
Is the test error unbiased for these programs?

 1©2017 Kevin Jamieson

 

Xtrain avg

No Preprocessing by de meaningusing whole TEST set



Is the test error unbiased for this program?

 2©2017 Kevin Jamieson

e

c III yi
f x x µ c

xTw peter 1C

Stott b

see non annotated slides
for correct example



©2018 Kevin Jamieson  3

Simple Variable Selection 
LASSO: Sparse Regression

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 9, 201611



Sparsity
■ Vector w is sparse, if many entries are zero 

■ Very useful for many tasks, e.g.,  
Efficiency:  If size(w) = 100 Billion, each prediction is expensive: 
■ If part of an online system, too slow 
■ If w is sparse, prediction computation only depends on number of non-zeros 

■
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■ Very useful for many tasks, e.g.,  
Efficiency:  If size(w) = 100 Billion, each prediction is expensive: 
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Interpretability:  What are the  
relevant dimension to make a  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■ E.g., what are the parts of the  

brain associated with particular  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■ How do we find “best” 
subset among all possible?



Greedy model selection algorithm

■ Pick a dictionary of features 
e.g., cosines of random inner products 

■ Greedy heuristic: 
Start from empty (or simple) set of features F0 = ∅ 
Run learning algorithm for current set of features Ft 
■ Obtain weights for these features 

Select next best feature hi(x)* 

■ e.g., hj(x) that results in lowest training error learner when 
using Ft + {hj(x)*} 

Ft+1 ! Ft + {hi(x)*} 
Recurse
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Greedy model selection

■ Applicable in many other settings: 
Considered later in the course: 
■ Logistic regression: Selecting features (basis functions) 
■ Naïve Bayes: Selecting (independent) features P(Xi|Y) 
■ Decision trees: Selecting leaves to expand 

■ Only a heuristic! 
Finding the best set of k features is computationally 
intractable! 
Sometimes you can prove something strong about it… 

■
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 When do we stop???

■ Greedy heuristic: 
… 
Select next best feature Xi

* 
■ E.g. hj(x) that results in lowest training error 

learner when using Ft + {hj(x)*} 

Recurse When do you stop???
■ When training error is low enough? 
■ When test set error is low enough? 
■ Using cross validation?
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Is there a more principled approach?



Recall Ridge Regression
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■ Ridge Regression objective: 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Ridge vs. Lasso Regression
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■ Ridge Regression objective: 
 
 
 
 
 
 

■ Lasso objective: 
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Penalized Least Squares
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Penalized Least Squares
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Penalized Least Squares
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Optimizing the LASSO Objective
■ LASSO solution:
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Optimizing the LASSO Objective
■ LASSO solution:
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so we don’t have to worry about an o↵set.
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■ LASSO solution:
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Coordinate Descent
■ Given a function, we want to find minimum 

■ Often, it is easy to find minimum along a single coordinate: 

■ How do we pick next coordinate? 

■ Super useful approach for *many* problems 
Converges to optimum in some cases, such as LASSO
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Optimizing LASSO Objective  
One Coordinate at a Time
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Optimizing LASSO Objective  
One Coordinate at a Time
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x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2f(x) � `I 8x

f `-strongly convex:

f (�x+ (1� �)y)  �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

Convex Functions

■ Equivalent definitions of convexity: 
 
 
 
 
 
 
 
 

■ Gradients lower bound convex functions and are unique at x iff 
function differentiable at x 

■ Subgradients generalize gradients to non-differentiable points: 
Any supporting hyperplane at x that lower bounds entire function
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g is a subgradient at x if f(y) � f(x) + gT (y � x)

f is convex Gcs Z card zza
is a convex set

Y



Taking the Subgradient

■ Convex function is minimized at w if 0 is a sub-gradient at w. 
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Setting Subgradient to 0
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Setting Subgradient to 0
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Soft Thresholding 
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Coordinate Descent for LASSO  
(aka Shooting Algorithm)

■ Repeat until convergence (initialize w=0) 
Pick a coordinate l at (random or sequentially) 
■ Set: 

■ Where:  

For convergence rates, see Shalev-Shwartz and Tewari 2009 
■ Other common technique = LARS 

Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path

■ Typical approach: select λ using cross validation

 27

From  
Kevin Murphy 
textbook
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Now: LASSO Coefficient Path 

 28

From  
Kevin Murphy 
textbook
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What you need to know

■ Variable Selection: find a sparse solution to learning 
problem 

■ L1 regularization is one way to do variable selection 
Applies beyond regression 
Hundreds of other approaches out there 

■ LASSO objective non-differentiable, but convex ➔ Use 
subgradient 

■ No closed-form solution for minimization ➔ Use 
coordinate descent 

■ Shooting algorithm is simple approach for solving LASSO

 29©2018 Kevin Jamieson



©Kevin Jamieson 2018
 30

Classification 
Logistic Regression

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 9, 201611



©Kevin Jamieson 2018

THUS FAR, REGRESSION:  
PREDICT A CONTINUOUS VALUE GIVEN 
SOME INPUTS

 31
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Weather prediction revisted

 32

Temperature 



©Kevin Jamieson 2018

Reading Your Brain, Simple Example

AnimalPerson

Pairwise classification accuracy: 85%
[Mitchell et al.]

 33
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Binary Classification

■ Learn: f:X —>Y 
X – features 
Y – target classes 

■ Loss function:  

■ Expected loss of f:  
 
 
 

■ Suppose you know P(Y|X) exactly, how should you classify? 
Bayes optimal classifier: 
 
 

 34

Y 2 {0, 1}

f x Y 011 Loss
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Binary Classification

■ Learn: f:X —>Y 
X – features 
Y – target classes 

■ Loss function:  

■ Expected loss of f:  
 
 
 

■ Suppose you know P(Y|X) exactly, how should you classify? 
Bayes optimal classifier: 
 
 

 35

Y 2 {0, 1}
`(f(x), y) = 1{f(x) 6= y}

EXY [1{f(X) 6= Y }] = EX [EY |X [1{f(x) 6= Y }|X = x]]

EY |X [1{f(x) 6= Y }|X = x] = 1{f(x) = 1}P(Y = 0|X = x) + 1{f(x) = 0}P(Y = 1|X = x)

f(x) = argmax
y

P(Y = y|X = x)
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Link Functions

■ Estimating P(Y|X): Why not use standard linear 
regression? 

■ Combining regression and probability? 
Need a mapping from real values to [0,1] 
A link function!

 36
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Logistic Regression
Logistic 
function 
(or Sigmoid):

■ Learn P(Y|X) directly 
Assume a particular functional form for link 
function 
Sigmoid applied to a linear function of the input 
features:

Z

Features can be discrete or continuous!
 37
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Understanding the sigmoid
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Sigmoid for binary classes

 39

P(Y = 0|w,X) =
1

1 + exp(w0 +
P

k wkXk)

P(Y = 1|w,X) = 1� P(Y = 0|w,X) =
exp(w0 +

P
k wkXk)

1 + exp(w0 +
P

k wkXk)

P(Y = 1|w,X)

P(Y = 0|w,X)
= exp(w0 +

X

k

wkXk)
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Sigmoid for binary classes

 40

P(Y = 0|w,X) =
1

1 + exp(w0 +
P

k wkXk)

P(Y = 1|w,X) = 1� P(Y = 0|w,X) =
exp(w0 +

P
k wkXk)

1 + exp(w0 +
P

k wkXk)

P(Y = 1|w,X)

P(Y = 0|w,X)
= exp(w0 +

X

k

wkXk)

log
P(Y = 1|w,X)

P(Y = 0|w,X)
= w0 +

X

k

wkXk

Linear Decision Rule!
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Logistic Regression –  
a Linear classifier
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 42

P (Y = 1|x,w) = exp(wTx)

1 + exp(wTx)

P (Y = �1|x,w) = 1

1 + exp(wTx)

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)

■ This is equivalent to:

■ So we can compute the maximum likelihood estimator:

bwMLE = argmax
w

nY

i=1

P (yi|xi, w)
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 43

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 44

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2 (MLE for Gaussian noise)
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 45

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))= J(w)

What does J(w) look like? Is it convex?
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 46

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))= J(w)

Good news: J(w) is convex function of w, no local optima problems

Bad news: no closed-form solution to maximize J(w)

Good news: convex functions easy to optimize
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Linear Separability

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w)) When is this loss small?
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Large parameters → Overfitting

■ If data is linearly separable, weights go to infinity 

In general, leads to overfitting: 
■ Penalizing high weights can prevent overfitting…
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Regularized Conditional Log Likelihood

■ Add regularization penalty, e.g., L2:

 49

argmin
w,b

nX

i=1

log
�
1 + exp(�yi (x

T
i w + b))

�
+ �||w||22

Be sure to not regularize the o↵set b!



©Kevin Jamieson 2017
 50

Gradient Descent

Machine Learning – CSE546 
Kevin Jamieson 
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Machine Learning Problems

 51

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.
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Machine Learning Problems

 52

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.

x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2f(x) � `I 8x

f `-strongly convex:

f (�x+ (1� �)y)  �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

g is a subgradient at x if f(y) � f(x) + gT (y � x)

g is a subgradient at x if f(y) � f(x) + gT (y � x)
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Machine Learning Problems

 53

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.
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Least squares

 54

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

1
2 ||Xw � y||22How does software solve:
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Least squares

 55

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

How does software solve:

…its complicated: Do you need high precision?
Is X column/row sparse?
Is bwLS sparse?
Is XTX “well-conditioned”?
Can XTX fit in cache/memory?

(LAPACK, BLAS, MKL…)

1
2 ||Xw � y||22
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Taylor Series Approximation
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■ Taylor series in one dimension:

f(x+ �) = f(x) + f 0(x)� + 1
2f

00(x)�2 + . . .

■ Gradient descent:
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Taylor Series Approximation
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■ Taylor series in d dimensions:
f(x+ v) = f(x) +rf(x)T v + 1

2v
Tr2f(x)v + . . .

■ Gradient descent:
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Gradient Descent
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wt+1 = wt � ⌘rf(wt)

rf(w) =

f(w) = 1
2 ||Xw � y||22
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Gradient Descent
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wt+1 = wt � ⌘rf(wt)

Example: X =


10�3 0
0 1

�
y =


10�3

1

�
w⇤ =

(wt+1 � w⇤) = (I � ⌘XTX)(wt � w⇤)

= (I � ⌘XTX)t+1(w0 � w⇤)

w0 =


0
0

�

f(w) = 1
2 ||Xw � y||22
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Taylor Series Approximation
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■ Taylor series in one dimension:

f(x+ �) = f(x) + f 0(x)� + 1
2f

00(x)�2 + . . .

■ Newton’s method:
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Taylor Series Approximation
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■ Taylor series in d dimensions:
f(x+ v) = f(x) +rf(x)T v + 1

2v
Tr2f(x)v + . . .

■ Newton’s method:
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Newton’s Method

 62

rf(w) =

r2f(w) =

wt+1 = wt + ⌘vt

vt is solution to : r2f(wt)vt = �rf(wt)

f(w) = 1
2 ||Xw � y||22
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Newton’s Method
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rf(w) =

r2f(w) =

wt+1 = wt + ⌘vt

vt is solution to : r2f(wt)vt = �rf(wt)

f(w) = 1
2 ||Xw � y||22

w1 = w0 � ⌘(XTX)�1XT (Xw0 � y) = w⇤

For quadratics, Newton’s method converges in one step! (Not a surprise, why?)

XT (Xw � y)

XTX
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General case
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In general for Newton’s method to achieve f(wt)� f(w⇤)  ✏:

So why are ML problems overwhelmingly solved 
by gradient methods?

vt is solution to : r2f(wt)vt = �rf(wt)Hint:
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General Convex case
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f(wt)� f(w⇤)  ✏

Newton’s method:

t ⇡ log(log(1/✏))

Gradient descent: 
• f is smooth and strongly convex:                      :  
 

• f is smooth:  
 

• f is potentially non-differentiable:

r2f(w) � bI

aI � r2f(w) � bI

||rf(w)||2  c

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,…
Nocedal  
+Wright, 
Bubeck

Clean 
converge
nice 
proofs: 
Bubeck
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Revisiting… 
Logistic Regression

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 16, 2016



©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 67

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))f(w)

rf(w) =


