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Warm up

 1

Regrade requests submitted directly in 
Gradescope, do not email instructors.

For each block compute the memory required in terms of n, p, d. 
If d << p << n, what is the most memory efficient program (blue, green, red)?   
If you have unlimited memory, what do you think is the fastest program?

1 float in NumPy = 8 bytes
106 ⇡ 220 bytes = 1 MB
109 ⇡ 230 bytes = 1 GB
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Gradient Descent
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Kevin Jamieson 
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Machine Learning Problems
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■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.
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Machine Learning Problems

 4

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.

x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2f(x) � `I 8x

f `-strongly convex:

f (�x+ (1� �)y)  �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

g is a subgradient at x if f(y) � f(x) + gT (y � x)

g is a subgradient at x if f(y) � f(x) + gT (y � x)
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Machine Learning Problems
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■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.
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Least squares
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■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

1
2 ||Xw � y||22How does software solve:
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Least squares

 7

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

How does software solve:

…its complicated: Do you need high precision?
Is X column/row sparse?
Is bwLS sparse?
Is XTX “well-conditioned”?
Can XTX fit in cache/memory?

(LAPACK, BLAS, MKL…)

1
2 ||Xw � y||22
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Taylor Series Approximation
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■ Taylor series in one dimension:

f(x+ �) = f(x) + f 0(x)� + 1
2f

00(x)�2 + . . .

■ Gradient descent:

f K

Z f Ex

µ

ffa 1 F a g z

I
i
s
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Taylor Series Approximation

 9

■ Taylor series in d dimensions:
f(x+ v) = f(x) +rf(x)T v + 1

2v
Tr2f(x)v + . . .

■ Gradient descent:

Init Xo

Loop

Xu Xt Z Of Xe
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Gradient Descent

 10

wt+1 = wt � ⌘rf(wt)

rf(w) =

f(w) = 1
2 ||Xw � y||22
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Gradient Descent

 11

wt+1 = wt � ⌘rf(wt)

rf(w) =

f(w) = 1
2 ||Xw � y||22

XT (Xw � y)

w⇤ = argminw f(w) =) rf(w⇤) = 0

wt+1 � w⇤ = wt � w⇤ � ⌘rf(wt)

= wt � w⇤ � ⌘(rf(wt)�rf(w⇤))

= wt � w⇤ � ⌘XTX(wt � w⇤)

= (I � ⌘XTX)(wt � w⇤)

= (I � ⌘XTX)t+1(w0 � w⇤)

I oldfffeput.at on
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Gradient Descent

 12

wt+1 = wt � ⌘rf(wt)

Example: X =


10�3 0
0 1

�
y =


10�3

1

�
w⇤ =

(wt+1 � w⇤) = (I � ⌘XTX)(wt � w⇤)

= (I � ⌘XTX)t+1(w0 � w⇤)

w0 =


0
0

�

f(w) = 1
2 ||Xw � y||22
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Gradient Descent

 13

wt+1 = wt � ⌘rf(wt)

Example: X =


10�3 0
0 1

�
y =


10�3

1

�
w⇤ =

(wt+1 � w⇤) = (I � ⌘XTX)(wt � w⇤)

= (I � ⌘XTX)t+1(w0 � w⇤)

w0 =


0
0

�

f(w) = 1
2 ||Xw � y||22


1
1

�

XTX =


10�6 0
0 1

�

|wt+1,2 � w⇤,2| = |1� ⌘|t+1 |w0,2 � w⇤,2| = |1� ⌘|t+1

|wt+1,1 � w⇤,1| = |1� ⌘10�6|t+1 |w0,1 � w⇤,1| = |1� ⌘10�6|t+1

Pick ⌘ such that
max{|1� ⌘10�6|, |1� ⌘|} < 1

Z max xxx

expfzio.ie
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Taylor Series Approximation

 14

■ Taylor series in one dimension:

f(x+ �) = f(x) + f 0(x)� + 1
2f

00(x)�2 + . . .

■ Newton’s method:
fly

Ily fix t f Cx y x O

yJ x Htx J

y

y
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Taylor Series Approximation
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■ Taylor series in d dimensions:
f(x+ v) = f(x) +rf(x)T v + 1

2v
Tr2f(x)v + . . .

■ Newton’s method:
0 Diii's

I quadratic fit to fly at there

j arsgins.ly x vf c

ifeng.pe
utionEo
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Newton’s Method

 16

rf(w) =

r2f(w) =

wt+1 = wt + ⌘vt

vt is solution to : r2f(wt)vt = �rf(wt)

f(w) = 1
2 ||Xw � y||22

0
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Newton’s Method

 17

rf(w) =

r2f(w) =

wt+1 = wt + ⌘vt

vt is solution to : r2f(wt)vt = �rf(wt)

f(w) = 1
2 ||Xw � y||22

For quadratics, Newton’s method can converge in one step! (No surprise, why?)

XT (Xw � y)

XTX

w1 = w0 � ⌘(XTX)�1XT (Xw0 � y)

= (1� ⌘)w0 + ⌘(XTX)�1XT y

= (1� ⌘)w0 + ⌘w⇤

In general, for wt “close enough” to w⇤ one should use ⌘ = 1

e
W

At each time C
set Zoe if f wetZe Zsome

then 2 EZE
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General case

 18

In general for Newton’s method to achieve f(wt)� f(w⇤)  ✏:

So why are ML problems overwhelmingly solved 
by gradient methods?

vt is solution to : r2f(wt)vt = �rf(wt)Hint:

0 loglog He
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General Convex case

 19

f(wt)� f(w⇤)  ✏

Newton’s method:

t ⇡ log(log(1/✏))

Gradient descent: 
• f is smooth and strongly convex:                      :  
 

• f is smooth:  
 

• f is potentially non-differentiable:

r2f(w) � bI

aI � r2f(w) � bI

||rf(w)||2  c

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,…
Nocedal  
+Wright, 
Bubeck

Clean 
converge
nice 
proofs: 
Bubeck

b log HE

b c

2
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Revisiting… 
Logistic Regression

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 18, 2016
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Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 21

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))f(w)

rf(w) =

01dm ei

D I reins oe.us i taxi
Init Wo O

M w

Loop n

wet We 2 Mihal y X
c i
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Stochastic Gradient 
Descent

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 18, 2016
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Stochastic Gradient Descent
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■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

■ Learning a model’s parameters:
Each `i(w) is convex.

1

n

nX

i=1

`i(w)0
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Stochastic Gradient Descent
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■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

■ Learning a model’s parameters:
Each `i(w) is convex.

1

n

nX

i=1

`i(w)

wt+1 = wt � ⌘rw

 
1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:
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Stochastic Gradient Descent
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■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

■ Learning a model’s parameters:
Each `i(w) is convex.

1

n

nX

i=1

`i(w)

wt+1 = wt � ⌘rw

 
1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

Stochastic Gradient Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

E[r`It(w)] =

01dm perstep

F

yp oeas IEoe
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Stochastic Gradient Descent
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wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

Let so that

If sup
w

max
i

kr`i(w)k2  Gkw1 � w0k22  R and then

w̄ =
1

T

TX

t=1

wt

E[`(w̄)� `(w⇤)] 
R

2T⌘
+

⌘G

2


r
RG

T
⌘ =

r
R

GT

Theorem

(In practice use last iterate)

E
⇥
r`It(w)

⇤
=

1

n

nX

i=1

r`i(w) =: r`(w)we aI

O
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Stochastic Gradient Descent
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E[||wt+1 � w⇤||22] = E[||wt � ⌘r`It(wt)� w⇤||22]
Proof
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Stochastic Gradient Descent

 28

E[||wt+1 � w⇤||22] = E[||wt � ⌘r`It(wt)� w⇤||22]

= E[||wt � w⇤||22]� 2⌘E[r`It(wt)
T (wt � w⇤)] + ⌘2E[||r`It(wt)||22]

E[r`It(wt)
T (wt � w⇤)] = E

⇥
E[r`It(wt)

T (wt � w⇤)|I1, w1, . . . , It�1, wt�1]
⇤

= E
⇥
r`(wt)

T (wt � w⇤)
⇤

� E
⇥
`(wt)� `(w⇤)

⇤

 E[||wt � w⇤||22]� 2⌘E[`(wt)� `(w⇤)] + ⌘2G

TX

t=1

E[`(wt)� `(w⇤)] 
1

2⌘

�
E[||w1 � w⇤||22]� E[||wT+1 � w⇤||22] + T⌘2G

�

 R

2⌘
+

T⌘G

2

Proof

Convexity
fly 2 f x Offxply se

D
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Stochastic Gradient Descent
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Jensen’s inequality:
For any random Z 2 Rd and convex function � : Rd ! R, �(E[Z])  E[�(Z)]

E[`(w̄)� `(w⇤)] 
1

T

TX

t=1

E[`(wt)� `(w⇤)] w̄ =
1

T

TX

t=1

wt

Proof

0
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Stochastic Gradient Descent
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Jensen’s inequality:
For any random Z 2 Rd and convex function � : Rd ! R, �(E[Z])  E[�(Z)]

E[`(w̄)� `(w⇤)] 
1

T

TX

t=1

E[`(wt)� `(w⇤)] w̄ =
1

T

TX

t=1

wt

E[`(w̄)� `(w⇤)] 
R

2T⌘
+

⌘G

2


r
RG

T
⌘ =

r
R

GT

Proof
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Stochastic Gradient 
Descent: A  Learning 
perspective
Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 18, 2016
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Learning Problems as Expectations

■ Minimizing loss in training data: 
Given dataset: 

■ Sampled iid from some distribution p(x) on features: 
Loss function, e.g., hinge loss, logistic loss,… 
We often minimize loss in training data: 

■ However, we should really minimize expected loss on all data: 

■ So, we are approximating the integral by the average on the training data
 32
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Gradient descent in Terms of Expectations

■ “True” objective function: 

■ Taking the gradient: 

■ “True” gradient descent rule: 

■ How do we estimate expected gradient?

 33

Pllw Spex Oecw a doc E Aw xD

Wet wt Z E OwlCw X

Wai we ZQ.nl we xt where Xe R
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SGD: Stochastic Gradient Descent

■ “True” gradient: 

■ Sample based approximation: 

■ What if we estimate gradient with just one sample??? 
Unbiased estimate of gradient 
Very noisy! 
Also called stochastic gradient descent 
■ Among many other names 

VERY useful in practice!!!

 34
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Perceptron

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 18, 2018
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Online learning

■ Click prediction for ads is a streaming data task: 
User enters query, and ad must be selected 

Observe xj, and must predict yj 

User either clicks or doesn’t click on ad 
■ Label yj is revealed afterwards 

Google gets a reward if user clicks on ad 

Update model for next time

 36
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Online classification

New point arrives at time k
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The Perceptron Algorithm [Rosenblatt ‘58, ‘62]

■ Classification setting: y in {-1,+1} 
■ Linear model 

Prediction:  

■ Training:  
Initialize weight vector:  
At each time step: 

■ Observe features: 
■ Make prediction: 
■ Observe true class: 

■ Update model:  
If prediction is not equal to truth

 38
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The Perceptron Algorithm [Rosenblatt ‘58, ‘62]

■ Classification setting: y in {-1,+1} 
■ Linear model 

Prediction:  

■ Training:  
Initialize weight vector:  
At each time step: 

■ Observe features: 
■ Make prediction: 
■ Observe true class: 

■ Update model:  
If prediction is not equal to truth

 39

sign(wTxi + b)

w0 = 0, b0 = 0


wk+1

bk+1

�
=


wk

bk

�
+ yk


xk

1

�

xk
sign(xT

kwk + bk)
yk
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Rosenblatt 1957

 40

"the embryo of an electronic computer that [the Navy] expects will be able to walk, 
talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958
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Linear Separability

■ Perceptron guaranteed to converge if 
■ Data linearly separable:
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Perceptron Analysis: Linearly Separable Case

■ Theorem [Block, Novikoff]:  
Given a sequence of labeled examples: 
Each feature vector has bounded norm: 
If dataset is linearly separable: 

■ Then the number of mistakes made by the online perceptron on any such sequence is 
bounded by

 42



©Kevin Jamieson 2016

Beyond Linearly Separable Case
■ Perceptron algorithm is super cool! 

No assumption about data distribution!  
■ Could be generated by an oblivious adversary, no 

need to be iid 
Makes a fixed number of mistakes, and it’s done 
for ever! 

■ Even if you see infinite data

 43
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Beyond Linearly Separable Case
■ Perceptron algorithm is super cool! 

No assumption about data distribution!  
■ Could be generated by an oblivious adversary, no 

need to be iid 
Makes a fixed number of mistakes, and it’s done 
for ever! 

■ Even if you see infinite data 

■ Perceptron is useless in practice! 
Real world not linearly separable 
If data not separable, cycles forever and hard to 
detect 
Even if separable may not give good 
generalization accuracy (small margin)

 44
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What is the Perceptron Doing???

■ When we discussed logistic regression: 
Started from maximizing conditional log-likelihood 

■ When we discussed the Perceptron: 
Started from description of an algorithm 

■ What is the Perceptron optimizing????

 45
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Support Vector 
Machines

Machine Learning – CSE546 
Kevin Jamieson 
University of Washington 

October 18, 2018
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Linear classifiers – Which line is better?
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margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!



©2018 Kevin Jamieson  49

x
T
w
+
b
=

0

Pick the one with the largest margin!

w
x0

Distance from x0 to
hyperplane defined
by xTw + b = 0?
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x
T
w
+
b
=

0

Pick the one with the largest margin!

w
x0

Distance from x0 to
hyperplane defined
by xTw + b = 0?

If ex0 is the projection of x0

onto the hyperplane then
||x0 � ex0||2 = |(xT

0 � ex0)T
w

||w||2 |

= 1
||w||2 |x

T
0 w + b|

= 1
||w||2 |x

T
0 w � exT

0 w|
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margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!

Distance of x0 from
hyperplane xTw + b:

Optimal Hyperplane

1

||w||2
(xT

0 w + b)

max
w,b

�

subject to
1

||w||2
yi(x

T
i w + b) � � 8i
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margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!

Distance of x0 from
hyperplane xTw + b:

Optimal Hyperplane

(reparameterized)Optimal Hyperplane

1

||w||2
(xT

0 w + b)

max
w,b

�

subject to
1

||w||2
yi(x

T
i w + b) � � 8i

min
w,b

||w||22

subject to yi(x
T
i w + b) � 1 8i
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margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!

(reparameterized)Optimal Hyperplane

■ Solve efficiently by many methods, 
e.g., 

quadratic programming (QP) 
■ Well-studied solution algorithms 

Stochastic gradient descent 
Coordinate descent (in the dual) 

min
w,b

||w||22

subject to yi(x
T
i w + b) � 1 8i
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What if the data is still not linearly 
separable?

1

||w||2

1

||w||2

xTw + b = 0

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

■ If data is linearly separable
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What if the data is still not linearly 
separable?

■ If data is not linearly separable, some 
points don’t satisfy margin constraint:

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

1

||w||2

1

||w||2

1

||w||2

1

||w||2

xTw + b = 0

xTw + b = 0

■ If data is linearly separable



©2018 Kevin Jamieson  56

What if the data is still not linearly 
separable?

■ If data is not linearly separable, some 
points don’t satisfy margin constraint:

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

1

||w||2

1

||w||2

1

||w||2

1

||w||2

xTw + b = 0

xTw + b = 0

■ If data is linearly separable

■ What are “support vectors?”
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SVM as penalization method

■ Original quadratic program with linear constraints:

 57

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫
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SVM as penalization method

■ Original quadratic program with linear constraints: 

■ Using same constrained convex optimization trick as for lasso:

 58

For any ⌫ � 0 there exists a � � 0 such that the solution
the following solution is equivalent:

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22
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■ Have a bunch of iid data of the form:

{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

Hinge Loss: `i(w) = max{0, 1� yixT
i w}

How do we solve for w? The last two lectures!

Machine Learning Problems
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Perceptron is optimizing what?


wk+1

bk+1

�
=


wk

bk

�
+ yk


xk

1

�
Perceptron update rule:

SVM objective:

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22 =

nX

i=1

`i(w, b)

rw`i(w, b) =

1{yi(b+ xT
i w) < 0}

(
�xiyi +

2�
n w if yi(b+ xT

i w) < 1

0 otherwise

rb`i(w, b) =

(
�yi if yi(b+ xT

i w) < 1

0 otherwise

Perceptron is just SGD
on SVM with � = 0, ⌘ = 1!
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SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here?
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SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here? 
■ No! Perform isotonic regression or non-parametric bootstrap 

for probability calibration. Predictor gives some score, how 
do we transform that score to a probability?
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SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here? 
■ No! Perform isotonic regression or non-parametric bootstrap 

for probability calibration. Predictor gives some score, how 
do we transform that score to a probability? 

■ For classification loss, logistic and svm are comparable 
■ Multiclass setting: 

Softmax naturally generalizes logistic regression 
SVMs have 

■ What about good old least squares?
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What about multiple classes?


