

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 16, 2016

## THUS FAR, REGRESSION: PREDICT A CONTINUOUS VALUE GIVEN SOME INPUTS

## Weather prediction revisted

## -



## Reading Your Brain, Simple Example

Person


Animal


## Binary Classification

- Learn: f. X —>Y
$\square$ - features
$\square$ - target classes

$$
Y \in\{0,1\}
$$

- Loss function: $\mathbb{\|}\{f(x) \neq y\}$
- Expected loss of f :

$$
\begin{aligned}
& \text { Expected loss of f: } \\
& \mathbb{E}_{X Y}[\mathbb{\|} S f(X) \neq Y\}=\mathbb{E}_{X}\left[\mathbb{Y}_{Y \mid X}^{\mathbb{E}}[\mathbb{U}\{f(x) \neq Y\} \mid X=x]\right] \\
& \sum_{i} \mathbb{1}\{f(x) \neq i\} \mathbb{P}(Y=i \mid X=x)=\sum_{i \neq f(x)} \mathbb{P}(Y=i \mid X=x)=1-\mathbb{P}(Y=f(x) \mid X=x)
\end{aligned}
$$

- Suppose you know $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$ exactly, how should you classify?

Bayes optimal classifier:

## Binary Classification

- Learn: f:X $\rightarrow>$
$X$ - features
$\square$ Y - target classes

$$
Y \in\{0,1\}
$$



- Loss function: $\ell(f(x), y)=\mathbf{1}\{f(x) \neq y\}$
- Expected loss of $f$ :

$$
\begin{aligned}
& \mathbb{E}_{X Y}[\mathbf{1}\{f(X) \neq Y\}]=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}[\mathbf{1}\{f(x) \neq Y\} \mid X=x]\right] \\
& \begin{aligned}
\mathbb{E}_{Y \mid X}[\mathbf{1}\{f(x) \neq Y\} \mid X=x]=\sum_{i} P(Y=i \mid X=x) \mathbf{1}\{f(x) \neq i\} & =\sum_{i \neq f(x)} P(Y=i \mid X=x) \\
& =1-P(Y=f(x) \mid X=x)
\end{aligned}
\end{aligned}
$$

- Suppose you know $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$ exactly, how should you classify?

Bayes optimal classifier:

$$
f(x)=\arg \max _{y} \mathbb{P}(Y=y \mid X=x)
$$

## Link Functions

- Estimating $\widehat{\mathrm{P}(\mathrm{Y} \mid \mathrm{X})} ;$ Why not use standard linear regression?


We need a function that maps $x \in \mathbb{R}^{d} \rightarrow[0,1]$

- Combining regression and probability?

Need a mapping from real values to $[0,1]$
A link function!

- Assume a particular functional form for link function
- Sigmoid applied to a linear function of the input features:
$P(Y=0 \mid X, W)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}$



## Understanding the sigmoid

$$
\begin{gathered}
g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{w_{0}+\sum_{i} w_{i} x_{i}} w_{0}=0, w_{i}=-2} \\
\mathrm{w}_{0}=-2, \mathrm{w}_{1}=-1 \quad \mathrm{w}_{0}=0, \mathrm{w}_{1}=-1
\end{gathered}
$$





## Sigmoid for binary classes

$$
\begin{aligned}
& \mathbb{P}(Y=0 \mid w, X)
\end{aligned}=\frac{1}{1+\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)}, \begin{aligned}
& \mathbb{\omega ^ { \top } X} \\
& \mathbb{P}(Y=1 \mid w, X)=1-\mathbb{P}(Y=0 \mid w, X)=\frac{\exp \left(w_{0}+\overparen{\sum_{k} w_{k} X_{k}}\right)}{1+\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)}
\end{aligned}
$$

$$
\left.\frac{\mathbb{P}(Y=1 \mid w, X)}{\mathbb{P}(Y=0 \mid w, X)}=\exp \left(w_{0}+w^{\top} X\right)\right\rangle_{0}^{1}
$$

$$
\log (\downarrow)=w_{0}+w^{\top} x{\underset{0}{<}}_{>}^{1} 0
$$

## Sigmoid for binary classes

$$
\begin{aligned}
& \mathbb{P}(Y=0 \mid w, X)=\frac{1}{1+\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)} \\
& \mathbb{P}(Y=1 \mid w, X)=1-\mathbb{P}(Y=0 \mid w, X)=\frac{\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)}{1+\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)} \\
& \quad \frac{\mathbb{P}(Y=1 \mid w, X)}{\mathbb{P}(Y=0 \mid w, X)}=\exp \left(w_{0}+\sum_{k} w_{k} X_{k}\right)
\end{aligned}
$$

$$
\log \frac{\mathbb{P}(Y=1 \mid w, X)}{\mathbb{P}(Y=0 \mid w, X)}=w_{0}+\sum_{k} w_{k} X_{k}
$$

Linear Decision Rule!

Logistic Regression a Linear classifier

$$
\frac{1}{1+\exp (-z)}
$$

$\square$


## Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\left\{\begin{array}{l}
P(Y=-1 \mid x, w)=\frac{1}{1+\exp (\underbrace{w^{T} x})} \\
P(Y=1 \mid x, w)=\frac{\exp \left(w^{T} x\right)}{1+\exp \left(w^{T} x\right)}=\frac{1}{1+\exp (\underbrace{\left.-\omega^{\top} x\right)}}
\end{array}\right.
$$

- This is equivalent to:

$$
P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)}
$$

- So we can compute the maximum likelihood estimator:

$$
\widehat{w}_{M L E}=\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right)
$$

## Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\underbrace{\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad\left(P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)}\right.}_{w} \\
& =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{aligned}
$$

## Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\widehat{w}_{M L E}=\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
=\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{array} \\
& \text { Logistic Loss: } \ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{aligned} \text { Squared error Loss: } \ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2} \quad \text { (MLE for Gaussian noise) }
$$

Loss function: Conditional Likelihood

- Have a bunch of fid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& =\arg \min _{w} \sum_{i=1}^{n} \frac{\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)}{\sigma\left(y_{i} x_{i}^{\top} \omega\right)}=J(w)
\end{aligned}
$$

What does $J(w)$ look $\operatorname{\sigma }_{\gamma}\left(\frac{z}{z}\right.$ ? ? it convex? $\sigma(z)=\log (1+\exp (-z))$
 for $z \ll 0, \sigma^{\prime}(z)=|z|$ for $z \gg 0, \sigma(z)=0$
$f$ is convex if $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$

## Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
& =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)=J(w)
\end{aligned}
$$

Good news: $J(\mathbf{w})$ is convex function of $\mathbf{w}$, no local optima problems Bad news: no closed-form solution to maximize $J(\mathbf{w})$

Good news: convex functions easy to optimize

## Linear Separability



Ilwllincreares


## Large parameters $\rightarrow$ Overfitting



- If data is linearly separable, weights go to infinity
$\square$ In general, leads to overfitting:
- Penalizing high weights can prevent overfitting...


## Regularized Conditional Log Likelihood

- Add regularization penalty, e.g., $\mathrm{L}_{2}$ :

$$
\left(\arg \min _{w, b} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i}\left(x_{i}^{T} w+b\right)\right)\right)+\lambda\|w\|_{2}^{2}\right.
$$

Be sure to not regularize the offset $b$ !

## Gradient Descent

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 16, 2016

## Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

## Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$


$g$ is a subgradient at $x$ if

$$
f(y) \geq f(x)+g^{T}(y-x)
$$

$f$ convex:

$$
\begin{array}{lll}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) & \forall x, y, \lambda \in[0,1] \\
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) & \forall x, y &
\end{array}
$$

## Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.


Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$

## Least squares

- Have a bunch of id data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

$$
\text { Squared error Loss: } \ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

How does software solve: $\quad \frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\overline{=}\left(x^{\top} x\right) w=x^{\top} y
$$

$$
\text { Find } x: A_{x}=b
$$

## Least squares

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$
How does software solve: $\quad \frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$


Taylor Series Approximation

- Taylor series in one dimension:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+\frac{1}{2} f^{\prime \prime}(x) \delta^{2}+\ldots
$$

- Gradient descent:


$$
x_{t+1}=x_{t}-\gamma f^{\prime}\left(x_{t}\right)
$$

$$
y=x
$$

## Taylor Series Approximation

- Taylor series in dimensions:

$$
f(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v+\ldots
$$

- Gradient descent:

$$
x_{t+1}=x_{t}-\gamma \nabla f\left(x_{t}\right)
$$

Gradient Descent $\quad f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
& w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right) \\
& \nabla f(w)=X^{\top}\left(X_{w}-Y\right)=X^{\top} X_{w}-X^{\top} Y \\
& w_{t+1}=w_{t}-\eta \underbrace{\underbrace{X^{\top}}_{d \times n} \frac{\left(X_{w_{t}}-y\right)}{n \times 1})}_{d \times 1} \\
& =w_{t}-\xi X^{\top} X w_{t}+\sum X^{\top} y \\
& =\left(I-\sum X^{\top} X\right) w_{t}+\sum X^{\top} y \\
& W_{t+1}-w_{*}=\left(I-\sum X^{\top} X\right)\left(w_{t}-w_{\infty}\right)-\eta X^{\top} X_{\omega_{t 0}}+2 X^{\top} y_{20}
\end{aligned}
$$

$$
\begin{aligned}
\sum X^{\top} x_{w_{*}}+\sum X^{\top} y & =\sum X^{\top}\left(X_{w_{s}}+y\right) \\
& =\sum \nabla f\left(w_{*}\right) \\
& =0
\end{aligned}
$$

Gradient Descent $\quad f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
w_{t+1}=w_{t} & -\eta \nabla f\left(w_{t}\right) \\
\left(w_{t+1}-w_{*}\right) & =\left(I-\eta \mathrm{X}^{T} \mathrm{X}\right)\left(w_{t}-w_{*}\right) \\
& =\left(\left(I-\eta \mathrm{X}^{T} \mathrm{X}\right)^{t+1}\right)\left(w_{0}-w_{*}\right)
\end{aligned}
$$

Example: $\mathrm{X}=\left[\begin{array}{cc}10^{-3} & 0 \\ 0 & 1\end{array}\right] \quad \mathrm{y}=\left[\begin{array}{c}10^{-3} \\ 1\end{array}\right] \quad w_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad w_{*}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& X^{\top} x=\left[\begin{array}{cc}
10^{-6} & 0 \\
0 & 1
\end{array}\right] \quad D \text { diogonal } \Rightarrow D^{k}=\text { hthpower of } \\
& \text { dicgonal }
\end{aligned}
$$

abs. vulue $<1$--


Taylor Series Approximation

- Taylor series in one dimension:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+\frac{1}{2} f^{\prime \prime}(x) \delta^{2}+\ldots
$$

- Newton's method:


$$
y=x
$$

## Taylor Series Approximation

- Taylor series in dimensions:

$$
f(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v+\ldots
$$

- Newton's method:

$$
\begin{aligned}
x_{t+1} & =x_{t}+\eta v_{t} \\
V_{t} & =\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)
\end{aligned}
$$

## Newton's Method $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$\nabla f(w)=$
$\nabla^{2} f(w)=$
$v_{t}$ is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$
$w_{t+1}=w_{t}+\eta v_{t}$

## Newton's Method

$$
f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}
$$

$$
\begin{aligned}
& \nabla f(w)=\mathrm{X}^{T}(\mathrm{X} w-\mathrm{y}) \\
& \nabla^{2} f(w)=\mathrm{X}^{T} \mathrm{X}
\end{aligned}
$$

$v_{t}$ is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$

$$
w_{t+1}=w_{t}+\eta v_{t}
$$

For quadratics, Newton's method converges in one step! (Not a surprise, why?)

$$
w_{1}=w_{0}-\eta\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \mathrm{X}^{T}\left(\mathrm{X} w_{0}-y\right)=w_{*}
$$

## General case

In general for Newton's method to achieve $f\left(w_{t}\right)-f\left(w_{*}\right) \leq \epsilon$ :

So why are ML problems overwhelmingly solved by gradient methods?
Hint: $v_{t}$ is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$

## General Convex case $f\left(w_{t}\right)-f\left(w_{*}\right) \leq \epsilon$

## Newton's method:

$$
t \approx \log (\log (1 / \epsilon))
$$

## Gradient descent:

- f is smooth and strongly convex: $a I \preceq \nabla^{2} f(w:) \preceq b I$
- f is smooth: $\nabla^{2} f(w) \preceq b I$
- f is potentially non-differentiable: $\|\nabla f(w)\|_{2} \leq c$

Nocedal +Wright, Bubeck

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,...

# Revisiting... Logistic Regression 

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 16, 2016

## Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
f(w) & =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{aligned}
$$

$\nabla f(w)=$

