Regrade requests submitted directly in

Wa 'm u p Gradescope, do not email instructors.

generate some nonsense data for an example 1 ﬂoatin.PﬁlniPy'::S bytes
X = np.random.randn(n,d) §an ?(cln {-n> 106 ~ 220 bytes = 1 MB
y = np.random.randn(n) 9” 109 ~ 230 bytes = 1 GB
]
generate the random features >
G = np.random.randn(p, d)*np.sqrt(.1l) S(Pd-rp
b = np.random.rand(p)*2*np.pi _ H = np.dot(X, G.T) + b.T g@n
/ ~ ———_ |HTH = np.dot(H.T, H) * p* @(pntpiep)
construct HTH 27 = MRacEE(Hors 37 tP) | ——or
HTH = np.zeros((p,p)) ypl Z

HTY = np.zeros(p) g # construct HTH y 2
for i in range(n): HTH = np.zeros((p,p)) ©
hi = np.dot(X[i,:], G.T)+b |p |BTY = np.zeros(p) i,

HTH += np.outer(hi, hi) bloc}.< =P . .
HTy += y[i]*hi for i in range(int(np.ceil(n/block))+1): ra

if i % 1000==0: print(i) Hi = np.dot(X[i*block:min(n,(i+l)*block),:], G.T)+b 8%
HTH += np.dot(Hi.T, Hi)

= .dot(Hi.T, y[i*block:min(n, (i+1)*block)])
?(Q‘fPS \ o
-—P\, / / X(2p" +/0)

w = np.linalg.solve(HTH + lam*np.eye(p), HTy)

For each block compute the memory required in terms of n, p, d.
If d << p << n, what is the most memory efficient program (blue, green, red)?
If you have unlimited memory, what do you think is the fastest program?

©Kevin Jamieson 2018 1

Gradient Descent

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 18, 2016

©Kevin Jamieson 2018

Machine Learning Problems
"

= Have a bunch of iid data of the form:
{(zi,9i) Fieq T4 € R y; € R

= Learning a model’s parameters:
: l;
Each /;(w) is convex. Z (w)

Machine Learning Problems
"

= Have a bunch of iid data of the form:
{(zi,9i) Fieq T4 € R y; € R

= Learning a model’s parameters:
: l;
Each /;(w) is convex. Z (w)

1=1
Y
g is a subgradient at x if
- fly) > f(x) + 9" (y — z)
f convex:

fly) > f(@)+ V@) (y—) Va,y

Machine Learning Problems
" J—
= Have a bunch of iid data of the form:
{(zi,y) iz ;€ RY y; € R

= Learning a model’s parameters:
: l;
Each /;(w) is convex. Z (w)

Logistic Loss: £;(w) = log(1 + exp(—y; z1 w))

Squared error Loss: £;(w) = (y; — zl w)?

©Kevin Jamieson 2018

Least squares
" J—

= Have a bunch of iid data of the form:
{(zi,9i) Fieq T4 € R y; € R

Learning a model’s parameters: Z&(w)

Each /;(w) is convex.
Squared error Loss: £;(w) = (y; — z} w)?

How does software solve: % HXUJ — Y‘ ‘g

©Kevin Jamieson 2018

Least squares
" J———

= Have a bunch of iid data of the form:
{(zi,9i) Fieq T4 € R y; € R

Learning a model’s parameters: -
: l;
Each /;(w) is convex. 7,—21 (w)

Squared error Loss: £;(w) = (y; — z} w)?

How does software solve: % HXUJ — Y‘ ‘g

Do you need high precision?

...Its Compllcated: Is X column/row sparse?

(LAPACK, BLAS, MKL...) Is wy,g sparse?

Is XTX “well-conditioned”?
Can XTX fit in cache/memory?

©Kevin Jamieson 2018

Taylor Series Approximation
"

= Taylor series in one dimension:
flz+6) = f(z)+ f(x)0 + 5" (2)8° +

» Gradient descent:

£l)+ F2y-~)

©Kevin Jamieson 2018

Taylor Series Approximation
"

= Taylor series in d dimensions:

fle+v)=f@)+ V(@) v+ 30"V (z)v+...

= Gradient descent:
Tack Fo
Losp
Y, = Xe -7 UF (%)

©Kevin Jamieson 2018

Gradient Descent f(w) = 2||Xw — y||5
" A
w1 = wy — NV f(wy)
Vf(w) =

©Kevin Jamieson 2018

Gradient Descent f(w) = 2||Xw — y||5

(U&}: Wy — an(wt) 0 (J > ComprMé‘u\

Vf(w) — XT(Xw . y) /){f Séop.

w, = argmin,, f(w) = Vf(w,) =0

Wiyl — Wi = Wy — Wy — NV f(wy)
= wy — ws —N(Vf(w) = Vf(wy))
= W — Wy — nXTX(wt — w*)
= (I — X" X)(w; — wy)
= (I = X" X)"(wo — w)

©Kevin Jamieson 2018

Gradient Descent f(w) = 2||Xw — y||5
" J—
Wi41 = Wt — va(wt)
(W1 —wy) = (1 — UXTX) (W — wy)
= (I — X X)) (wg — wy)

_ 1073 0 _ 1077 10 _
Example: X:[0 1] y—{ 1] Wy = [O] Wy =

©Kevin Jamieson 2018

Gradient Descent f(w) = 2||Xw — y||5
" JE—

Wi41 = Wy — va(wt)

(wir1 —w.) = (I = X" X) (w; — w.)

0~ X X)) wo —w.) [

_ 1073 0 ~[1073 10 |1
Example: X:[0 1] y—{ 1] wo—[()] w*—L]

106 O] Pick n such that

T _
X X = [0 1 max{|l —n10~°|,[1 —nl} <1

~6
(w11 — wen| =1 = 010" we 1 — wi 1 — 100+t Sexp (<20 (&)
))) P
(w10 — wio| = |1 =" w2 — wy o] ﬁ—|1 — p|**! ;
|
7 < /XW (Y'x)

©Kevin Jamieson 2018 13

Taylor Series Approximation
"

o
= Taylor series in one dimension:

fl@+06) = f(z)+ f'(@)6 + 5" (x)0°

= Newton’s method:

fly)

Gy s £ +4 £)15
7[[@ = f(x)+ f(x)(g x) =0

L;j x ~[1x)) f (I)}7

DN

Taylor Series Approximation QW

= Taylor series in d dimensions:

Sz + Dv—l—lvT@u

Ly = D—F[‘i)
= Newton’s method: > &
T gudefe ft 6 Hrﬁ ot X ey

4\;(fon, €

Eﬂx (G) = vm) g

Newton’s Method f(w) = % [Xw — YH%
"
Vi(w) =

V2 f(w) =
v; 18 solution to @Qf(wt)vt = —Vf(wi))

—

Lthrl = Wt + NVt J

©Kevin Jamieson 2018

Newton’s Method f(w) = || Xw — y||5

" S —

Viw)= X" (Xw —y) \Nﬁ/
Vif(w) = XTX

W

v is solution to : V2 f(w;)v; = —V f (wy)
Al reck fLine o
Wiyl = Wt + Ny ret 2,:(, i floex 7.2 somehiy

o Zed 27
For quadratics, Newton’s method can converge in one step! (No surprise, why?)

wy = wy — (X X)X (Xwy — y)
= (1 = n)wo +n(X'X) ' X"y
= (1 — n)wo + nw
In general, for w; “close enough” to w, one should use n =1

©Kevin Jamieson 2018 17

General case
" A

In general for Newton’s method to achieve f(w;) — f(w,) < e

O Uoj /O_ﬂ (//5§>

So why are ML problems overwhelmingly solved
by gradient methods?

Hint: v, is solution to : V2 f(w;)v, = —V f(w;)

©Kevin Jamieson 2018

18

General Convex case [(w:) — f(ws) <e
" A
Newton’s method:
t ~ log(log(1/¢))

Gradient descent:
cean | fis smooth and strongly convex: al < V? f(w) =< bl

converge

- 2l
. fis smooth: V?f(w) < bl
b/{,

Bubeck
- fis potentially non-differentiable: ||V f(w)||]2 < c
T2
Nocedal

EV\gjagcT’ Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad, ...
u

©Kevin Jamieson 2018 o 19

Revisiting...

Logistic Regression

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 18, 2016

©Kevin Jamieson 2018

Loss function: Conditional Likelihood
" S

n

= Have a bunch of iid data of the form: {(xz,yz) i=1 T E]Rd, vy, € {—1,1}

o~ - 1
WMLE = argmax H P(y;|z;, w) P(Y = ylz,w) = 5 P g
i=1
f(w) = arg mui)n Z&g(l + exp(—y; 7 w)) K
O(dr73 =1 L)
1
V f(w) VL (w ew(“aa%r“’> 2
% > ’Vﬁb /M> = ~/+€WC—3; =) (¢ ‘ﬂux)

I_AT‘F Wo = O ~——

H:(w)
Loo?

{/"jt-{-f :\'\/& ~Z Z ﬂv(“i) ("‘j;?;)

©Kevin Jamieson 2018 21

Stochastic Gradient

Descent

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 18, 2016

©Kevin Jamieson 2018

Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:
{(zi,9i) bieq z; €RY y eR
= Learning a model’s parameters:

Each /;(w) is convex.

©Kevin Jamieson 2018

23

Stochastic Gradient Descent
"

= Have a bunch of iid data of the form:

{(@i,yi) Y r; €RT oy €R
= Learning a model's parameters: 1>
Each ¢;(w) is convex. " Z li(w)
i=1

Gradient Descent:

1 n
— - w | Ez ‘
W41 Wi 77V (n zzzl (’lU)) B

©Kevin Jamieson 2018

24

Stochastic Gradient Descent
" S

= Have a bunch of iid data of the form:

{(zs,yi) Fiza r;€RY oy €R
= Learning a model’s parameters: 1"
Each ¢;(w) is convex. " Z li(w)
i—1

Gradient Descent: | é
Wiyl = W — NV (ﬁ z_zlfz(w)> ‘

W=W¢

Stochastic Gradient Descent:
I; drawn uniform at

W1 = W — MV wlr, (w) random from {1,...,n}

W=W¢

B[V, (w)] =) P(Tes) VLI = ULID

-

(9

25

©Kevin Jamieson 2018

Stochastic Gradient Descent

[|
Theorem
_ . I; drawn uniform at
Let Wi+l = We nvwzlt (w) ‘w:wt r;ndom from {1,..., n} so that
“ﬂu} Vﬁ]t Z Vf)

it Jlwy —wgll3 <R and supmax|[Vi(w)llz <G then

(In practice use last iterate)

©Kevin Jamieson 2018 26

Stochastic Gradient Descent
" S

Proof

Efl|wes1 — wil[3] = E[|lwe — nVLr, (we) — w|[3]

©Kevin Jamieson 2018

Stochastic Gradient Descent
" S

Proof

Efl|wesr — wil[3] = E[|[we — Ve, (we) — w|[3]

= E[|jw; — w.||3] — 20E[VLy, (wy)” (wy — w.)] + n?E[|[V L7, (wy)|3]

< E[fJwr — w.3] = 2nE[l(w;) — L(ws)] +1°G

B

—) E[V/;, (w)! (wy — w,)] = E|E[V{;, (we) ! (wy — w) |, wi, ..o e, wy—1]]

Covwe-{(.‘f_‘j - -
S 2 §(x) + VAR (g-x) = E[VE(wi)" (wy —w.)]
> E[{(w;) — ((ws)]
T
>~ B{t(wn) — ()] § 5 (Elljwn = .l 8] = Bllorss — w3+ T9°G) <
_ < E + % Jr— g

Stochastic Gradient Descent

Proof

Jensen’s inequality:
For any random Z € RY and convex function ¢ : R — R, ¢(E[Z]) < E[¢(Z)]

T
1
E[f(w) — 6w)] < 7 S Ell(uw) — fuw.) o= w

Stochastic Gradient Descent

Proof

Jensen’s inequality:
For any random Z € RY and convex function ¢ : R — R, ¢(E[Z]) < E[¢(Z)]

T
] 1 1
E[t(w) — (w.)] < 7 ;E[ﬁ(wt) — Y(w,)] W=7 ; wy
i} R G RG _
E[ﬁ(w) — E(w*)] ~ 2T77 + 9 7 n QT

Stochastic Gradient

Descent: A Learning
perspective

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 18, 2016

©Kevin Jamieson 2018

Learning Problems as Expectations
" S

= Minimizing loss in training data:

Given dataset:
= Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

(o(w) = 3 3w

K J=1 i)

= However, we should really minimize expected loss on all data:

l(w) = FEyx [l(w,x)] = ./p(x)é(w,x)dx

= So, we are approximating the integral by the average on the training data

©Sham Kakade 2016 32

Gradient descent in Terms of Expectations
" JE—

= “True” objective function:

0(w) = Exlt(w,x)) = [p(x)t(w,x)dx
- Taking the gradient:

Th () = S b= UL(w,)dxx = 'ELUMQ(U,XSE
. “True” gradient descent rule:

Wyt =W = LE [kl)]

= How do we estimate expected gradient?

n\é
cl
L\/ﬂ-il —:‘_/,/é —-’ZVQ/Z/L'/'&;X&\ L/J[’[Q,-Q y_ék/\ *

SGD: Stochastic Gradient Descent

" JEE——
= “True” gradient: VK(W) — Ex [VK(W, X)]

= Sample based approximation:

= What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Also called stochastic gradient descent
= Among many other names
VERY useful in practice!!l

©Sham Kakade 2016

34

Perceptron

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 18, 2018

©Kevin Jamieson 2018

Online learning
" S

= Click prediction for ads is a streaming data task:

User enters query, and ad must be selected
Observe xi, and must predict yi

User either clicks or doesn’t click on ad

= Label yiis revealed afterwards
Google gets a reward if user clicks on ad

Update model for next time

©Kevin Jamieson 2016

36

Online classification

" S

+
e N
+

= -
++ == ==

New point arrives at time k

©Kevin Jamieson 2016

37

The Perceptron Algorithm ce.s e
" I

= Classification setting: y in {-1,+1}
= Linear model
Prediction:

= Training:
Initialize weight vector:

At each time step:
Observe features:
Make prediction:
Observe true class:

Update model:
If prediction is not equal to truth

©Kevin Jamieson 2016

38

The Perceptron Algorithm ce.s e
" S

= Classification setting: y in {-1,+1}
* Linear model
Prediction: Sign(szci +b)

= Training:
Initialize weight vector: wo = 0,069 = 0
At each time step:
« Observe features: Tk

- Make prediction: &gn(:l:%wk —+ bk)
= Observe true class:
Yk

= Update model:
If prediction is not equal to truth

Wk1| _ | Wk T
)=] e

©Kevin Jamieson 2016

39

Rosenblatt 1957

"the embryo of an electronic computer that [the Navy] expects will be able to walk,
talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

©Kevin Jamieson 2016 40

Linear Separability

+ =
.:ﬂ:. =
= ==
=+ = -
T+ & _
=
ain = -
'=ﬂ='=ﬂ= == ==

= Perceptron guaranteed to converge if
= Data linearly separable:

©Kevin Jamieson 2016

41

Perceptron Analysis: Linearly Separable Case
" JE—

= Theorem [Block, Novikoff]:
Given a sequence of labeled examples:

Each feature vector has bounded norm:

If dataset is linearly separable:

= Then the number of mistakes made by the online perceptron on any such sequence is
bounded by

©Kevin Jamieson 2016 42

Beyond Linearly Separable Case
"

= Perceptron algorithm is super cool!

No assumption about data distribution!

Could be generated by an oblivious adversary, no
need to be iid

Makes a fixed number of mistakes, and it's done

for ever! g
Even if you see infinite data =+ -
+ -
+ <+ + =
+ 4 7 -
I=I|:|'=I =

©Kevin Jamieson 2016

43

Beyond Linearly Separable Case
" I

= Perceptron algorithm is super cool!

No assumption about data distribution!
Could be generated by an oblivious adversary, no
need to be iid

Makes a fixed number of mistakes, and it's done

for ever! g
Even if you see infinite data =+ -
+ -
= Perceptron is useless in practice! + + _
Real world not linearly separable _ =
If data not separable, cycles forever and hard to 4 ¥
detect a'a + = -

Even if separable may not give good
generalization accuracy (small margin)

©Kevin Jamieson 2016

44

What is the Perceptron Doing?7??

" JAE
= \WWhen we discussed logistic regression:
Started from maximizing conditional log-likelihood

= \When we discussed the Perceptron:
Started from description of an algorithm

= What is the Perceptron optimizing????

©Kevin Jamieson 2016

Support Vector

Machines

Machine Learning — CSE546
Kevin Jamieson
University of Washington

October 18, 2018

©2018 Kevin Jamieson

Linear classifiers — Which line is better?

Pick the one with the largest margin!
" J—

-
/

=

4 %
== -
T L ¥ -
Ik
== =
IZII]:I | |

©2018 Kevin Jamieson

Pick the one with the largest margin!

Distance from xg to
hyperplane defined
T E* by ztw 4+ b= 07?

Pick the one with the largest margin!

== S
Cy
w -
I -
S
L
I:II:IIZI -]
%% _ =

©2018 Kevin Jamieson

Distance from xg to
hyperplane defined
by xTw + b = 07

If zg is the projection of x
onto the hyperplane then

w0 — Zoll2 = [(z5 — Zo)" arr; |

1
[fwl]2

v w — 28wl

— IIH}H2 28w + b

50

Pick the one with the largest margin!
"

(o)
i Distance of xg from
¢ hyperplane z!w + b:
1
M ollz (%0)
als = 2
"= Optimal Hyperplane
o= = max -y
|:||]:| :H:l w,b
subject to I || —yi(zfw+b) >y Vi
=] 2
.
|:|']:| =
IZII]:I | |

margin 2,

©2018 Kevin Jamieson 51

Pick the one with the largest margin!
"

o o

! Distance of xg from

; hyperplane z!w + b:

& 1

P

(zow + D)

& - [lwll2
"= Optimal Hyperplane

+ 4 T = | maxy

1
subject to yi(xiw+b) >~ Vi
[|wll2

Optimal Hyperplane (reparameterized)

min ||wl|3
w,b

subject to y;(x; w+b) > 1 Vi

margin 2,

©2018 Kevin Jamieson 52

Pick the one with the largest margin!
* J

-
/

P

N

+
S = Solve efficiently by many methods,
+ 5 c

9.,
T = quadratic programming (QP)
- = Well-studied solution algorithms
& Stochastic gradient descent

ok L Coordinate descent (in the dual)

Optimal Hyperplane (reparameterized)

min|]

w,

subject to y;(x; w+b) > 1 Vi

©2018 Kevin Jamieson 53

What if the data is still not linearly
separable?

If data is linearly separable

| L min [jw|3
. = [lwll2
. \; yi(xiw+b)>1 Vi
. ..' ‘— margin
. L

What if the data is still not linearly

separable?
" S
tTw4+b=0

= |f data is linearly separable

min | |w|3
w,b

yi(x] w4 b) > 1 Vi

= |f data is not linearly separable, some
points don’t satisfy margin constraint:

min ||w|3
w,b

j=1

©2018 Kevin Jamieson 55

What if the data is still not linearly

separable?
" S
tTw4+b=0

= |f data is linearly separable

min | |w|3
w,b

yi(xiw+b) >1 Vi

= |f data is not linearly separable, some
points don’t satisfy margin constraint:

min ||w|3
w,b

&>0) & <v
j=1

= What are “support vectors?”

©2018 Kevin Jamieson 56

SVM as penalization method
"

= Original quadratic program with linear constraints:
: 2
min |jw||3
w,b

yilzFw+b)>1-& Vi

& 207i§j <v

j=1

©2018 Kevin Jamieson

57

SVM as penalization method

Original quadratic program with linear constraints:
. 2
min [jw||3
yilzFw+b)>1-& Vi
j=1
Using same constrained convex optimization trick as for lasso:

For any v > 0 there exists a A > 0 such that the solution
the following solution is equivalent:

ZmaX{O, 1—y;(b+z] w)} + w3
i=1

©2018 Kevin Jamieson

58

Machine Learning Problems
.

= Have a bunch of iid data of the form:

S -

{(@i,yi) i x5 € R y; € R

= Learning a model’s parameters:
: l;
Each /;(w) is convex. Z (w)

Hinge Loss: /;(w) = max{0,1 — y;z} w}

Logistic Loss: £;(w) = log(1 + exp(—y; 21 w))

Squared error Loss: £;(w) = (y; — 21 w)?

How do we solve for w? The last two lectures!

©Kevin Jamieson 2018 59

Perceptron is optimizing what??
" S

Perceptron update rule:

[7”,;)::] = [Zf] + Y [xlk] 1{y;(b + 2Tw) < 0}

SVM obijective:

> max{0, 1 - gi(o+ aTw)} + Awllf = 3w, b)

1=1 1=1

Vol (w, b) = { v+ 2w ity +lw) < 1

0 otherwise

Perceptron is just SGD

Vylsw,b) = 4 Y vl +aiw) <1 on SVM with A =0, n = 1!
o 0 otherwise

©2018 Kevin Jamieson 60

SVMs vs logistic regression
" SN

= We often want probabilities/confidences, logistic wins here?

©2018 Kevin Jamieson 61

SVMs vs logistic regression
" JAEE
= We often want probabilities/confidences, logistic wins here?

= No! Perform isotonic regression or non-parametric bootstrap
for probability calibration. Predictor gives some score, how
do we transform that score to a probability?

©2018 Kevin Jamieson 62

SVMs vs logistic regression
" JEE
= We often want probabilities/confidences, logistic wins here?

= No! Perform isotonic regression or non-parametric bootstrap
for probability calibration. Predictor gives some score, how
do we transform that score to a probability?

= For classification loss, logistic and svm are comparable
= Multiclass setting:

Softmax naturally generalizes logistic regression
SVMs have

= What about good old least squares?

©2018 Kevin Jamieson 63

What about multiple classes?

O o
© (o) (o)
© ©
% o © -
|:||]:| -
'£|:||:']
T = T _ -
45
+ & - _

