Warm up

```
generate some nonsense data for an example
X = np.random.randn(n,d)
y = np.random.randn(n)
# generate the random features
G = np.random.randn(p, d)*np.sqrt(.1)
b = np.random.rand(p)*2*np.pi
```

\# construct HTH
HTH $=\operatorname{np} \cdot \operatorname{zeros}((\mathrm{p}, \mathrm{p}))$
HTy $=n p . z e r o s(p)$
for i in range(n):
hi $=$ np.dot(X[i,:], G.T)+b
HTH += np.outer(hi, hi)
HTy += y[i]*hi
if i \% 1000==0: print(i)
\# construct HTH
HTH = np.zeros($(\mathrm{p}, \mathrm{p}))$
1 float in NumPy $=8$ bytes
$10^{6} \approx 2^{20}$ bytes $=1 \mathrm{MB}$
$10^{9} \approx 2^{30}$ bytes $=1 \mathrm{~GB}$

```
H = np.dot(X, G.T) + b.T
HTH = np.dot(H.T, H)
HTy = np.dot(н.т, y)
```

HTy $=n \mathrm{n}$. zeros $^{(\mathrm{p}}$)
block $=p$
for i in range(int(np.ceil(n/block)) +1):
Hi = np.dot(X[i*block:min(n,(i+1)*block),:], G.T)+b
нтн += np. dot(Hi.T, Hi)
HTy += np.dot(Hi.T, y[i*block:min(n,(i+1)*block)])
w = np.linalg.solve(HTH + lam*np.eye(p), HTy)

For each block compute the memory required in terms of n, p, d.
If $d \ll p \ll n$, what is the most memory efficient program (blue, green, red)? If you have unlimited memory, what do you think is the fastest program?

Gradient Descent

Machine Learning - CSE546 Kevin Jamieson University of Washington

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

g is a subgradient at x if

$$
f(y) \geq f(x)+g^{T}(y-x)
$$

f convex:

$$
\begin{array}{ll}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) & \forall x, y, \lambda \in[0,1] \\
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) & \forall x, y
\end{array}
$$

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$

Least squares

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

$$
\text { Squared error Loss: } \ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}
$$

How does software solve: $\quad \frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

Least squares

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$
How does software solve: $\quad \frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$
...its complicated: (LAPACK, BLAS, MKL...)

Do you need high precision?
Is X column/row sparse?
Is $\widehat{w}_{L S}$ sparse?
Is $\mathrm{X}^{T} \mathrm{X}$ "well-conditioned"?
Can $\mathrm{X}^{T} \mathrm{X}$ fit in cache/memory?

Taylor Series Approximation

- Taylor series in one dimension:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+\frac{1}{2} f^{\prime \prime}(x) \delta^{2}+\ldots
$$

- Gradient descent:

Taylor Series Approximation

- Taylor series in d dimensions:

$$
f(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v+\ldots
$$

- Gradient descent:

Gradient Descent $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
& w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right) \\
& \nabla f(w)=
\end{aligned}
$$

Gradient Descent
 $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
& w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right) \\
& \begin{aligned}
& \nabla f(w)=\mathbf{X}^{T}(\mathbf{X} w-y) \\
& w_{*}=\arg \min _{w} f(w) \Longrightarrow \nabla f\left(w_{*}\right)=0 \\
& w_{t+1}-w_{*}=w_{t}-w_{*}-\eta \nabla f\left(w_{t}\right) \\
&=w_{t}-w_{*}-\eta\left(\nabla f\left(w_{t}\right)-\nabla f\left(w_{*}\right)\right) \\
&=w_{t}-w_{*}-\eta \mathbf{X}^{T} \mathbf{X}\left(w_{t}-w_{*}\right) \\
&=\left(I-\eta \mathbf{X}^{T} \mathbf{X}\right)\left(w_{t}-w_{*}\right) \\
&=\left(I-\eta \mathbf{X}^{T} \mathbf{X}\right)^{t+1}\left(w_{0}-w_{*}\right)
\end{aligned}
\end{aligned}
$$

Gradient Descent $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
w_{t+1}=w_{t} & -\eta \nabla f\left(w_{t}\right) \\
\left(w_{t+1}-w_{*}\right) & =\left(I-\eta \mathrm{X}^{T} \mathrm{X}\right)\left(w_{t}-w_{*}\right) \\
& =\left(I-\eta \mathrm{X}^{T} \mathrm{X}\right)^{t+1}\left(w_{0}-w_{*}\right)
\end{aligned}
$$

Example: $\quad \mathrm{X}=\left[\begin{array}{cc}10^{-3} & 0 \\ 0 & 1\end{array}\right] \quad \mathrm{y}=\left[\begin{array}{c}10^{-3} \\ 1\end{array}\right] \quad w_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad w_{*}=$

Gradient Descent $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
w_{t+1}=w_{t} & -\eta \nabla f\left(w_{t}\right) \\
\left(w_{t+1}-w_{*}\right) & =\left(I-\eta \mathrm{X}^{T} \mathrm{X}\right)\left(w_{t}-w_{*}\right) \\
& =\left(I-\eta \mathrm{X}^{T} \mathrm{X}\right)^{t+1}\left(w_{0}-w_{*}\right)
\end{aligned}
$$

Example: $\quad \mathrm{X}=\left[\begin{array}{cc}10^{-3} & 0 \\ 0 & 1\end{array}\right] \quad \mathrm{y}=\left[\begin{array}{c}10^{-3} \\ 1\end{array}\right] \quad w_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad w_{*}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
X^{T} X=\left[\begin{array}{cc}
10^{-6} & 0 \\
0 & 1
\end{array}\right] \quad \begin{aligned}
& \text { Pick } \eta \text { such that } \\
& \max \left\{\left|1-\eta 10^{-6}\right|,|1-\eta|\right\}<1
\end{aligned}
$$

$$
\begin{aligned}
& \left|w_{t+1,1}-w_{*, 1}\right|=\left|1-\eta 10^{-6}\right|^{t+1}\left|w_{0,1}-w_{*, 1}\right|=\left|1-\eta 10^{-6}\right|^{t+1} \\
& \left|w_{t+1,2}-w_{*, 2}\right|=|1-\eta|^{t+1}\left|w_{0,2}-w_{*, 2}\right|=|1-\eta|^{t+1}
\end{aligned}
$$

Taylor Series Approximation

- Taylor series in one dimension:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+\frac{1}{2} f^{\prime \prime}(x) \delta^{2}+\ldots
$$

- Newton's method:

Taylor Series Approximation

- Taylor series in d dimensions:

$$
f(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v+\ldots
$$

- Newton's method:

Newton's Method $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$\nabla f(w)=$
$\nabla^{2} f(w)=$
v_{t} is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$
$w_{t+1}=w_{t}+\eta v_{t}$

Newton's Method $f(w)=\frac{1}{2}\|\mathrm{X} w-\mathrm{y}\|_{2}^{2}$

$$
\begin{aligned}
& \nabla f(w)=\mathrm{X}^{T}(\mathrm{X} w-\mathrm{y}) \\
& \nabla^{2} f(w)=\mathrm{X}^{T} \mathrm{X}
\end{aligned}
$$

v_{t} is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$

$$
w_{t+1}=w_{t}+\eta v_{t}
$$

For quadratics, Newton's method can converge in one step! (No surprise, why?)

$$
\begin{aligned}
w_{1} & =w_{0}-\eta\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\left(\mathbf{X} w_{0}-y\right) \\
& =(1-\eta) w_{0}+\eta\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} y \\
& =(1-\eta) w_{0}+\eta w_{*}
\end{aligned}
$$

In general, for w_{t} "close enough" to w_{*} one should use $\eta=1$

General case

In general for Newton's method to achieve $f\left(w_{t}\right)-f\left(w_{*}\right) \leq \epsilon$:

So why are ML problems overwhelmingly solved by gradient methods?
Hint: v_{t} is solution to : $\nabla^{2} f\left(w_{t}\right) v_{t}=-\nabla f\left(w_{t}\right)$

General Convex case $f\left(w_{t}\right)-f\left(w_{*}\right) \leq \epsilon$

Newton's method:

$$
t \approx \log (\log (1 / \epsilon))
$$

Gradient descent:

- f is smooth and strongly convex: $a I \preceq \nabla^{2} f(w:) \preceq b I$
- f is smooth: $\nabla^{2} f(w) \preceq b I$
- f is potentially non-differentiable: $\|\nabla f(w)\|_{2} \leq c$

Nocedal +Wright, Bubeck

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,...

Revisiting... Logistic Regression

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 18, 2016

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\}$

$$
\begin{aligned}
\widehat{w}_{M L E} & =\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
f(w) & =\arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)
\end{aligned}
$$

$\nabla f(w)=$

Stochastic Gradient Descent

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 18, 2016

Stochastic Gradient Descent

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)
$$

Stochastic Gradient Descent

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)
$$

Gradient Descent:

$$
w_{t+1}=w_{t}-\left.\eta \nabla_{w}\left(\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)\right)\right|_{w=w_{t}}
$$

Stochastic Gradient Descent

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.
Gradient Descent:

$$
\begin{aligned}
& \text { Descent: } \\
& w_{t+1}=w_{t}-\left.\eta \nabla_{w}\left(\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)\right)\right|_{w=w_{t}}
\end{aligned}
$$

Stochastic Gradient Descent:

$$
\begin{array}{ll}
w_{t+1}=w_{t}-\left.\eta \nabla_{w} \ell_{I_{t}}(w)\right|_{w=w_{t}} & \begin{array}{l}
I_{t} \text { drawn uniform at } \\
\text { random from }\{1, \ldots, n\}
\end{array} \\
\mathbb{E}\left[\nabla \ell_{I_{t}}(w)\right]= &
\end{array}
$$

Stochastic Gradient Descent

Theorem

$$
\text { Let } \quad w_{t+1}=w_{t}-\left.\eta \nabla_{w} \ell_{I_{t}}(w)\right|_{w=w_{t}} \quad \begin{aligned}
& I_{t} \text { drawn uniform at } \\
& \text { random from }\{1, \ldots, n\}
\end{aligned} \quad \text { so that }
$$

If $\quad\left\|w_{1}-w_{0}\right\|_{2}^{2} \leq R \quad$ and $\quad \sup _{w} \max _{i}\left\|\nabla \ell_{i}(w)\right\|_{2} \leq G \quad$ then

$$
\mathbb{E}\left[\ell(\bar{w})-\ell\left(w_{*}\right)\right] \leq \frac{R}{2 T \eta}+\frac{\eta G}{2} \leq \sqrt{\frac{R G}{T}} \quad \eta=\sqrt{\frac{R}{G T}}
$$

$$
\bar{w}=\frac{1}{T} \sum_{t=1}^{T} w_{t}
$$

(In practice use last iterate)

Stochastic Gradient Descent

Proof

$$
\mathbb{E}\left[\left\|w_{t+1}-w_{*}\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|w_{t}-\eta \nabla \ell_{I_{t}}\left(w_{t}\right)-w_{*}\right\|_{2}^{2}\right]
$$

Stochastic Gradient Descent

Proof

$$
\begin{aligned}
& \mathbb{E}\left[\left\|w_{t+1}-w_{*}\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|w_{t}-\eta \nabla \ell_{I_{t}}\left(w_{t}\right)-w_{*}\right\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\left\|w_{t}-w_{*}\right\|_{2}^{2}\right]-2 \eta \mathbb{E}\left[\nabla \ell_{I_{t}}\left(w_{t}\right)^{T}\left(w_{t}-w_{*}\right)\right]+\eta^{2} \mathbb{E}\left[\left\|\nabla \ell_{I_{t}}\left(w_{t}\right)\right\|_{2}^{2}\right] \\
& \leq \mathbb{E}\left[\left\|w_{t}-w_{*}\right\|_{2}^{2}\right]-2 \eta \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right]+\eta^{2} G \\
& \begin{aligned}
\mathbb{E}\left[\nabla \ell_{I_{t}}\left(w_{t}\right)^{T}\left(w_{t}-w_{*}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[\nabla \ell_{I_{t}}\left(w_{t}\right)^{T}\left(w_{t}-w_{*}\right) \mid I_{1}, w_{1}, \ldots, I_{t-1}, w_{t-1}\right]\right] \\
& =\mathbb{E}\left[\nabla \ell\left(w_{t}\right)^{T}\left(w_{t}-w_{*}\right)\right] \\
& \geq \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right] \\
\sum_{t=1}^{T} \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right] \leq & \frac{1}{2 \eta}\left(\mathbb{E}\left[\left\|w_{1}-w_{*}\right\|_{2}^{2}\right]-\mathbb{E}\left[\left\|w_{T+1}-w_{*}\right\|_{2}^{2}\right]+T \eta^{2} G\right) \\
\leq & \frac{R}{2 \eta}+\frac{T \eta G}{2}
\end{aligned}
\end{aligned}
$$

Stochastic Gradient Descent

Proof

Jensen's inequality:
For any random $Z \in \mathbb{R}^{d}$ and convex function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}, \phi(\mathbb{E}[Z]) \leq \mathbb{E}[\phi(Z)]$

$$
\mathbb{E}\left[\ell(\bar{w})-\ell\left(w_{*}\right)\right] \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right]
$$

$$
\bar{w}=\frac{1}{T} \sum_{t=1}^{T} w_{t}
$$

Stochastic Gradient Descent

Proof

Jensen's inequality:
For any random $Z \in \mathbb{R}^{d}$ and convex function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}, \phi(\mathbb{E}[Z]) \leq \mathbb{E}[\phi(Z)]$

$$
\mathbb{E}\left[\ell(\bar{w})-\ell\left(w_{*}\right)\right] \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right]
$$

$$
\bar{w}=\frac{1}{T} \sum_{t=1}^{T} w_{t}
$$

$$
\mathbb{E}\left[\ell(\bar{w})-\ell\left(w_{*}\right)\right] \leq \frac{R}{2 T \eta}+\frac{\eta G}{2} \leq \sqrt{\frac{R G}{T}} \quad \eta=\sqrt{\frac{R}{G T}}
$$

Stochastic Gradient Descent: A Learning perspective

Machine Learning - CSE546 Kevin Jamieson University of Washington

October 18, 2016

Learning Problems as Expectations

- Minimizing loss in training data:
- Given dataset:
- Sampled iid from some distribution $p(\mathbf{x})$ on features:
\square Loss function, e.g., hinge loss, logistic loss,...
- We often minimize loss in training data:

$$
\ell_{\mathcal{D}}(\mathbf{w})=\frac{1}{N} \sum_{j=1}^{N} \ell\left(\mathbf{w}, \mathbf{x}^{j}\right)
$$

- However, we should really minimize expected loss on all data:

$$
\ell(\mathbf{w})=E_{\mathbf{x}}[\ell(\mathbf{w}, \mathbf{x})]=\int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d \mathbf{x}
$$

- So, we are approximating the integral by the average on the training data

Gradient descent in Terms of Expectations

- "True" objective function:

$$
\ell(\mathbf{w})=E_{\mathbf{x}}[\ell(\mathbf{w}, \mathbf{x})]=\int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d \mathbf{x}
$$

- Taking the gradient:
- "True" gradient descent rule:
- How do we estimate expected gradient?

SGD: Stochastic Gradient Descent

- "True" gradient: $\quad \nabla \ell(\mathbf{w})=E_{\mathbf{x}}[\nabla \ell(\mathbf{w}, \mathbf{x})]$
- Sample based approximation:
- What if we estimate gradient with just one sample???
\square Unbiased estimate of gradient
- Very noisy!
\square Also Called stochastic gradient descent
- Among many other names
- VERY useful in practice!!!

Perceptron

Machine Learning - CSE546 Kevin Jamieson University of Washington October 18, 2018

Online learning

- Click prediction for ads is a streaming data task:
\square User enters query, and ad must be selected
\square Observe xj , and must predict yj
\square User either clicks or doesn't click on ad
- Label yj is revealed afterwards

Google gets a reward if user clicks on ad
\square Update model for next time

Online classification

New point arrives at time k

The Perceptron Algorithm

- Classification setting: y in $\{-1,+1\}$
- Linear model
\square Prediction:
- Training:
- Initialize weight vector:
- At each time step:
- Observe features:
- Make prediction:
- Observe true class:
- Update model:
- If prediction is not equal to truth

The Perceptron Algorithm

- Classification setting: y in $\{-1,+1\}$
- Linear model

Prediction: $\quad \operatorname{sign}\left(w^{T} x_{i}+b\right)$

- Training:

Initialize weight vector: $w_{0}=0, b_{0}=0$

- At each time step:
- Observe features: x_{k}
- Make prediction:
- Observe true class:

$$
\operatorname{sign}\left(x_{k}^{T} w_{k}+b_{k}\right)
$$

$$
y_{k}
$$

- Update model:

If prediction is not equal to truth

$$
\left[\begin{array}{c}
w_{k+1} \\
b_{k+1}
\end{array}\right]=\left[\begin{array}{c}
w_{k} \\
b_{k}
\end{array}\right]+y_{k}\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]
$$

Rosenblatt 1957

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

Linear Separability

- Perceptron guaranteed to converge if
- Data linearly separable:

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
- Given a sequence of labeled examples:
- Each feature vector has bounded norm:
- If dataset is linearly separable:
- Then the number of mistakes made by the online perceptron on any such sequence is bounded by

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
- No assumption about data distribution!
- Could be generated by an oblivious adversary, no need to be iid
- Makes a fixed number of mistakes, and it's done for ever!
- Even if you see infinite data

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
\square No assumption about data distribution!
- Could be generated by an oblivious adversary, no need to be iid
Makes a fixed number of mistakes, and it's done for ever!
- Even if you see infinite data
- Perceptron is useless in practice!
\square Real world not linearly separable
- If data not separable, cycles forever and hard to detect

\square Even if separable may not give good generalization accuracy (small margin)

What is the Perceptron Doing???

- When we discussed logistic regression:
\square Started from maximizing conditional log-likelihood
- When we discussed the Perceptron:
\square Started from description of an algorithm
- What is the Perceptron optimizing????

Support Vector Machines

Machine Learning - CSE546
Kevin Jamieson
University of Washington
October 18, 2018

Linear classifiers - Which line is better?

Pick the one with the largest margin!

What if the data is still not linearly separable?

$$
x^{T} w+b=0
$$

- If data is linearly separable

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1 \quad \forall i
\end{aligned}
$$

What if the data is still not linearly separable?

$$
x^{T} w+b=0
$$

$$
x^{T} w+b=0
$$

- If data is linearly separable

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1 \quad \forall i
\end{aligned}
$$

- If data is not linearly separable, some points don't satisfy margin constraint:

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1-\xi_{i} \quad \forall i \\
& \xi_{i} \geq 0, \sum_{j=1}^{n} \xi_{j} \leq \nu
\end{aligned}
$$

What if the data is still not linearly separable?

$$
x^{T} w+b=0
$$

$$
x^{T} w+b=0
$$

- If data is linearly separable

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1 \quad \forall i
\end{aligned}
$$

- If data is not linearly separable, some points don't satisfy margin constraint:

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1-\xi_{i} \quad \forall i \\
& \xi_{i} \geq 0, \sum_{j=1}^{n} \xi_{j} \leq \nu
\end{aligned}
$$

- What are "support vectors?"

SVM as penalization method

- Original quadratic program with linear constraints:

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1-\xi_{i} \quad \forall i \\
& \xi_{i} \geq 0, \sum_{j=1}^{n} \xi_{j} \leq \nu
\end{aligned}
$$

SVM as penalization method

- Original quadratic program with linear constraints:

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2} \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1-\xi_{i} \quad \forall i \\
& \xi_{i} \geq 0, \sum_{j=1}^{n} \xi_{j} \leq \nu
\end{aligned}
$$

- Using same constrained convex optimization trick as for lasso:

For any $\nu \geq 0$ there exists a $\lambda \geq 0$ such that the solution the following solution is equivalent:

$$
\sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(b+x_{i}^{T} w\right)\right\}+\lambda\|w\|_{2}^{2}
$$

Machine Learning Problems

- Have a bunch of iid data of the form:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R}
$$

- Learning a model's parameters:

Each $\ell_{i}(w)$ is convex.

$$
\sum_{i=1}^{n} \ell_{i}(w)
$$

Hinge Loss: $\ell_{i}(w)=\max \left\{0,1-y_{i} x_{i}^{T} w\right\}$
Logistic Loss: $\ell_{i}(w)=\log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right)$
Squared error Loss: $\ell_{i}(w)=\left(y_{i}-x_{i}^{T} w\right)^{2}$

Perceptron is optimizing what?

Perceptron update rule:

$$
\left[\begin{array}{c}
w_{k+1} \\
b_{k+1}
\end{array}\right]=\left[\begin{array}{c}
w_{k} \\
b_{k}
\end{array}\right]+y_{k}\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right] \mathbf{1}\left\{y_{i}\left(b+x_{i}^{T} w\right)<0\right\}
$$

SVM objective:

$$
\sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(b+x_{i}^{T} w\right)\right\}+\lambda\|w\|_{2}^{2}=\sum_{i=1}^{n} \ell_{i}(w, b)
$$

$$
\begin{aligned}
& \nabla_{w} \ell_{i}(w, b)= \begin{cases}-x_{i} y_{i}+\frac{2 \lambda}{n} w & \text { if } y_{i}\left(b+x_{i}^{T} w\right)<1 \\
0 & \text { otherwise }\end{cases} \\
& \nabla_{b} \ell_{i}(w, b)= \begin{cases}-y_{i} & \text { if } y_{i}\left(b+x_{i}^{T} w\right)<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Perceptron is just SGD on SVM with $\lambda=0, \eta=1$!

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?
- For classification loss, logistic and svm are comparable
- Multiclass setting:
\square Softmax naturally generalizes logistic regression
\square SVMs have
- What about good old least squares?

What about multiple classes?

