Is the test error unbiased for these programs?

```
# Given dataset of 1000-by-50 feature
# matrix X, and 1000-by-1 labels vector
mu = np.mean(X, axis=0)
X = X - mu
```

```
idx = np.random.permutation(1000)
```

idx = np.random.permutation(1000)
TRAIN = idx[0:900]
TRAIN = idx[0:900]
TEST = idx[900::]
TEST = idx[900::]
ytrain = y[TRAIN]
ytrain = y[TRAIN]
Xtrain = X[TRAIN,:]
Xtrain = X[TRAIN,:]

Solve for argmin_w ||Xtrain*w - ytrain|/_2

Solve for argmin_w ||Xtrain*w - ytrain|/_2

w = np.linalg.solve(np.dot(Xtrain.T, Xtrain),
w = np.linalg.solve(np.dot(Xtrain.T, Xtrain),
np.dot(Xtrain.T, ytrain))
np.dot(Xtrain.T, ytrain))
b = np.mean(ytrain)

```
b = np.mean(ytrain)
```

ytest $=\mathrm{y}$ [TEST]
Xtest $=\mathrm{X}[$ TEST, $:$]
train_error $=n p . \operatorname{dot}(n p . \operatorname{dot}(X t r a i n, w)+b-y t r a i n$,
np.dot(Xtrain, w) +b - ytrain)/len(TRAIN)
test_error $=n p . \operatorname{dot}(n p . \operatorname{dot}(X t e s t, w)+b-y t e s t$,
np.dot(Xtest, w)+b - ytest)/len(TEST)
print('Train error = ',train_error)
print('Test error = ',test_error)
No. Preprocessing by de-meaning
using whole (TEST) set.

```
# Given dataset of 1000-by-50 feature
```


Given dataset of 1000-by-50 feature

matrix X, and 1000-by-1 labels vector

matrix X, and 1000-by-1 labels vector

idx = np.random.permutation(1000)
idx = np.random.permutation(1000)
TRAIN = idx[0:900]
TRAIN = idx[0:900]
TEST = idx[900::]
TEST = idx[900::]
ytrain = y[TRAIN]
ytrain = y[TRAIN]
Xtrain = X[TRAIN,:]
Xtrain = X[TRAIN,:]
Xtrain_avg = np.mean(Xtrain, axis=0)
Xtrain_avg = np.mean(Xtrain, axis=0)
Xtrain = Xtrain - Xtrain_avg
Xtrain = Xtrain - Xtrain_avg

Solve for argmin_w ||Xtrain*w - ytrain|/_2

Solve for argmin_w ||Xtrain*w - ytrain|/_2

w = np.linalg.solve(np.dot(Xtrain.T, Xtrain),
w = np.linalg.solve(np.dot(Xtrain.T, Xtrain),
np.dot(Xtrain.T, ytrain))
np.dot(Xtrain.T, ytrain))
b = np.mean(ytrain)
b = np.mean(ytrain)
ytest = y[TEST]
ytest = y[TEST]
Xtest = X[TEST,:]
Xtest = X[TEST,:]
Xtest_avg - np-mean(Xtest, axis=0)
Xtest_avg - np-mean(Xtest, axis=0)
Xtest = Xtest - Xtost_avg. Xtruin-avg
Xtest = Xtest - Xtost_avg. Xtruin-avg
train_error = np.dot(np.dot(Xtrain, w)+b - ytrain,
train_error = np.dot(np.dot(Xtrain, w)+b - ytrain,
np.dot(Xtrain, w)+b - ytrain)/len(TRAIN)
np.dot(Xtrain, w)+b - ytrain)/len(TRAIN)
test_error = np.dot(np.dot(Xtest, w)+b - ytest,
test_error = np.dot(np.dot(Xtest, w)+b - ytest,
np.dot(Xtest, w)+b - ytest)/len(TEST)
np.dot(Xtest, w)+b - ytest)/len(TEST)
print('Train error = ',train_error)
print('Train error = ',train_error)
print('Test error = ',test_error)

```
print('Test error = ',test_error)
```

Is the test error unbiased for this program?
\# Given dataset of 1000-by-50 feature
\# matrix X, and 1000-by-1 labels vector

```
x=x m
idx = np.random.permutation(1000)
TRAIN = idx[0:800]
VAL = idx[800:900]
TEST = idx[900::]
ytrain = y[TRAIN]
Xtrain = X[TRAIN,:]
yval = y[VAL]
Xval = X[VAL,:]
err = np.zeros(50)
for d in range(1,51):
w, b = fit(Xtrain[:,0:d], ytrain)
yval_hat = predict(w, b, Xval[:,0:d])
err[d-1] = np.mean((yval_hat-yval)**2)
d_best = np.argmin(err)+1
```


Xtot $=$ np. concatenate ((Xtrain, Xval), axis=0)
ytot $=$ np. concatenate((ytrain, yval), axis=0)
(see non-annotated slides
ytest $=\mathrm{y}[\mathrm{TEST}]$
Xtest $=\mathrm{X}[\mathrm{TEST},:]$
ytot_hat $=$ predict(w, b, Xtot[:,0:d_best])
tot_train_error = np.mean ((ytot_hat-ytot) **2)
ytest_hat $=$ predict(w, b, Xtest[:,0:d_best])
test_error $=$ np.mean $\left(\left(y t e s t _h a t-y t e s t\right) * * 2\right)$
print('Train error = ',train_error)
print('Test error = ',test_error)

Simple Variable Selection LASSO: Sparse Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington October Q, 2016

Sparsity

$$
\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

- Vector w is sparse, if many entries are zero
- Very useful for many tasks, e.g.,

Efficiency: If size(w) = 100 Billion, each prediction is expensive:

- If part of an online system, too slow
- If w is sparse, prediction computation only depends on number of non-zeros

$$
\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

- Vector w is sparse, if many entries are zero
- Very useful for many tasks, e.g.,
\square Efficiency: If size(w) = 100 Billion, each prediction is expensive:
- If part of an online system, too slow
- If wis sparse, prediction computation only depends on number of non-zeros
\square Interpretability: What are the relevant dimension to make a prediction?
- E.g., what are the parts of the brain associated with particular words?

Superior temporal sulcus (posterior) ($\mathrm{z}=12 \mathrm{~mm}$)

Sparsity

$$
\widehat{w}_{L S}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

- Vector w is sparse, if many entries are zero
- Very useful for many tasks, e.g.,
\square Efficiency: If size(w) = 100 Billion, each prediction is expensive:
- If part of an online system, too slow
- If wis sparse, prediction computation only depends on number of non-zeros
\square Interpretability: What are the relevant dimension to make a prediction?
- E.g., what are the parts of the brain associated with particular words?
- How do we find "best" subset among all possible?

Superior temporal sulcus (posterior) ($\mathrm{z}=12 \mathrm{~mm}$)

Greedy model selection algorithm

- Pick a dictionary of features
\square e.g., cosines of random inner products
Greedy heuristic:
\square Start from empty (or simple) set of features $F_{0}=\varnothing$
\square Run learning algorithm for current set of features F_{t}
- Obtain weights for these features
\square Select next best feature $\mathbf{h}_{\mathbf{i}}(\mathbf{x})^{*}$
- e.g., $h_{j}(x)$ that results in lowest training error learner when using $F_{t}+\left\{\mathrm{h}_{\mathrm{j}}(\mathrm{x})^{*}\right\}$
$\square F_{t+1} \leftarrow F_{t}+\left\{\mathrm{h}_{\mathrm{i}}(\mathrm{x})^{*}\right\}$
\square Recurse

Greedy model selection

- Applicable in many other settings:
\square Considered later in the course:
- Logistic regression: Selecting features (basis functions)
- Naïve Bayes: Selecting (independent) features $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}\right)$
- Decision trees: Selecting leaves to expand
- Only a heuristic!
\square Finding the best set of k features is computationally intractable!
\square Sometimes you can prove something strong about it...

When do we stop???

Greedy heuristic:
\square Select next best feature $\mathbf{X}_{\mathbf{i}}^{*}$

- E.g. $\mathrm{h}_{\mathrm{j}}(\mathrm{x})$ that results in lowest training error learner when using $F_{t}+\left\{\mathrm{h}_{\mathrm{j}}(\mathrm{x})^{*}\right\}$
\square Recurse
When do you stop???
- When training error is low enough?
- When test set error is low enough?
- Using cross validation?

Is there a more principled approach?

Recall Ridge Regression

- Ridge Regression objective:

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Ridge vs. Lasso Regression

- Ridge Regression objective:

$$
\widehat{w}_{\text {ridge }}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{2}^{2}
$$

$+\lambda$

- Lasso objective:

$$
\widehat{w}_{l a s s o}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{1}
$$

Penalized Least Squares

$$
\begin{aligned}
& \text { Ridge : } r(w)=\|w\|_{2}^{2} \quad \text { Lasso : } r(w)=\|w\|_{1} \\
& \qquad \widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda r(w)
\end{aligned}
$$

Penalized Least Squares

$$
\begin{aligned}
& \text { Ridge : } r(w)=\|w\|_{2}^{2} \quad \text { Lasso : } r(w)=\|w\|_{1} \\
& \qquad \widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda r(w)
\end{aligned}
$$

For any $\lambda \geq 0$ for which \widehat{w}_{r} achieves the minimum, there exists a $\nu \geq 0$ such that

$$
\widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \quad \text { subject to } r(w) \leq \nu
$$

Penalized Least Squares

$$
\begin{aligned}
& \text { Ridge }: r(w)=\|w\|_{2}^{2} \quad \text { Lasso }: r(w)=\|w\|_{1} \\
& \qquad \widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda r(w)
\end{aligned}
$$

For any $\lambda \geq 0$ for which \widehat{w}_{r} achieves the minimum, there exists a $\nu \geq 0$ such that

$$
\widehat{w}_{r}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2} \text {, subject to } r(w) \leq \nu
$$

Optimizing the LASSO Objective

- LASSO solution:

$$
\begin{aligned}
& \widehat{w}_{\text {lasso }}, \widehat{b}_{\text {lasso }}=\arg \min _{w, b} \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}^{T} w+\underline{b}\right)\right)^{2}+\underline{\lambda\|w\|_{1}} \\
& \left.\widehat{b}_{\text {lasso }}=\arg \min _{w, b} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} \widehat{w}_{\text {lasso }}\right)\right)
\end{aligned}
$$

Optimizing the LASSO Objective

- LASSO solution:

$$
\begin{aligned}
& \widehat{w}_{\text {lasso }}, \widehat{b}_{\text {lasso }}=\arg \min _{w, b} \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}^{T} w+b\right)\right)^{2}+\lambda\|w\|_{1} \\
& \left.\widehat{b}_{\text {lasso }}=\arg \min _{w, b} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} \widehat{w}_{\text {lasso }}\right)\right)
\end{aligned}
$$

So as usual, preprocess to make sure that $\frac{1}{n} \sum_{i=1}^{n} y_{i}=0, \frac{1}{n} \sum_{i=1}^{n} x_{i}=\mathbf{0}$
so we don't have to worry about an offset.

Optimizing the LASSO Objective

- LASSO solution:

$$
\begin{aligned}
& \widehat{w}_{\text {lasso }}, \widehat{b}_{\text {lasso }}=\arg \min _{w, b} \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}^{T} w+b\right)\right)^{2}+\lambda\|w\|_{1} \\
& \left.\widehat{b}_{\text {lasso }}=\arg \min _{w, b} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} \widehat{w}_{\text {lasso }}\right)\right)
\end{aligned}
$$

So as usual, preprocess to make sure that $\frac{1}{n} \sum_{i=1}^{n} y_{i}=0, \frac{1}{n} \sum_{i=1}^{n} x_{i}=\mathbf{0}$
so we don't have to worry about an offset.

$$
\widehat{w}_{l a s s o}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{1}
$$

How do we solve this?

Coordinate Descent

- Given a function, we want to find minimum
- Often, it is easy to find minimum along a single cbordinate:-
- How do we pick next coordinate?

$$
\begin{aligned}
& \text { - Randomly } \\
& \text { - Round Robin }
\end{aligned}
$$

- Super useful approach for *many* problems
- Converges to optimum in some cases, such as LASSO

Optimizing LASSO Objective One Coordinate at a Time

Fix any $j \in\{1, \ldots, d\}$

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{1}=\sum_{i=1}^{n}\left(y_{i}-\sum_{k=1}^{d} x_{i, k} w_{k}\right)^{2}+\lambda \sum_{k=1}^{d}\left|w_{k}\right|
$$

$$
=\sum_{i=1}^{n}(\underbrace{\left(y_{i}-\sum_{k \neq j} x_{i, k} w_{k}\right)}_{r_{i}^{(j)}}-x_{i, j} w_{j})^{2}+\lambda \underline{\sum_{k \neq j}\left|w_{k}\right|}+\underbrace{\lambda\left|w_{j}\right|}
$$

Optimizing LASSO Objective One Coordinate at a Time

Fix any $j \in\{1, \ldots, d\}$

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}+\lambda\|w\|_{1}=\sum_{i=1}^{n}\left(y_{i}-\sum_{k=1}^{d} x_{i, k} w_{k}\right)^{2}+\lambda \sum_{k=1}^{d}\left|w_{k}\right|
$$

$$
=\sum_{i=1}^{n}\left(\left(y_{i}-\sum_{k \neq j} x_{i, k} w_{k}\right)-x_{i, j} w_{j}\right)^{2}+\lambda \sum_{k \neq j}\left|w_{k}\right|+\lambda\left|w_{j}\right|
$$

Initialize $\widehat{w}_{k}=0$ for all $k \in\{1, \ldots, d\}$
Loop over $j \in\{1, \ldots, n\}$:

$$
\begin{aligned}
r_{i}^{(j)} & =y_{i}-\sum_{k \neq j} x_{i, j} \widehat{w}_{k} \\
\widehat{w}_{j} & =\arg \min _{w_{j}} \sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}+\lambda\left|w_{j}\right|
\end{aligned}
$$

Convex Functions
 f is convex $\Leftrightarrow\left\{(x, z): x \in \mathbb{R}_{1}^{\mathrm{d}}, z z f(z)\right\}$ is a convex set.

- Equivalent definitions of convexity:

- Gradients lower bound convex functions and are unique at \mathbf{x} iff function differentiable at \mathbf{x}
- Subgradients generalize gradients to non-differentiable points:
\square Any supporting hyperplane at \mathbf{x} that lower bounds entire function

$$
g \text { is a subgradient at } x \operatorname{if}^{f} f(y) \geq f(x)+g^{T}(y-x)
$$

Taking the Subgradient

$$
\widehat{w}_{j}=\arg \min _{w_{j}} \sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}+\lambda\left|w_{j}\right|
$$

g is a subgradient at x if $f(y) \geq f(x)+g^{T}(y-x)$

- Convex function is minimized at wif 0 is a sub-gradient at w.

$$
\begin{gathered}
\underline{\partial_{w_{j}}\left|w_{j}\right|=\left\{\begin{array}{ccc}
1 & \text { if } & w_{j}>0 \\
{[-1,1]} & & w_{j}=0
\end{array}\right.} \begin{aligned}
&|y| \geq|0|+g(y-0) \\
&-1 \text { if } \\
& \frac{w_{w_{j}}}{} \frac{w_{j}<0}{} \frac{1}{i=1}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2} \\
& \sum_{i=1}^{n} 2\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)\left(-x_{i, j}\right)
\end{aligned}
\end{gathered}
$$

$$
\begin{aligned}
& \widehat{w}_{j}= \arg \min _{w_{i}}^{\sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}+\left(\hat{\theta}^{2} w_{j} \mid\right.} \\
& \sum_{i=1}^{n} \underbrace{-\underbrace{2 x_{i, j}\left(r_{i}^{(j)}\right.}_{T}-x_{i, j} w_{j})}_{a_{j}}+\{
\end{aligned}
$$

Setting Subgradient to 0

$$
\begin{array}{r}
\partial_{w_{j}}\left(\sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}+\lambda\left|w_{j}\right|\right)= \begin{cases}\frac{a_{j} w_{j}-c_{j}-\lambda=0}{\left[-c_{j}-\lambda,-c_{j}+\lambda\right]} & \begin{array}{l}
\text { if } w_{j}<0 \\
\text { if } w_{j}=0
\end{array} \\
a_{j} w_{j}-c_{j}+\lambda & \text { if } w_{j}>0\end{cases} \\
a_{j=\left(\sum_{i=1}^{n} x_{i, j}^{2}\right)}^{c_{j}=2\left(\sum_{i=1}^{n} r_{i}^{(j)} x_{i, j}\right)} \quad \omega_{j}=\frac{c_{j}+\lambda}{a_{j}}<0 \\
\lambda<-c_{j}
\end{array}
$$

$$
|\lambda| \leq\left|C_{j}\right|
$$

Setting Subgradient to 0

$$
\begin{aligned}
& \partial_{w_{j}}\left(\sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}+\lambda\left|w_{j}\right|\right)= \begin{cases}a_{j} w_{j}-c_{j}-\lambda & \text { if } w_{j}<0 \\
{\left[-c_{j}-\lambda,-c_{j}+\lambda\right]} & \text { if } w_{j}=0 \\
a_{j} w_{j}-c_{j}+\lambda & \text { if } w_{j}>0\end{cases} \\
& a_{j}=\left(\sum_{i=1}^{n} x_{i, j}^{2}\right) \quad c_{j}=2\left(\sum_{i=1}^{n} r_{i}^{(j)} x_{i, j}\right) \\
& \widehat{w}_{j}=\arg \min _{w_{j}} \sum_{i=1}^{n}\left(r_{i}^{(j)}-x_{i, j} w_{j}\right)^{2}+\lambda\left|w_{j}\right| \\
& w \text { is a minimum if } \\
& 0 \text { is a sub-gradient at } w \\
& \widehat{w}_{j}= \begin{cases}\left(c_{j}+\lambda\right) / a_{j} & \text { if } c_{j}<-\lambda \\
0 & \text { if }\left|c_{j}\right| \leq \lambda \\
\left(c_{j}-\lambda\right) / a_{j} & \text { if } c_{j}>\lambda\end{cases}
\end{aligned}
$$

Soft Thresholding

$$
\widehat{w}_{j}=\left\{\begin{array}{ll}
\left(c_{j}+\lambda\right) / a_{j} & \text { if } c_{j}<-\lambda \\
0 & \text { if }\left|c_{j}\right| \leq \lambda \\
\left(c_{j}-\lambda\right) / a_{j} & \text { if } c_{j}>\lambda
\end{array}\right\} c_{i=1}^{n} x_{i, j}^{2}=2 \sum_{i=1}^{n}\left(y_{i}-\sum_{k \neq j} x_{i, k} w_{k}\right) x_{i, j}
$$

Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence (initialize w=0)

Pick a coordinate I at (random or sequentially)

- Set:

$$
\widehat{w}_{j}= \begin{cases}\left(c_{j}+\lambda\right) / a_{j} & \text { if } c_{j}<-\lambda \\ 0 & \text { if }\left|c_{j}\right| \leq \lambda \\ \left(c_{j}-\lambda\right) / a_{j} & \text { if } c_{j}>\lambda\end{cases}
$$

- Where:

$$
a_{j}=\sum_{i=1}^{n} x_{i, j}^{2} \quad c_{j}=2 \sum_{i=1}^{n}\left(y_{i}-\sum_{k \neq j} x_{i, k} \widehat{w}_{k}\right) x_{i, j}
$$

\square For convergence rates, see Shalev-Shwartz and Tewari 2009

- Other common technique = LARS
\square Least angle regression and shrinkage, Efron et al. 2004

Recall: Ridge Coefficient Path

From
Kevin Murphy textbook

- Typical approach: select λ using cross validation

Now: LASSO Coefficient Path

What you need to know

- Variable Selection: find a sparse solution to learning problem
- L_{1} regularization is one way to do variable selection
\square Applies beyond regression
- Hundreds of other approaches out there
- LASSO objective non-differentiable, but convex \rightarrow Use subgradient
- No closed-form solution for minimization \rightarrow Use coordinate descent
- Shooting algorithm is simple approach for solving LASSO

Classification Logistic Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington October $\$, 2016$

THUS FAR, REGRESSION: PREDICT A CONTINUOUS VALUE GIVEN SOME INPUTS

Weather prediction revisted

.

Reading Your Brain, Simple Example

-
 Pairwise classification accuracy: 85\%
 [Mitchell et al.]

Person

Animal

Binary Classification

- Learn: fiX \rightarrow Y
X - features
Y - target classes

$$
Y \in\{0,1\}
$$

- Loss function: $\mathbb{1}\{f(x) \neq Y\}$ " $0 / 1$ Loss"
- Expected loss of \mathbf{f} :

$$
\begin{aligned}
& \mathbb{E}_{X Y}[\mathbb{1}\{f(X) \neq Y\}]=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}[\mathbb{H}\{f(x) \neq Y\} \mid X=x]\right] \\
& \Leftrightarrow \quad \mathbb{H}\{f(x)=1\} \mathbb{P}(Y=0 \mid X=x)+\mathbb{H}\{f(x)=0\} \mathbb{P}(Y=1 \mid X=x)
\end{aligned}
$$

- Suppose you know $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$ exactly, how should you classify? Bayes optimal classifier:

$$
f(x)=\underset{y}{\operatorname{argmax}} \mathbb{P}(Y=y \mid X=x)
$$

Binary Classification

- Learn: f:X \rightarrow >
X - features
$\square \mathrm{Y}$ - target classes

$$
Y \in\{0,1\}
$$

- Loss function: $\ell(f(x), y)=\mathbf{1}\{f(x) \neq y\}$
- Expected loss of f :

$$
\begin{aligned}
& \mathbb{E}_{X Y}[\mathbf{1}\{f(X) \neq Y\}]=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}[\mathbf{1}\{f(x) \neq Y\} \mid X=x]\right] \\
& \mathbb{E}_{Y \mid X}[\mathbf{1}\{f(x) \neq Y\} \mid X=x]=\mathbf{1}\{f(x)=1\} \mathbb{P}(Y=0 \mid X=x)+\mathbf{1}\{f(x)=0\} \mathbb{P}(Y=1 \mid X=x)
\end{aligned}
$$

- Suppose you know $P(Y \mid X)$ exactly, how should you classify?

Bayes optimal classifier:

$$
f(x)=\arg \max _{y} \mathbb{P}(Y=y \mid X=x)
$$

Link Functions

- Estimating $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$: Why not use standard linear regression?
- Combining regression and probability?
\square Need a mapping from real values to $[0,1]$
A link function!

Logistic function (or Sigmoid): $\overline{1+\exp (-z)}$

Learn $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$ directly

- Assume a particular functional form for link function
\square Sigmoid applied to a linear function of the input features:

$$
P(Y=0 \mid X, W)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}
$$

Understanding the sigmoid

$$
g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{w_{0}+\sum_{i} w_{i} x_{i}}}
$$

$w_{0}=-2, w_{1}=-1$
$w_{0}=0, w_{1}=-1$

$$
w_{0}=0, w_{1}=-0.5
$$

Sigmoid for binary classes

$$
\begin{aligned}
& \mathbb{P}(Y=0 \mid w, X)=\frac{1}{1+\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)} \\
& \mathbb{P}(Y=1 \mid w, X)=1-\mathbb{P}(Y=0 \mid w, X)=\frac{\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)}{1+\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)} \\
& \quad \frac{\mathbb{P}(Y=1 \mid w, X)}{\mathbb{P}(Y=0 \mid w, X)}=
\end{aligned}
$$

Sigmoid for binary classes

$$
\begin{aligned}
& \mathbb{P}(Y=0 \mid w, X)=\frac{1}{1+\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)} \\
& \mathbb{P}(Y=1 \mid w, X)=1-\mathbb{P}(Y=0 \mid w, X)=\frac{\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)}{1+\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)} \\
& \quad \frac{\mathbb{P}(Y=1 \mid w, X)}{\mathbb{P}(Y=0 \mid w, X)}=\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)
\end{aligned}
$$

$$
\log \frac{\mathbb{P}(Y=1 \mid w, X)}{\mathbb{P}(Y=0 \mid w, X)}=w_{0}+\sum_{k} w_{k} X_{k}
$$

Linear Decision Rule!

Logistic Regression a Linear classifier

$$
\frac{1}{1+\exp (-z)}
$$

$$
\begin{array}{r}
g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{w_{0}+\sum_{i} w_{i} x_{i}}} \\
\quad \ln \frac{P(Y=0 \mid X)}{P(Y=1 \mid X)}=w_{0}+\sum_{i} w_{i} X_{i}
\end{array}
$$

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
P(Y=-1 \mid x, w) & =\frac{1}{1+\exp \left(w^{T} x\right)} \\
P(Y=1 \mid x, w) & =\frac{\exp \left(w^{T} x\right)}{1+\exp \left(w^{T} x\right)}
\end{aligned}
$$

- This is equivalent to:

$$
P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)}
$$

- So we can compute the maximum likelihood estimator:

$$
\widehat{w}_{M L E}=\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right)
$$

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{aligned}
$$

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{aligned}
$$

Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2} \quad$ (MLE for Gaussian noise)

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)=J(w)
\end{aligned}
$$

What does $J(w)$ look like? Is it convex?

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)=J(w)
\end{aligned}
$$

Good news: $J(\mathbf{w})$ is convex function of \mathbf{w}, no local optima problems Bad news: no closed-form solution to maximize $J(\mathbf{w})$

Good news: convex functions easy to optimize

Linear Separability

$$
\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right) \quad \text { When is this loss small? }
$$

Large parameters \rightarrow Overfitting

- If data is linearly separable, weights go to infinity
\square In general, leads to overfitting:
- Penalizing high weights can prevent overfitting...

Regularized Conditional Log Likelihood

- Add regularization penalty, e.g., L_{2} :

$$
\arg \min _{w, b} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i}\left(x_{i}^{T} w+b\right)\right)\right)+\lambda\|w\|_{2}^{2}
$$

Be sure to not regularize the offset b !

Gradient Descent

Machine Learning - CSE546 Kevin Jamieson University of Washington October 11, 2016

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

g is a subgradient at x if

$$
f(y) \geq f(x)+g^{T}(y-x)
$$

f convex:

$$
\begin{array}{lll}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) & \forall x, y, \lambda \in[0,1] \\
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) & \forall x, y &
\end{array}
$$

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$

Least squares

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

$$
\text { Squared error Loss: } \ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

How does software solve: $\quad \frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

Least squares

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$
How does software solve: $\quad \frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$
...its complicated: (LAPACK, BLAS, MKL...)

$$
\begin{aligned}
& \text { Do you need high precision? } \\
& \text { Is X column/row sparse? } \\
& \text { Is } \widehat{w}_{L S} \text { sparse? } \\
& \text { Is } \mathrm{X}^{T} \mathrm{X} \text { "well-conditioned"? } \\
& \text { Can } \mathrm{X}^{T} \mathrm{X} \text { fit in cache/memory? }
\end{aligned}
$$

Taylor Series Approximation

- Taylor series in one dimension:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+\frac{1}{2} f^{\prime \prime}(x) \delta^{2}+\ldots
$$

- Gradient descent:

Taylor Series Approximation

- Taylor series in d dimensions:

$$
f(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v+\ldots
$$

- Gradient descent:

Gradient Descent $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
& w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right) \\
& \nabla f(w)=
\end{aligned}
$$

Gradient Descent $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
w_{t+1}=w_{t} & -\eta \nabla f\left(w_{t}\right) \\
\left(w_{t+1}-w_{*}\right) & =\left(I-\eta \mathrm{X}^{T} \mathrm{X}\right)\left(w_{t}-w_{*}\right) \\
& =\left(I-\eta \mathrm{X}^{T} \mathrm{X}\right)^{t+1}\left(w_{0}-w_{*}\right)
\end{aligned}
$$

Example: $\quad \mathrm{X}=\left[\begin{array}{cc}10^{-3} & 0 \\ 0 & 1\end{array}\right] \quad \mathrm{y}=\left[\begin{array}{c}10^{-3} \\ 1\end{array}\right] \quad w_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad w_{*}=$

Taylor Series Approximation

- Taylor series in one dimension:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+\frac{1}{2} f^{\prime \prime}(x) \delta^{2}+\ldots
$$

- Newton's method:

Taylor Series Approximation

- Taylor series in d dimensions:

$$
f(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v+\ldots
$$

- Newton's method:

Newton's Method $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$\nabla f(w)=$
$\nabla^{2} f(w)=$
v_{t} is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$
$w_{t+1}=w_{t}+\eta v_{t}$

Newton's Method

$$
f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}
$$

$$
\begin{aligned}
& \nabla f(w)=\mathrm{X}^{T}(\mathrm{X} w-\mathrm{y}) \\
& \nabla^{2} f(w)=\mathrm{X}^{T} \mathrm{X}
\end{aligned}
$$

v_{t} is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$

$$
w_{t+1}=w_{t}+\eta v_{t}
$$

For quadratics, Newton's method converges in one step! (Not a surprise, why?)

$$
w_{1}=w_{0}-\eta\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \mathrm{X}^{T}\left(\mathrm{X} w_{0}-y\right)=w_{*}
$$

General case

In general for Newton's method to achieve $f\left(w_{t}\right)-f\left(w_{*}\right) \leq \epsilon$:

So why are ML problems overwhelmingly solved by gradient methods?
Hint: v_{t} is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$

General Convex case $f\left(w_{t}\right)-f\left(w_{*}\right) \leq \epsilon$

Newton's method:

$$
t \approx \log (\log (1 / \epsilon))
$$

Gradient descent:

- f is smooth and strongly convex: $a I \preceq \nabla^{2} f(w:) \preceq b I$
- f is smooth: $\nabla^{2} f(w) \preceq b I$
- f is potentially non-differentiable: $\|\nabla f(w)\|_{2} \leq c$

Nocedal +Wright, Bubeck

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,...

Revisiting... Logistic Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 16, 2016

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
f(w) & =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{aligned}
$$

$\nabla f(w)=$

