Is the test error unbiased for these programs?

```
# Given dataset of 1000-by-50 feature
# matrix X, and 1000-by-1 labels vector
mu = np.mean(X, axis=0)
X = X - mu
idx = np.random.permutation(1000)
TRAIN = idx[0:900]
TEST = idx[900::]
ytrain = y[TRAIN]
Xtrain = X[TRAIN,:]
# Solve for argmin_w ||Xtrain*w - ytrain||_2
w = np.linalg.solve( np.dot(Xtrain.T, Xtrain),
    np.dot(Xtrain.T, ytrain) )
b = np.mean(ytrain)
ytest = y[TEST]
Xtest = X[TEST,:]
train_error = np.dot( np.dot(Xtrain, w)+b - ytrain,
    np.dot(Xtrain, w)+b - ytrain )/len(TRAIN)
test_error = np.dot( np.dot(Xtest, w)+b - ytest,
    np.dot(Xtest, w)+b - ytest )/len(TEST)
print('Train error = ',train_error)
print('Test error = ',test_error)
```

```
# Given dataset of 1000-by-50 feature
# matrix X, and 1000-by-1 labels vector
idx = np.random.permutation(1000)
TRAIN = idx[0:900]
TEST = idx[900::]
ytrain = y[TRAIN]
Xtrain = X[TRAIN,:]
Xtrain_avg = np.mean(Xtrain, axis=0)
Xtrain = Xtrain - Xtrain_avg
# Solve for argmin_w ||Xtrain*w - ytrain||_2
w = np.linalg.solve( np.dot(Xtrain.T, Xtrain),
        np.dot(Xtrain.T, ytrain) )
b = np.mean(ytrain)
ytest = y[TEST]
Xtest = X[TEST,:]
Xtest_avg = np.mean(Xtest, axis=0)
Xtest = Xtest - Xtest_avg
train_error = np.dot( np.dot(Xtrain, w)+b - ytrain,
    np.dot(Xtrain, w)+b - ytrain )/len(TRAIN)
test_error = np.dot( np.dot(Xtest, w)+b - ytest,
    np.dot(Xtest, w)+b - ytest )/len(TEST)
print('Train error = ',train_error)
print('Test error = ',test_error)
```


Is the test error unbiased for this program?

\# Given dataset of 1000-by-50 feature
\# matrix X, and 1000-by-1 labels vector
idx $=$ np.random.permutation(1000)
TRAIN $=\mathrm{idx}[0: 800]$
VAL $=1 d x[800: 900]$
TEST = idx[900::]
ytrain = y[TRAIN]
Xtrain = X [TRAIN,:]
yval = y[VAL]
Xval = X[VAL,:]
err $=n p . z e r o s(50)$
for d in range $(1,51)$:
w, b = fit(Xtrain[:,0:d], ytrain)
yval_hat = predict(w, b, Xval[:,0:d])
err[d-1] = np.mean((yval_hat-yval)**2)
d_best = np.argmin(err)+1
Xtot = np.concatenate((Xtrain, Xval), axis=0)
ytot $=$ np.concatenate ((ytrain, yval), axis=0)
w, b = fit(Xtot[:,0:d_best], ytot)
ytest = y[TEST]
Xtest = X[TEST,:]
ytot_hat = predict(w, b, Xtot[:,0:d_best]) tot_train_error $=$ np.mean ((ytot_hat-ytot) **2) ytest_hat = predict(w, b, Xtest[:,0:d_best]) test_error = np.mean((ytest_hat-ytest)**2)
print('Train error = ',train_error)
print('Test error = ',test_error)

```
def fit(Xin, Yin):
    mu = np.mean(Xin, axis=0)
    Xin = Xin - mu
    w = np.linalg.solve( np.dot(Xin.T, Xin),
            np.dot(Xin.T, Yin) )
    b = np.mean(Yin) - np.dot(w, mu)
    return w, b
    |
def predict(w, b, Xin):
    return np.dot(Xin, w)+b
```


Simple Variable Selection LASSO: Sparse Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 9, 2016

Sparsity

$$
\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

- Vector w is sparse, if many entries are zero
- Very useful for many tasks, e.g.,

Efficiency: If size(w) = 100 Billion, each prediction is expensive:

- If part of an online system, too slow
- If w is sparse, prediction computation only depends on number of non-zeros

Sparsity

$$
\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

- Vector w is sparse, if many entries are zero
- Very useful for many tasks, e.g.,
\square Efficiency: If size(w) = 100 Billion, each prediction is expensive:
- If part of an online system, too slow
- If wis sparse, prediction computation only depends on number of non-zeros
\square Interpretability: What are the relevant dimension to make a prediction?
- E.g., what are the parts of the brain associated with particular words?

Superior temporal sulcus (posterior) ($\mathrm{z}=12 \mathrm{~mm}$)

Sparsity

$$
\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

- Vector w is sparse, if many entries are zero
- Very useful for many tasks, e.g.,

Efficiency: If size $(\mathbf{w})=100$ Billion, each prediction is expensive:

- If part of an online system, too slow
- If wis sparse, prediction computation only depends on number of non-zeros

Interpretability: What are the relevant dimension to make a prediction?

- E.g., what are the parts of the brain associated with particular words?
- How do we find "best" subset among all possible?
 sulcus (posterior) ($\mathrm{z}=12 \mathrm{~mm}$)

Greedy model selection algorithm

- Pick a dictionary of features
\square e.g., cosines of random inner products
Greedy heuristic:
\square Start from empty (or simple) set of features $F_{0}=\varnothing$
\square Run learning algorithm for current set of features F_{t}
- Obtain weights for these features
\square Select next best feature $\mathbf{h}_{\mathbf{i}}(\mathbf{x})^{*}$
- e.g., $h_{j}(x)$ that results in lowest training error learner when using $F_{t}+\left\{h_{j}(x)^{*}\right\}$
$\square F_{t+1} \leftarrow F_{t}+\left\{\mathrm{h}_{\mathrm{i}}(\mathrm{x})^{*}\right\}$
\square Recurse

Greedy model selection

- Applicable in many other settings:
\square Considered later in the course:
- Logistic regression: Selecting features (basis functions)
- Naïve Bayes: Selecting (independent) features $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}\right)$
- Decision trees: Selecting leaves to expand
- Only a heuristic!
\square Finding the best set of k features is computationally intractable!
\square Sometimes you can prove something strong about it...

When do we stop???

Greedy heuristic:
\square Select next best feature $\mathbf{X}_{\mathbf{i}}^{*}$

- E.g. $\mathrm{h}_{\mathrm{j}}(\mathrm{x})$ that results in lowest training error learner when using $F_{t}+\left\{\mathrm{h}_{\mathrm{j}}(\mathrm{x})^{*}\right\}$
\square Recurse
When do you stop???
- When training error is low enough?
- When test set error is low enough?
- Using cross validation?

Is there a more principled approach?

Recall Ridge Regression

- Ridge Regression objective:

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Ridge vs. Lasso Regression

- Ridge Regression objective:

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

$+\lambda$

- Lasso objective:

$$
\widehat{w}_{l a s s o}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{1}
$$

$+\lambda$

Penalized Least Squares

$$
\begin{aligned}
& \text { Ridge }: r(w)=\|w\|_{2}^{2} \quad \text { Lasso }: r(w)=\|w\|_{1} \\
& \qquad \widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda r(w)
\end{aligned}
$$

Penalized Least Squares

$$
\begin{aligned}
& \text { Ridge : } r(w)=\|w\|_{2}^{2} \quad \text { Lasso : } r(w)=\|w\|_{1} \\
& \qquad \widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda r(w)
\end{aligned}
$$

For any $\lambda \geq 0$ for which \widehat{w}_{r} achieves the minimum, there exists a $\nu \geq 0$ such that

$$
\widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \quad \text { subject to } r(w) \leq \nu
$$

Penalized Least Squares

$$
\begin{aligned}
& \text { Ridge }: r(w)=\|w\|_{2}^{2} \quad \text { Lasso }: r(w)=\|w\|_{1} \\
& \qquad \widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda r(w)
\end{aligned}
$$

For any $\lambda \geq 0$ for which \widehat{w}_{r} achieves the minimum, there exists a $\nu \geq 0$ such that

$$
\widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \quad \text { subject to } r(w) \leq \nu
$$

Optimizing the LASSO Objective

- LASSO solution:

$$
\begin{aligned}
& \widehat{w}_{\text {lasso }}, \widehat{b}_{\text {lasso }}=\arg \min _{w, b} \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}^{T} w+b\right)\right)^{2}+\lambda\|w\|_{1} \\
& \left.\widehat{b}_{\text {lasso }}=\arg \min _{w, b} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} \widehat{w}_{\text {lasso }}\right)\right)
\end{aligned}
$$

Optimizing the LASSO Objective

- LASSO solution:

$$
\begin{aligned}
& \widehat{w}_{\text {lasso }}, \widehat{b}_{\text {lasso }}=\arg \min _{w, b} \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}^{T} w+b\right)\right)^{2}+\lambda\|w\|_{1} \\
& \left.\widehat{b}_{\text {lasso }}=\arg \min _{w, b} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} \widehat{w}_{\text {lasso }}\right)\right)
\end{aligned}
$$

So as usual, preprocess to make sure that $\frac{1}{n} \sum_{i=1}^{n} y_{i}=0, \frac{1}{n} \sum_{i=1}^{n} x_{i}=\mathbf{0}$ so we don't have to worry about an offset.

Optimizing the LASSO Objective

- LASSO solution:

$$
\begin{aligned}
& \widehat{w}_{\text {lasso }}, \widehat{b}_{\text {lasso }}=\arg \min _{w, b} \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}^{T} w+b\right)\right)^{2}+\lambda\|w\|_{1} \\
& \left.\widehat{b}_{\text {lasso }}=\arg \min _{w, b} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} \widehat{w}_{\text {lasso }}\right)\right)
\end{aligned}
$$

So as usual, preprocess to make sure that $\frac{1}{n} \sum_{i=1}^{n} y_{i}=0, \frac{1}{n} \sum_{i=1}^{n} x_{i}=\mathbf{0}$
so we don't have to worry about an offset.

$$
\widehat{w}_{l a s s o}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{1}
$$

How do we solve this?

Coordinate Descent

- Given a function, we want to find minimum
- Often, it is easy to find minimum along a single coordinate:
- How do we pick next coordinate?
- Super useful approach for *many* problems
\square Converges to optimum in some cases, such as LASSO

Optimizing LASSO Objective One Coordinate at a Time

Fix any $j \in\{1, \ldots, d\}$

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{1}=\sum_{i=1}^{n}\left(y_{i}-\sum_{k=1}^{d} x_{i, k} w_{k}\right)^{2}+\lambda \sum_{k=1}^{d}\left|w_{k}\right|
$$

$$
=\sum_{i=1}^{n}\left(\left(y_{i}-\sum_{k \neq j} x_{i, k} w_{k}\right)-x_{i, j} w_{j}\right)^{2}+\lambda \sum_{k \neq j}\left|w_{k}\right|+\lambda\left|w_{j}\right|
$$

Optimizing LASSO Objective One Coordinate at a Time

Fix any $j \in\{1, \ldots, d\}$

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{1}=\sum_{i=1}^{n}\left(y_{i}-\sum_{k=1}^{d} x_{i, k} w_{k}\right)^{2}+\lambda \sum_{k=1}^{d}\left|w_{k}\right|
$$

$$
=\sum_{i=1}^{n}\left(\left(y_{i}-\sum_{k \neq j} x_{i, k} w_{k}\right)-x_{i, j} w_{j}\right)^{2}+\lambda \sum_{k \neq j}\left|w_{k}\right|+\lambda\left|w_{j}\right|
$$

Initialize $\widehat{w}_{k}=0$ for all $k \in\{1, \ldots, d\}$
Loop over $j \in\{1, \ldots, n\}$:

$$
\begin{aligned}
r_{i}^{(j)} & =y_{i}-\sum_{k \neq j} x_{i, j} \widehat{w}_{k} \\
\widehat{w}_{j} & =\arg \min _{w_{j}} \sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}+\lambda\left|w_{j}\right|
\end{aligned}
$$

Convex Functions

- Equivalent definitions of convexity:

f convex:

$$
\begin{array}{lr}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) & \forall x, y, \lambda \in[0,1] \\
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \forall x, y &
\end{array}
$$

- Gradients lower bound convex functions and are unique at \mathbf{x} iff function differentiable at \mathbf{x}
- Subgradients generalize gradients to non-differentiable points:
\square Any supporting hyperplane at \mathbf{x} that lower bounds entire function

$$
g \text { is a subgradient at } x \text { if } f(y) \geq f(x)+g^{T}(y-x)
$$

Taking the Subgradient $\left.\hat{w}_{j}=\arg \min _{i_{i}} \sum_{i=1}^{n}\left(r_{i}^{n}\right)-x_{i j} w_{j}\right)^{2}+\lambda w_{j}$

g is a subgradient at x if $f(y) \geq f(x)+g^{T}(y-x)$

- Convex function is minimized at w if 0 is a sub-gradient at w .

$$
\partial_{w_{j}}\left|w_{j}\right|=
$$

$$
\partial_{w_{j}} \sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}=
$$

Setting Subgradient to 0

$$
\begin{aligned}
& \quad \partial_{w_{j}}\left(\sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}+\lambda\left|w_{j}\right|\right)= \begin{cases}a_{j} w_{j}-c_{j}-\lambda & \text { if } w_{j}<0 \\
{\left[-c_{j}-\lambda,-c_{j}+\lambda\right]} & \text { if } w_{j}=0 \\
a_{j} w_{j}-c_{j}+\lambda & \text { if } w_{j}>0\end{cases} \\
& a_{j}=\left(\sum_{i=1}^{n} x_{i, j}^{2}\right) \quad c_{j}=2\left(\sum_{i=1}^{n} r_{i}^{(j)} x_{i, j}\right)
\end{aligned}
$$

Setting Subgradient to 0

$$
\begin{aligned}
& \partial_{w_{j}}\left(\sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}+\lambda\left|w_{j}\right|\right)= \begin{cases}a_{j} w_{j}-c_{j}-\lambda & \text { if } w_{j}<0 \\
{\left[-c_{j}-\lambda,-c_{j}+\lambda\right]} & \text { if } w_{j}=0 \\
a_{j} w_{j}-c_{j}+\lambda & \text { if } w_{j}>0\end{cases} \\
& a_{j}=\left(\sum_{i=1}^{n} x_{i, j}^{2}\right) \quad c_{j}=2\left(\sum_{i=1}^{n} r_{i}^{(j)} x_{i, j}\right) \\
& \widehat{w}_{j}=\arg \min _{w_{j}} \sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}+\lambda\left|w_{j}\right| \\
& w \text { is a minimum if } \\
& 0 \text { is a sub-gradient at } w \\
& \widehat{w}_{j}= \begin{cases}\left(c_{j}+\lambda\right) / a_{j} & \text { if } c_{j}<-\lambda \\
0 & \text { if }\left|c_{j}\right| \leq \lambda \\
\left(c_{j}-\lambda\right) / a_{j} & \text { if } c_{j}>\lambda\end{cases}
\end{aligned}
$$

Soft Thresholding

$$
\widehat{w}_{j}=\left\{\begin{array}{ll}
\left(c_{j}+\lambda\right) / a_{j} & \text { if } c_{j}<-\lambda \\
0 & \text { if }\left|c_{j}\right| \leq \lambda \\
\left(c_{j}-\lambda\right) / a_{j} & \text { if } c_{j}>\lambda
\end{array}\right\} c_{j=1}^{n} x_{i, j}^{2} \begin{aligned}
& \sum_{i=1}^{n}\left(y_{i}-\sum_{k \neq j} x_{i, k} w_{k}\right) x_{i, j}
\end{aligned}
$$

Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence (initialize w=0)

Pick a coordinate I at (random or sequentially)

- Set:

$$
\widehat{w}_{j}= \begin{cases}\left(c_{j}+\lambda\right) / a_{j} & \text { if } c_{j}<-\lambda \\ 0 & \text { if }\left|c_{j}\right| \leq \lambda \\ \left(c_{j}-\lambda\right) / a_{j} & \text { if } c_{j}>\lambda\end{cases}
$$

- Where:

$$
a_{j}=\sum_{i=1}^{n} x_{i, j}^{2} \quad c_{j}=2 \sum_{i=1}^{n}\left(y_{i}-\sum_{k \neq j} x_{i, k} \widehat{w}_{k}\right) x_{i, j}
$$

\square For convergence rates, see Shalev-Shwartz and Tewari 2009

- Other common technique = LARS
\square Least angle regression and shrinkage, Efron et al. 2004

Recall: Ridge Coefficient Path

From
Kevin Murphy textbook

- Typical approach: select λ using cross validation

Now: LASSO Coefficient Path

From
Kevin Murphy textbook

What you need to know

- Variable Selection: find a sparse solution to learning problem
- L_{1} regularization is one way to do variable selection
\square Applies beyond regression
- Hundreds of other approaches out there
- LASSO objective non-differentiable, but convex \rightarrow Use subgradient
- No closed-form solution for minimization \rightarrow Use coordinate descent
- Shooting algorithm is simple approach for solving LASSO

