
Is the test error unbiased for these programs?

 1©2017 Kevin Jamieson

Xtrain avg

No Preprocessing by de meaningusing whole TEST set

Is the test error unbiased for this program?

 2©2017 Kevin Jamieson

e

c III yi
f x x µ c

xTw peter 1C

Stott b

see non annotated slides
for correct example

©2018 Kevin Jamieson 3

Simple Variable Selection 
LASSO: Sparse Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 9, 201611

Sparsity
■ Vector w is sparse, if many entries are zero

■ Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100 Billion, each prediction is expensive:
■ If part of an online system, too slow
■ If w is sparse, prediction computation only depends on number of non-zeros

■

 4©2018 Kevin Jamieson

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

Sparsity
■ Vector w is sparse, if many entries are zero

■ Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100 Billion, each prediction is expensive:
■ If part of an online system, too slow
■ If w is sparse, prediction computation only depends on number of non-zeros

Interpretability: What are the  
relevant dimension to make a  
prediction?
■ E.g., what are the parts of the  

brain associated with particular  
words?

■

 5

Figure from
 Tom

 M
itchell

©2018 Kevin Jamieson

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

Sparsity
■ Vector w is sparse, if many entries are zero

■ Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100 Billion, each prediction is expensive:
■ If part of an online system, too slow
■ If w is sparse, prediction computation only depends on number of non-zeros

Interpretability: What are the  
relevant dimension to make a  
prediction?
■ E.g., what are the parts of the  

brain associated with particular  
words?

■

 6

Figure from
 Tom

 M
itchell

©2018 Kevin Jamieson

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

■ How do we find “best”
subset among all possible?

Greedy model selection algorithm

■ Pick a dictionary of features
e.g., cosines of random inner products

■ Greedy heuristic:
Start from empty (or simple) set of features F0 = ∅
Run learning algorithm for current set of features Ft
■ Obtain weights for these features

Select next best feature hi(x)*

■ e.g., hj(x) that results in lowest training error learner when
using Ft + {hj(x)*}

Ft+1 ! Ft + {hi(x)*}
Recurse

 7©2018 Kevin Jamieson

Greedy model selection

■ Applicable in many other settings:
Considered later in the course:
■ Logistic regression: Selecting features (basis functions)
■ Naïve Bayes: Selecting (independent) features P(Xi|Y)
■ Decision trees: Selecting leaves to expand

■ Only a heuristic!
Finding the best set of k features is computationally
intractable!
Sometimes you can prove something strong about it…

■

 8©2018 Kevin Jamieson

 When do we stop???

■ Greedy heuristic:
…
Select next best feature Xi

*
■ E.g. hj(x) that results in lowest training error

learner when using Ft + {hj(x)*}

Recurse When do you stop???
■ When training error is low enough?
■ When test set error is low enough?
■ Using cross validation?

 9©2018 Kevin Jamieson

Is there a more principled approach?

Recall Ridge Regression

 10

■ Ridge Regression objective: 
 
 
 
 
 
 

©2018 Kevin Jamieson

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

Ridge vs. Lasso Regression

 11

■ Ridge Regression objective: 
 
 
 
 
 
 

■ Lasso objective:

©2018 Kevin Jamieson

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwlasso = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||1

x

Penalized Least Squares

 12©2018 Kevin Jamieson

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

Penalized Least Squares

 13©2018 Kevin Jamieson

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

For any � � 0 for which bwr achieves the minimum, there exists a ⌫ � 0 such that

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

subject to r(w) ⌫

Penalized Least Squares

 14©2018 Kevin Jamieson

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

For any � � 0 for which bwr achieves the minimum, there exists a ⌫ � 0 such that

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

subject to r(w) ⌫

H H EVgoof 11413 Ev

T

Optimizing the LASSO Objective
■ LASSO solution:

 15©2018 Kevin Jamieson

bwlasso,bblasso = argmin
w,b

nX

i=1

�
yi � (xT

i w + b)
�2

+ �||w||1

bblasso = argmin
w,b

1

n

nX

i=1

�
yi � xT

i bwlasso)
�

Optimizing the LASSO Objective
■ LASSO solution:

 16©2018 Kevin Jamieson

bwlasso,bblasso = argmin
w,b

nX

i=1

�
yi � (xT

i w + b)
�2

+ �||w||1

bblasso = argmin
w,b

1

n

nX

i=1

�
yi � xT

i bwlasso)
�

So as usual, preprocess to make sure that
1

n

nX

i=1

yi = 0,
1

n

nX

i=1

xi = 0

so we don’t have to worry about an o↵set.

Optimizing the LASSO Objective
■ LASSO solution:

 17©2018 Kevin Jamieson

bwlasso,bblasso = argmin
w,b

nX

i=1

�
yi � (xT

i w + b)
�2

+ �||w||1

So as usual, preprocess to make sure that
1

n

nX

i=1

yi = 0,
1

n

nX

i=1

xi = 0

so we don’t have to worry about an o↵set.

bwlasso = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||1

How do we solve this?

bblasso = argmin
w,b

1

n

nX

i=1

�
yi � xT

i bwlasso)
�

V

Coordinate Descent
■ Given a function, we want to find minimum

■ Often, it is easy to find minimum along a single coordinate:

■ How do we pick next coordinate?

■ Super useful approach for *many* problems
Converges to optimum in some cases, such as LASSO

 18©2018 Kevin Jamieson

t

1,515 bin

Optimizing LASSO Objective  
One Coordinate at a Time

 19©2018 Kevin Jamieson

=
nX

i=1

yi �

dX

k=1

xi,k wk

!2

+ �
dX

k=1

|wk|
nX

i=1

�
yi � xT

i w
�2

+ �||w||1

=
nX

i=1

0

@
⇣
yi �

X

k 6=j

xi,k wk

⌘
� xi,j wj

1

A
2

+ �
X

k 6=j

|wk|+ �|wj |

Fix any j 2 {1, . . . , d}

Tin
u

Optimizing LASSO Objective  
One Coordinate at a Time

 20©2018 Kevin Jamieson

=
nX

i=1

yi �

dX

k=1

xi,k wk

!2

+ �
dX

k=1

|wk|
nX

i=1

�
yi � xT

i w
�2

+ �||w||1

=
nX

i=1

0

@
⇣
yi �

X

k 6=j

xi,k wk

⌘
� xi,j wj

1

A
2

+ �
X

k 6=j

|wk|+ �|wj |

bwj = argmin
wj

nX

i=1

⇣
r(j)i � xi,j wj

⌘2
+ �|wj |

Fix any j 2 {1, . . . , d}

Loop over j 2 {1, . . . , n}:
Initialize bwk = 0 for all k 2 {1, . . . , d}

r(j)i = yi �
X

k 6=j

xi,j bwk

x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2f(x) � `I 8x

f `-strongly convex:

f (�x+ (1� �)y) �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

Convex Functions

■ Equivalent definitions of convexity: 
 
 
 
 
 
 
 
 

■ Gradients lower bound convex functions and are unique at x iff
function differentiable at x

■ Subgradients generalize gradients to non-differentiable points:
Any supporting hyperplane at x that lower bounds entire function

 21©2018 Kevin Jamieson

g is a subgradient at x if f(y) � f(x) + gT (y � x)

f is convex Gcs Z card zza
is a convex set

Y

Taking the Subgradient

■ Convex function is minimized at w if 0 is a sub-gradient at w.

 22©2018 Kevin Jamieson

@wj |wj | =

bwj = argmin
wj

nX

i=1

⇣
r(j)i � xi,j wj

⌘2
+ �|wj |

@wj

nX

i=1

⇣
r(j)i � xi,j wj

⌘2
=

g is a subgradient at x if f(y) � f(x) + gT (y � x)

Yw
o lytzlottgly o

l if w co gy

II 2cm xi His

O
T

I 2x re xi w t

a

Setting Subgradient to 0

 23©2018 Kevin Jamieson

@wj

nX

i=1

⇣
r(j)i � xi,j wj

⌘2
+ �|wj |

!
=

8
><

>:

ajwj � cj � � if wj < 0

[�cj � �,�cj + �] if wj = 0

ajwj � cj + � if wj > 0

aj = (
nX

i=1

x2
i,j) cj = 2(

nX

i=1

r(j)i xi,j)

2
0

2

W G so

Xe Cj

1 XIE 151

Setting Subgradient to 0

 24©2018 Kevin Jamieson

bwj = argmin
wj

nX

i=1

⇣
r(j)i � xi,j wj

⌘2
+ �|wj |

@wj

nX

i=1

⇣
r(j)i � xi,j wj

⌘2
+ �|wj |

!
=

8
><

>:

ajwj � cj � � if wj < 0

[�cj � �,�cj + �] if wj = 0

ajwj � cj + � if wj > 0

aj = (
nX

i=1

x2
i,j) cj = 2(

nX

i=1

r(j)i xi,j)

bwj =

8
><

>:

(cj + �)/aj if cj < ��

0 if |cj | �

(cj � �)/aj if cj > �

w is a minimum if
0 is a sub-gradient at w

Soft Thresholding

 25©2018 Kevin Jamieson

cj = 2
nX

i=1

⇣
yi �

X

k 6=j

xi,k wk

⌘
xi,jaj =

nX

i=1

x2
i,j

bwj =

8
><

>:

(cj + �)/aj if cj < ��

0 if |cj | �

(cj � �)/aj if cj > �

1 0

X O

Coordinate Descent for LASSO  
(aka Shooting Algorithm)

■ Repeat until convergence (initialize w=0)
Pick a coordinate l at (random or sequentially)
■ Set:

■ Where:

For convergence rates, see Shalev-Shwartz and Tewari 2009
■ Other common technique = LARS

Least angle regression and shrinkage, Efron et al. 2004
 26©2018 Kevin Jamieson

aj =
nX

i=1

x2
i,j

bwj =

8
><

>:

(cj + �)/aj if cj < ��

0 if |cj | �

(cj � �)/aj if cj > �

cj = 2
nX

i=1

⇣
yi �

X

k 6=j

xi,k bwk

⌘
xi,j

Recall: Ridge Coefficient Path

■ Typical approach: select λ using cross validation

 27

From  
Kevin Murphy
textbook

©2018 Kevin Jamieson

Ya

Now: LASSO Coefficient Path

 28

From  
Kevin Murphy
textbook

©2018 Kevin Jamieson

W
wz
W

Wd

VX

What you need to know

■ Variable Selection: find a sparse solution to learning
problem

■ L1 regularization is one way to do variable selection
Applies beyond regression
Hundreds of other approaches out there

■ LASSO objective non-differentiable, but convex ➔ Use
subgradient

■ No closed-form solution for minimization ➔ Use
coordinate descent

■ Shooting algorithm is simple approach for solving LASSO

 29©2018 Kevin Jamieson

©Kevin Jamieson 2018
 30

Classification 
Logistic Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 9, 201611

©Kevin Jamieson 2018

THUS FAR, REGRESSION:  
PREDICT A CONTINUOUS VALUE GIVEN
SOME INPUTS

 31

©Kevin Jamieson 2018

Weather prediction revisted

 32

Temperature

©Kevin Jamieson 2018

Reading Your Brain, Simple Example

AnimalPerson

Pairwise classification accuracy: 85%
[Mitchell et al.]

 33

©Kevin Jamieson 2018

Binary Classification

■ Learn: f:X —>Y
X – features
Y – target classes

■ Loss function:  

■ Expected loss of f:  
 
 
 

■ Suppose you know P(Y|X) exactly, how should you classify?
Bayes optimal classifier: 
 
 

 34

Y 2 {0, 1}

f x Y 011 Loss

Exu HEHN 3 E E.nl EfGdtt3 X x

11547 13119401 x 1 fix o p Y 1 X x

floc a9yma lP Y y X x

©Kevin Jamieson 2018

Binary Classification

■ Learn: f:X —>Y
X – features
Y – target classes

■ Loss function:  

■ Expected loss of f:  
 
 
 

■ Suppose you know P(Y|X) exactly, how should you classify?
Bayes optimal classifier: 
 
 

 35

Y 2 {0, 1}
`(f(x), y) = 1{f(x) 6= y}

EXY [1{f(X) 6= Y }] = EX [EY |X [1{f(x) 6= Y }|X = x]]

EY |X [1{f(x) 6= Y }|X = x] = 1{f(x) = 1}P(Y = 0|X = x) + 1{f(x) = 0}P(Y = 1|X = x)

f(x) = argmax
y

P(Y = y|X = x)

©Kevin Jamieson 2018

Link Functions

■ Estimating P(Y|X): Why not use standard linear
regression?

■ Combining regression and probability?
Need a mapping from real values to [0,1]
A link function!

 36

©Kevin Jamieson 2018

Logistic Regression
Logistic
function
(or Sigmoid):

■ Learn P(Y|X) directly
Assume a particular functional form for link
function
Sigmoid applied to a linear function of the input
features:

Z

Features can be discrete or continuous!
 37

©Kevin Jamieson 2018

Understanding the sigmoid

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w0=0, w1=-1

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w0=-2, w1=-1

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w0=0, w1=-0.5

 38

©Kevin Jamieson 2018

Sigmoid for binary classes

 39

P(Y = 0|w,X) =
1

1 + exp(w0 +
P

k wkXk)

P(Y = 1|w,X) = 1� P(Y = 0|w,X) =
exp(w0 +

P
k wkXk)

1 + exp(w0 +
P

k wkXk)

P(Y = 1|w,X)

P(Y = 0|w,X)
= exp(w0 +

X

k

wkXk)

©Kevin Jamieson 2018

Sigmoid for binary classes

 40

P(Y = 0|w,X) =
1

1 + exp(w0 +
P

k wkXk)

P(Y = 1|w,X) = 1� P(Y = 0|w,X) =
exp(w0 +

P
k wkXk)

1 + exp(w0 +
P

k wkXk)

P(Y = 1|w,X)

P(Y = 0|w,X)
= exp(w0 +

X

k

wkXk)

log
P(Y = 1|w,X)

P(Y = 0|w,X)
= w0 +

X

k

wkXk

Linear Decision Rule!

©Kevin Jamieson 2018

Logistic Regression –  
a Linear classifier

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 41

©Kevin Jamieson 2018

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 42

P (Y = 1|x,w) = exp(wTx)

1 + exp(wTx)

P (Y = �1|x,w) = 1

1 + exp(wTx)

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)

■ This is equivalent to:

■ So we can compute the maximum likelihood estimator:

bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

©Kevin Jamieson 2018

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 43

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))

©Kevin Jamieson 2018

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 44

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2 (MLE for Gaussian noise)

©Kevin Jamieson 2018

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 45

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))= J(w)

What does J(w) look like? Is it convex?

©Kevin Jamieson 2018

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 46

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))= J(w)

Good news: J(w) is convex function of w, no local optima problems

Bad news: no closed-form solution to maximize J(w)

Good news: convex functions easy to optimize

©Kevin Jamieson 2018 47

Linear Separability

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w)) When is this loss small?

©Kevin Jamieson 2018 48

Large parameters → Overfitting

■ If data is linearly separable, weights go to infinity

In general, leads to overfitting:
■ Penalizing high weights can prevent overfitting…

©Kevin Jamieson 2018

Regularized Conditional Log Likelihood

■ Add regularization penalty, e.g., L2:

 49

argmin
w,b

nX

i=1

log
�
1 + exp(�yi (x

T
i w + b))

�
+ �||w||22

Be sure to not regularize the o↵set b!

©Kevin Jamieson 2017
 50

Gradient Descent

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 11, 2016

©Kevin Jamieson 2017

Machine Learning Problems

 51

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.

©Kevin Jamieson 2017

Machine Learning Problems

 52

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.

x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2f(x) � `I 8x

f `-strongly convex:

f (�x+ (1� �)y) �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

g is a subgradient at x if f(y) � f(x) + gT (y � x)

g is a subgradient at x if f(y) � f(x) + gT (y � x)

©Kevin Jamieson 2017

Machine Learning Problems

 53

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

©Kevin Jamieson 2017

Least squares

 54

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

1
2 ||Xw � y||22How does software solve:

©Kevin Jamieson 2017

Least squares

 55

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

How does software solve:

…its complicated: Do you need high precision?
Is X column/row sparse?
Is bwLS sparse?
Is XTX “well-conditioned”?
Can XTX fit in cache/memory?

(LAPACK, BLAS, MKL…)

1
2 ||Xw � y||22

©Kevin Jamieson 2017

Taylor Series Approximation

 56

■ Taylor series in one dimension:

f(x+ �) = f(x) + f 0(x)� + 1
2f

00(x)�2 + . . .

■ Gradient descent:

©Kevin Jamieson 2017

Taylor Series Approximation

 57

■ Taylor series in d dimensions:
f(x+ v) = f(x) +rf(x)T v + 1

2v
Tr2f(x)v + . . .

■ Gradient descent:

©Kevin Jamieson 2017

Gradient Descent

 58

wt+1 = wt � ⌘rf(wt)

rf(w) =

f(w) = 1
2 ||Xw � y||22

©Kevin Jamieson 2017

Gradient Descent

 59

wt+1 = wt � ⌘rf(wt)

Example: X =

10�3 0
0 1

�
y =

10�3

1

�
w⇤ =

(wt+1 � w⇤) = (I � ⌘XTX)(wt � w⇤)

= (I � ⌘XTX)t+1(w0 � w⇤)

w0 =

0
0

�

f(w) = 1
2 ||Xw � y||22

©Kevin Jamieson 2017

Taylor Series Approximation

 60

■ Taylor series in one dimension:

f(x+ �) = f(x) + f 0(x)� + 1
2f

00(x)�2 + . . .

■ Newton’s method:

©Kevin Jamieson 2017

Taylor Series Approximation

 61

■ Taylor series in d dimensions:
f(x+ v) = f(x) +rf(x)T v + 1

2v
Tr2f(x)v + . . .

■ Newton’s method:

©Kevin Jamieson 2017

Newton’s Method

 62

rf(w) =

r2f(w) =

wt+1 = wt + ⌘vt

vt is solution to : r2f(wt)vt = �rf(wt)

f(w) = 1
2 ||Xw � y||22

©Kevin Jamieson 2017

Newton’s Method

 63

rf(w) =

r2f(w) =

wt+1 = wt + ⌘vt

vt is solution to : r2f(wt)vt = �rf(wt)

f(w) = 1
2 ||Xw � y||22

w1 = w0 � ⌘(XTX)�1XT (Xw0 � y) = w⇤

For quadratics, Newton’s method converges in one step! (Not a surprise, why?)

XT (Xw � y)

XTX

©Kevin Jamieson 2017

General case

 64

In general for Newton’s method to achieve f(wt)� f(w⇤) ✏:

So why are ML problems overwhelmingly solved
by gradient methods?

vt is solution to : r2f(wt)vt = �rf(wt)Hint:

©Kevin Jamieson 2017

General Convex case

 65

f(wt)� f(w⇤) ✏

Newton’s method:

t ⇡ log(log(1/✏))

Gradient descent:
• f is smooth and strongly convex: :  
 

• f is smooth:  
 

• f is potentially non-differentiable:

r2f(w) � bI

aI � r2f(w) � bI

||rf(w)||2 c

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,…
Nocedal
+Wright,
Bubeck

Clean
converge
nice
proofs:
Bubeck

©Kevin Jamieson 2017
 66

Revisiting… 
Logistic Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 16, 2016

©Kevin Jamieson 2017

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 67

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))f(w)

rf(w) =

