^{2}}}$$

- After picking our 50 features, we then use CV to train ridge regression with regularization λ
- What's wrong with this procedure?

Recap

- Learning is...
 - Collect some data
 - E.g., housing info and sale price
 - Randomly split dataset into TRAIN, VAL, and TEST
 - E.g., 80%, 10%, and 10%, respectively
 - Choose a hypothesis class or model
 - E.g., linear with non-linear transformations
 - Choose a loss function
 - E.g., least squares with ridge regression penalty on TRAIN
 - Choose an optimization procedure
 - E.g., set derivative to zero to obtain estimator, cross-validation on VAL to pick num. features and amount of regularization
 - □ Justifying the accuracy of the estimate
 - E.g., report TEST error

Simple Variable Selection LASSO: Sparse Regression

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 9, 2016

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

Vector w is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - **Efficiency**: If size(**w**) = 100 Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If **w** is sparse, prediction computation only depends on number of non-zeros

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

Vector w is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - Efficiency: If size(w) = 100 Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If w is sparse, prediction computation only depends on number of non-zeros
 - Interpretability: What are the relevant dimension to make a prediction?
 - E.g., what are the parts of the brain associated with particular words?

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w \right)^2$$

Vector w is sparse, if many entries are zero

- Very useful for many tasks, e.g.,
 - Efficiency: If size(w) = 100 Billion, each prediction is expensive:
 - If part of an online system, too slow
 - If w is sparse, prediction computation only depends on number of non-zeros
 - Interpretability: What are the relevant dimension to make a prediction?
 - E.g., what are the parts of the brain associated with particular words?
- How do we find "best" subset among all possible?

Greedy model selection algorithm

- Pick a dictionary of features
 - e.g., cosines of random inner products
- Greedy heuristic:
 - □ Start from empty (or simple) set of features $F_0 = ∅$
 - \Box Run learning algorithm for current set of features F_t
 - Obtain weights for these features
 - Select next best feature h_i(x)*
 - e.g., $h_j(x)$ that results in lowest training error learner when using $F_t + \{h_j(x)^*\}$
 - $\Box F_{t+1} \leftarrow F_t + \{h_i(x)^*\}$
 - Recurse

Greedy model selection

- Applicable in many other settings:
 - Considered later in the course:
 - Logistic regression: Selecting features (basis functions)
 - Naïve Bayes: Selecting (independent) features P(X_i|Y)
 - Decision trees: Selecting leaves to expand
- Only a heuristic!

Finding the best set of k features is computationally intractable!

Sometimes you can prove something strong about it...

When do we stop???

Greedy heuristic:

Select next best feature X^{*}_i

• E.g. $h_j(x)$ that results in lowest training error learner when using $F_t + {h_j(x)^*}$

Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- Using cross validation?

Is there a more principled approach?

Recall Ridge Regression

Ridge vs. Lasso Regression

- Lasso objective: $\widehat{w}_{lasso} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_1$ $+ \cdots + \cdots + \cdots + \lambda$

Penalized Least Squares

Ridge :
$$r(w) = ||w||_2^2$$
 Lasso : $r(w) = ||w||_1$
 $\widehat{w}_r = \arg\min_w \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda r(w)$

Penalized Least Squares

Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_2$
 $\widehat{w}_r = \arg\min_w \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda r(w)$

For any $\lambda \geq 0$ for which \widehat{w}_r achieves the minimum, there exists a $\nu \geq 0$ such that

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^n (y_i - x_i^T w)^2$$
 subject to $r(w) \le \nu$

Penalized Least Squares

Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_1$
 $\widehat{w}_r = \arg\min_w \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda r(w)$

For any $\lambda \geq 0$ for which \widehat{w}_r achieves the minimum, there exists a $\nu \geq 0$ such that

$$\widehat{w}_{r} = \arg\min_{w} \sum_{i=1}^{n} \left(y_{i} - x_{i}^{T}w\right)^{2} \quad \text{subject to } r(w) \leq \nu$$