Is the test error unbiased for these programs?

Given dataset of 1000-by-50 feature

matrix X, and 1000-by-1 labels vector
mu = np.mean(X, axis=0)

X =X=-mu

idx = np.random.permutation(1000)
TRAIN = idx[0:900]
TEST = idx[900::]

ytrain = y[TRAIN]
Xtrain = X[TRAIN,:]

Solve for argmin_w [[Xtrain*w - ytrain|[_2

w = np.linalg.solve(np.dot(Xtrain.T, Xtrain),
np.dot(Xtrain.T, ytrain))

b = np.mean(ytrain)

ytest
Xtest

y[TEST]
X[TEST, :]

train_error = np.dot(np.dot(Xtrain, w)+b - ytrain,
np.dot(Xtrain, w)+b - ytrain)/len(TRAIN)

test_error = np.dot(np.dot(Xtest, w)+b - ytest,
np.dot(Xtest, w)+b - ytest)/len(TEST)

print('Train error = ',train_error)
print('Test error = ',test_error)

©2017 Kevin Jamieson

Given dataset of 1000-by-50 feature

matrix X, and 1000-by-1 labels vector
idx = np.random.permutation(1000)

TRAIN = idx[0:900]

TEST = idx[900::]

ytrain y[TRAIN]

Xtrain X[TRAIN,:]

Xtrain_avg = np.mean(Xtrain, axis=0)
Xtrain = Xtrain - Xtrain_avg

Solve for argmin_w [[Xtrain*w - ytrain|[[_2

w = np.linalg.solve(np.dot(Xtrain.T, Xtrain),
np.dot(Xtrain.T, ytrain))

b = np.mean(ytrain)

ytest = y[TEST]

Xtest = X[TEST,:]

Xtest_avg = np.mean(Xtest, axis=0)
Xtest = Xtest - Xtest_avg

train_error = np.dot(np.dot(Xtrain, w)+b - ytrain,
np.dot(Xtrain, w)+b - ytrain)/len(TRAIN)

test_error = np.dot(np.dot(Xtest, w)+b - ytest,
np.dot(Xtest, w)+b - ytest)/len(TEST)

print('Train error = ',train_error)
print('Test error = ',test_error)

Is the test error unbiased for this program?

Given dataset of 1000-by-50 feature

matrix X, and 1000-by-1 labels vector
idx = np.random.permutation(1000)

TRAIN = idx[0:800]

VAL = idx[800:900]

TEST = idx[900::]

ytrain = y[TRAIN]

Xtrain

X[TRAIN, :]

yval = y[VAL]

Xval

X[VAL,:]

err = np.zeros(50)
for d in range(1,51):

w, b = fit(Xtrain[:,0:d], ytrain)
yval_hat = predict(w, b, Xval[:,0:d])
err[d-1] = np.mean((yval_hat-yval)**2)

d_best = np.argmin(err)+1

Xtot = np.concatenate((Xtrain, Xval), axis=0)

ytot = np.concatenate((ytrain, yval), axis=0)
w, b = fit(Xtot[:,0:d_best], ytot)

ytest = y[TEST]

Xtest = X[TEST,:]

ytot_hat = predict(w, b, Xtot[:,0:d_best])
tot_train_error = np.mean((ytot_hat-ytot)*%2)
ytest_hat = predict(w, b, Xtest[:,0:d_best])
test_error = np.mean((ytest_hat-ytest)*%2)

print('Train error = ',train_error)
print('Test error = ',test_error)

©2017 Kevin Jamieson

def fit(Xin, Yin):

mu = np.mean(Xin, axis=0)

Xin = Xin = mu

w = np.linalg.solve(np.dot(Xin.T, Xin),
np.dot(Xin.T, Yin))

b = np.mean(Yin) - np.dot(w, mu)

return w, b

def predict(w, b, Xin):

return np.dot(Xin, w)+b

Simple Variable Selection

LASSO: Sparse Regression

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 9, 2016

Sparsity s = argminy (v —fw)”

1=1
" JE——
= Vector w is sparse, if many entries are zero

= Very useful for many tasks, e.g.,

Efficiency: If size(w) = 100 Billion, each prediction is expensive:
= If part of an online system, too slow

= |f wis sparse, prediction computation only depends on number of non-zeros

©2018 Kevin Jamieson

Sparsity s = argmin 3 (yi —f'w)

1=1
" A

= Vector w is sparse, if many entries are zero

= Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100 Billion, each prediction is expensive:
= If part of an online system, too slow

= |f wis sparse, prediction computation only depends on number of non-zeros

Interpretability: \What are the
relevant dimension to make a

Eat Push Run

prediction? N
Participant
= E.g., what are the parts of the P1
brain associated with particular
words”?
Mean of
independently
learned signatures
n over all nine

participants

Pars opercularis Postcentral gyrus Superior temporal
(z=24mm) (z=30mm) sulcus (posterior)
(z=12mm)

©2018 Kevin Jamieson

[IBYONAl WO wod) 8Inbi

Sparsity s = argmin 3 (yi —f'w)

1=1
" A

= Vector w is sparse, if many entries are zero

= Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100 Billion, each prediction is expensive:
= If part of an online system, too slow

= |f wis sparse, prediction computation only depends on number of non-zeros

Interpretability: \What are the
relevant dimension to make a

Eat Push Run

prediction? N
Participant
= E.g., what are the parts of the P1
brain associated with particular
words?
Mean of
independently
learned signatures
a over all nine

participants

Pars opercularis Postcentral gyrus Superior temporal
(z=24mm) (z=30mm) sulcus (posterior)
(z=12mm)

©2018 Kevin Jamieson

[IBYONAl WO wod) 8Inbi

Greedy model selection algorithm
" S

= Pick a dictionary of features
e.g., cosines of random inner products

= Greedy heuristic:
Start from empty (or simple) set of features F,= &
Run learning algorithm for current set of features F,
» Obtain weights for these features

Select next best feature h;(x)"

- e.g., hj(x) that results in lowest training error learner when
using F;+ {h,(x)’}

Fi.s € Fi+ {h(x)}
Recurse

©2018 Kevin Jamieson

Greedy model selection

" J——
= Applicable in many other settings:

Considered later in the course:
» Logistic regression: Selecting features (basis functions)
- Naive Bayes: Selecting (independent) features P(X|Y)

= Decision trees: Selecting leaves to expand
= Only a heuristic!

Finding the best set of k features is computationally
intractable!

Sometimes you can prove something strong about it...

©2018 Kevin Jamieson

When do we stop???
" S

= Greedy heuristic:

Select next best feature X;

- E.g. h(x) that results in lowest training error
learner when using F; + {h,(x)’}

Recurse \when do you stop???
= When training error is low enough?
= When test set error is low enough?
= Using cross validation?

|s there a more principled approach?

©2018 Kevin Jamieson

Recall Ridge Regression

]
= Ridge Regressmn objective:
T

2
wmdge — arg mlnz — &y ’LU) T)‘HwH%
1=1 A

+\\+ - — s\ - g
ﬁ 4

Ridge vs. Lasso Regression

o
= Ridge Regressmn objective:

2
wmdge — arg mln Z o ZC?’U}) T)‘HwH%
1=1 A

+\\+m+— +)\\ ~ 4

= Lasso objective: n

©2018 Kevin Jamieson

Penalized Least Squares
"

Ridge : 7(w) = [Jwll; ~ Lasso : r(w) = ||w||x

n
W, = arg minz (yi — x;rw)Q + Ar(w)
i=1

Penalized Least Squares

Ridge : r(w) = [|w|[3 ~ Lasso: r(w) = |Jw||,
W, = arg minz (yz- = x;rw)Q + Ar(w)
i=1

For any A > 0 for which w, achieves the minimum, there exists a v > 0 such that

n
~ . 2 X
W, = argmin g (yZ — x?w) subject to r(w) < v
w
i=1

©2018 Kevin Jamieson 13

Penalized Least Squares

Ridge : r(w) = ||wl|5 Lasso : r(w) = ||w||1

W, = arg minz (yi — x;rw)Q + Ar(w)

w
1=1

For any A > 0 for which w, achieves the minimum, there exists a v > 0 such that

n
~ . 2 X
W, = argmin g (yZ — x?w) subject to r(w) < v
w
i=1

//// / / /
—

©2018 Kevin Jamieson 14

Optimizing the LASSO Objective

" A
= LASSO solution:

wlassoablasso — argmmz ZE w+b)) —|_)\HwH1
1 n

- L . T -~

blasso — arg Iful}l? E Z (yz — I, wlasso))

1=1

Optimizing the LASSO Objective

" A
= LASSO solution:

n

o~ -~ . 2
Wiassos Diasso = arg IQIUHZ? (yz - (ZE?’UJ T b)) +)“ ’w‘ ‘1
=1
/b\ . . 1 & T ~
lasso — aI'g Iful}l? E Zl (yz — I, wlasso))
1=

1 o 1 <
So as usual, preprocess to make sure that - Z y; = 0, - Z ;=0
=1 1=1
so we don’t have to worry about an offset.

©2018 Kevin Jamieson 16

Optimizing the LASSO Objective

" A
= LASSO solution:

n
o~ -~ . 2
Wiassos Diasso = arg IQIUHZ? (yz - (ZE?’UJ T b)) +)“ ’w‘ ‘1
=1
/b\ . . 1 & T ~
lasso — aI'g Iful}l? E Zl (yz — I, wlasso))
1=

1 o 1 <
So as usual, preprocess to make sure that - Zl y; = 0, - Zl ;=0
1= 1=

so we don’t have to worry about an offset.

mn
~ . 2
Wigsso — aAl'g mu%nZ (yz — x?w) +)‘Hle
=1
How dc;Lwe solve this?

©2018 Kevin Jamieson

Coordinate Descent
" A

= Given a function, we want to find minimum

= Often, it is easy to find minimum along a single coordinate:

= How do we pick next coordinate?

= Super useful approach for *many* problems
Converges to optimum in some cases, such as LASSO

©2018 Kevin Jamieson

18

Optimizing LASSO Objective

One Coordinate at a Time
» B
Fix any j € {1,..., d}

n

n d 2 d
Z<yi_5’7?w)2+)\”w”1 :Z<yi—zﬂfz‘,kwk> —|—>\Z|wk|
k=1 k=1

1=1 1=1

2
EI«mEthO%w%)+A2N%+A%
1=1

k] k]

Optimizing LASSO Objective

One Coordinate at a Time
» B
Fix any j € {1,...,d}

n

n d 2 d
Z<yi_5’7@rw)2+)\”w”1 :Z<yz—zﬂfzkwk> —|—>\Z|wk|
k=1 k=1

1=1 1=1

2
=2 ((y =S wiwn) - @y wj) F A fwel + Aluwy]
i=1 '

k#J

7“@(]) =Y~ szg@k
-y
- (L0 ?
w; = argmin E (fri — T wj) + A|wj|
w;
i=1

Convex Functions
» B

= Equivalent definitions of convexity:

N\t

f convex:
O+ (1= Ny) < Af(@) + (1 - V() v,y A € [0, 1]
fly) > f(x) + V() (y —) Va,y

= Gradients lower bound convex functions and are unique at x iff
function differentiable at x

= Subgradients generalize gradients to non-differentiable points:
Any supporting hyperplane at x that lower bounds entire function

g is a subgradient at z if f(y) > f(z) +¢' (y — x)

©2018 Kevin Jamieson

21

Taking the Subgradient = wmind- (< ~au)

"
g is a subgradient at = if f(y) > f(z) + ¢ (y — z)
= Convex function is minimized at w if O is a sub-gradient at w.

awj ’wJ’ —

Ow, (— T j wj)2 —

1=1

©2018 Kevin Jamieson 22

Setting Subgradient to O
" S

p

n) ajw; —Cj — A if w; <0
Ou, (Z (7"2(]) — T wj) T ij) =l = A=+ A ifw; =0

\a,jwj—cj—l—)\ ifwj>0

Setting Subgradient to O
" J———

w is a minimum if
0 is a sub-gradient at w

©2018 Kevin Jamieson

p

a,jwj—cj—)\ ifwj<0

\a,jwj—cj—l-)\ ifwj>0
2
ijwj) + A|wy]
((c;+N)/a; ifc; <=\
(¢ —A)/a; ifc; > A

24

Soft Thresholding

" A
r(Cj—I—)\)/CLj iij<—)\
@, =0 if Jc;| < A
\(cj—)\)/aj iij>>\

n
a; = 2 0-225 -—Ea:- Wk | T
J :Ci,j J Yi 1,k Wk | Lq,9

i—1 i=1 k#j

Coordinate Descent for LASSO
(aka Shooting Algorithm)
" JEE——
= | Repeat until convergence (initialize w=0)

Pick a coordinate / at (random or sequentially)
« Set:

((cj—|—)\)/a,j iij<—)\
’&}\j:<0 if|Cj|§)\
\(cj—A)/aj iij>>\

= \Where:

n mn
— 2 — - T .
aj = L j Cj = Yi ik Wk | 4,4
i=1

i=1 k#j

For convergence rates, see Shalev-Shwartz and Tewari 2009

= Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004

©2018 Kevin Jamieson 26

Recall: Ridge Coefficient Path
B

0.6

=== |cavol
=8 |Weight
05[| —@m age
==& |bph
0.4 || ==6=—svi

lcp
==@== gleason
=—6— pgg45

From
Kevin Murphy
textbook

0.3F

0.2F

0.1F

-01r

-0.2

= Typical approach: select A using cross validation

©2018 Kevin Jamieson 27

Now: LASSO Coefficient Path
" A

0.7

061

05r

0.4r

0.3r

-0.1r

-0.2

©2018 Kevin Jamieson

N A OO O LY |

=== |cavol
== |weight ||
=—8— age
==&-|bph
== svi
Icp
m=@== gleason |-

20 25

From
Kevin Murphy
textbook

28

What you need to know
" JE

©2018 Kevin Jamieson

Variable Selection: find a sparse solution to learning
problem

L, regularization is one way to do variable selection

Applies beyond regression
Hundreds of other approaches out there

LASSO objective non-differentiable, but convex = Use
subgradient

No closed-form solution for minimization = Use
coordinate descent

Shooting algorithm is simple approach for solving LASSO

29

