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Sparsity
■ Vector w is sparse, if many entries are zero 

■ Very useful for many tasks, e.g.,  
Efficiency:  If size(w) = 100 Billion, each prediction is expensive: 
■ If part of an online system, too slow 
■ If w is sparse, prediction computation only depends on number of non-zeros 

■
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■ Very useful for many tasks, e.g.,  
Efficiency:  If size(w) = 100 Billion, each prediction is expensive: 
■ If part of an online system, too slow 
■ If w is sparse, prediction computation only depends on number of non-zeros 

Interpretability:  What are the  
relevant dimension to make a  
prediction? 
■ E.g., what are the parts of the  

brain associated with particular  
words? 
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■ How do we find “best” 
subset among all possible?



Greedy model selection algorithm

■ Pick a dictionary of features 
e.g., cosines of random inner products 

■ Greedy heuristic: 
Start from empty (or simple) set of features F0 = ∅ 
Run learning algorithm for current set of features Ft 
■ Obtain weights for these features 

Select next best feature hi(x)* 

■ e.g., hj(x) that results in lowest training error learner when 
using Ft + {hj(x)*} 

Ft+1 ! Ft + {hi(x)*} 
Recurse
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Greedy model selection

■ Applicable in many other settings: 
Considered later in the course: 
■ Logistic regression: Selecting features (basis functions) 
■ Naïve Bayes: Selecting (independent) features P(Xi|Y) 
■ Decision trees: Selecting leaves to expand 

■ Only a heuristic! 
Finding the best set of k features is computationally 
intractable! 
Sometimes you can prove something strong about it… 

■
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 When do we stop???

■ Greedy heuristic: 
… 
Select next best feature Xi

* 
■ E.g. hj(x) that results in lowest training error 

learner when using Ft + {hj(x)*} 

Recurse When do you stop???
■ When training error is low enough? 
■ When test set error is low enough? 
■ Using cross validation?
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Is there a more principled approach?



Recall Ridge Regression
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■ Ridge Regression objective: 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Ridge vs. Lasso Regression

 11

■ Ridge Regression objective: 
 
 
 
 
 
 

■ Lasso objective: 
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Penalized Least Squares
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Optimizing the LASSO Objective
■ LASSO solution:

 15©2018 Kevin Jamieson

bwlasso,bblasso = argmin
w,b

nX

i=1

�
yi � (xT

i w + b)
�2

+ �||w||1

bblasso = argmin
w,b

1

n

nX

i=1

�
yi � xT

i bwlasso)
�



Optimizing the LASSO Objective
■ LASSO solution:

 16©2018 Kevin Jamieson

bwlasso,bblasso = argmin
w,b

nX

i=1

�
yi � (xT

i w + b)
�2

+ �||w||1

bblasso = argmin
w,b

1

n

nX

i=1

�
yi � xT

i bwlasso)
�

So as usual, preprocess to make sure that
1

n

nX

i=1

yi = 0,
1

n

nX

i=1

xi = 0

so we don’t have to worry about an o↵set.



Optimizing the LASSO Objective
■ LASSO solution:

 17©2018 Kevin Jamieson

bwlasso,bblasso = argmin
w,b

nX

i=1

�
yi � (xT

i w + b)
�2

+ �||w||1

So as usual, preprocess to make sure that
1

n

nX

i=1

yi = 0,
1

n

nX

i=1

xi = 0

so we don’t have to worry about an o↵set.

bwlasso = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||1

How do we solve this?

bblasso = argmin
w,b

1

n

nX

i=1

�
yi � xT

i bwlasso)
�



Coordinate Descent
■ Given a function, we want to find minimum 

■ Often, it is easy to find minimum along a single coordinate: 

■ How do we pick next coordinate? 

■ Super useful approach for *many* problems 
Converges to optimum in some cases, such as LASSO
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Optimizing LASSO Objective  
One Coordinate at a Time
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f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2f(x) � `I 8x

f `-strongly convex:

f (�x+ (1� �)y)  �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

Convex Functions

■ Equivalent definitions of convexity: 
 
 
 
 
 
 
 
 

■ Gradients lower bound convex functions and are unique at x iff 
function differentiable at x 

■ Subgradients generalize gradients to non-differentiable points: 
Any supporting hyperplane at x that lower bounds entire function
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g is a subgradient at x if f(y) � f(x) + gT (y � x)



Taking the Subgradient

■ Convex function is minimized at w if 0 is a sub-gradient at w. 
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Setting Subgradient to 0
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Soft Thresholding 
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Coordinate Descent for LASSO  
(aka Shooting Algorithm)

■ Repeat until convergence (initialize w=0) 
Pick a coordinate l at (random or sequentially) 
■ Set: 

■ Where:  

For convergence rates, see Shalev-Shwartz and Tewari 2009 
■ Other common technique = LARS 

Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path

■ Typical approach: select λ using cross validation
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Now: LASSO Coefficient Path 
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What you need to know

■ Variable Selection: find a sparse solution to learning 
problem 

■ L1 regularization is one way to do variable selection 
Applies beyond regression 
Hundreds of other approaches out there 

■ LASSO objective non-differentiable, but convex ➔ Use 
subgradient 

■ No closed-form solution for minimization ➔ Use 
coordinate descent 

■ Shooting algorithm is simple approach for solving LASSO
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