Warm up

Regrade requests submitted directly in Gradescope, do not email instructors.

For each block compute the memory required in terms of n, p, d.

If d << p << n, what is the most memory efficient program (blue, green, red)? If you have unlimited memory, what do you think is the fastest program?

Gradient Descent

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 18, 2016

©Kevin Jamieson 2018

Machine Learning Problems

Have a bunch of iid data of the form:

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d \qquad y_i \in \mathbb{R}$$

• Learning a model's parameters: Each $\ell_i(w)$ is convex.

$$\sum_{i=1}^{n} \ell_i(w)$$

Machine Learning Problems

Have a bunch of iid data of the form:

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d \qquad y_i \in \mathbb{R}$$

• Learning a model's parameters: Each $\ell_i(w)$ is convex.

 $\sum_{i=1}\ell_i(w)$

g is a subgradient at x if $f(y) \ge f(x) + g^T(y - x)$

f convex:

 $\begin{aligned} f\left(\lambda x + (1-\lambda)y\right) &\leq \lambda f(x) + (1-\lambda)f(y) & \forall x, y, \lambda \in [0,1] \\ f(y) &\geq f(x) + \nabla f(x)^T(y-x) & \forall x, y \end{aligned}$

Machine Learning Problems

Have a bunch of iid data of the form:

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d \qquad y_i \in \mathbb{R}$$

• Learning a model's parameters: Each $\ell_i(w)$ is convex.

$$\sum_{i=1}^{n} \ell_i(w)$$

Logistic Loss: $\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$ Squared error Loss: $\ell_i(w) = (y_i - x_i^T w)^2$

Least squares

Have a bunch of iid data of the form:

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d \qquad y_i \in \mathbb{R}$$

• Learning a model's parameters: Each $\ell_i(w)$ is convex. Squared error Loss: $\ell_i(w) = (y_i - x_i^T w)^2$ How does software solve: $\frac{1}{2} ||Xw - y||_2^2$

Least squares

Have a bunch of iid data of the form:

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d \qquad y_i \in \mathbb{R}$$

Learning a model's parameters: Each $\ell_i(w)$ is convex.

$$\sum_{i=1}^{n} \ell_i(w)$$

Squared error Loss: $\ell_i(w) = (y_i - x_i^T w)^2$

How does software solve: $\frac{1}{2}||\mathbf{X}w - \mathbf{y}||_2^2$

...its complicated: (LAPACK, BLAS, MKL...)

Do you need high precision? Is X column/row sparse? Is \widehat{w}_{LS} sparse? Is $X^T X$ "well-conditioned"? Can $X^T X$ fit in cache/memory?

Taylor Series Approximation

Taylor series in one dimension:

$$f(x+\delta) = f(x) + f'(x)\delta + \frac{1}{2}f''(x)\delta^2 + \dots$$

Gradient descent:

Taylor Series Approximation

Taylor series in d dimensions:

$$f(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v + \dots$$

Gradient descent:

Juit Xo Loop $\chi_{ee} = \chi_e - 2\nabla f(\chi_e)$

Gradient Descent $f(w) = \frac{1}{2} ||Xw - y||_2^2$

$$w_{t+1} = w_t - \eta \nabla f(w_t)$$

 $\nabla f(w) =$

Gradient Descent
$$f(w) = \frac{1}{2} ||Xw - y||_2^2$$

$$\begin{split} \underbrace{ \left\{ \begin{array}{l} w_{t+1} = w_t - \eta \nabla f(w_t) \right\}}_{\nabla f(w) = \mathbf{X}^T(\mathbf{X}w - y)} & \mathcal{O}(\mathcal{A}) \text{ computation} \\ \text{per step.} \\ w_* = \arg\min_w f(w) \implies \nabla f(w_*) = 0 \end{split}$$

$$w_{t+1} - w_* = w_t - w_* - \eta \nabla f(w_t)$$

= $w_t - w_* - \eta (\nabla f(w_t) - \nabla f(w_*))$
= $w_t - w_* - \eta \mathbf{X}^T \mathbf{X} (w_t - w_*)$
= $(I - \eta \mathbf{X}^T \mathbf{X}) (w_t - w_*)$
= $(I - \eta \mathbf{X}^T \mathbf{X})^{t+1} (w_0 - w_*)$

Gradient Descent $f(w) = \frac{1}{2} ||Xw - y||_2^2$

$$w_{t+1} = w_t - \eta \nabla f(w_t)$$

(w_{t+1} - w_*) = (I - \eta X^T X)(w_t - w_*)
= (I - \eta X^T X)^{t+1}(w_0 - w_*)

Example:
$$X = \begin{bmatrix} 10^{-3} & 0 \\ 0 & 1 \end{bmatrix}$$
 $y = \begin{bmatrix} 10^{-3} \\ 1 \end{bmatrix}$ $w_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $w_* =$

Gradient Descent $f(w) = \frac{1}{2} ||Xw - y||_2^2$

$$\begin{split} w_{t+1} &= w_t - \eta \nabla f(w_t) \\ (w_{t+1} - w_*) &= (I - \eta X^T X)(w_t - w_*) \\ &= (I - \eta X^T X)^{t+1}(w_0 - w_*) \\ \\ \text{Example:} \quad X = \begin{bmatrix} 10^{-3} & 0 \\ 0 & 1 \end{bmatrix} \quad y = \begin{bmatrix} 10^{-3} \\ 1 \end{bmatrix} \quad w_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad w_* = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ X^T X = \begin{bmatrix} 10^{-6} & 0 \\ 0 & 1 \end{bmatrix} \quad \text{Pick } \eta \text{ such that} \\ \max\{|1 - \eta 10^{-6}|, |1 - \eta|\} < 1 \\ |w_{t+1,1} - w_{*,1}| = |1 - \eta 10^{-6}|^{t+1} |w_{0,1} - w_{*,1}| = |1 - \eta 10^{-6}|^{t+1} \end{pmatrix} \leq e_{\mathcal{KP}} \left(-2 \overline{\mathcal{W}}^{6}(\mathfrak{b}_{f}) \right) \\ |w_{t+1,2} - w_{*,2}| = |1 - \eta|^{t+1} |w_{0,2} - w_{*,2}| = |1 - \eta|^{t+1} \\ Z \leq \int_{\mathcal{M}_{\mathsf{MKY}}} \left(\chi^{\mathsf{T}} X \right) \\ (\text{Kewn Jamicson 2016} \end{split}$$

Taylor Series Approximation

Taylor series in one dimension:

$$f(x+\delta) = f(x) + f'(x)\delta + \frac{1}{2}f''(x)\delta^2 + \dots$$

Taylor Series Approximation

Taylor series in **d** dimensions:

$$f(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v + \dots$$

is nethod:

Newton's method:

$$\hat{f}_{x} \quad guadrahic \quad fit \quad to \quad f(y) \quad at \quad x \quad fhen$$

$$\hat{y} = \underset{y}{\operatorname{argmin}} \quad \hat{f}_{x}(y) = \chi - \left[\nabla^{2} f(x) \right] \nabla f(x) \quad g \quad solution \quad fo$$

$$\nabla^{2} f(x) (\hat{y} - x) = \nabla f(x) \quad g \quad solution \quad fo$$

Newton's Method $f(w) = \frac{1}{2} ||\mathbf{X}w - \mathbf{y}||_2^2$

$$\nabla f(w) =$$

$$\nabla^2 f(w) =$$

$$v_t \text{ is solution to } : \left[\nabla^2 f(w_t) v_t = -\nabla f(w_t) \right]$$

$$w_{t+1} = w_t + \eta v_t$$

Newton's Method

$$\underline{f(w) = \frac{1}{2} ||\mathbf{X}w - \mathbf{y}||_2^2}$$

$$\nabla f(w) = \mathbf{X}^T (\mathbf{X}w - \mathbf{y})$$

$$\nabla^2 f(w) = \mathbf{X}^T \mathbf{X}$$

$$v_t \text{ is solution to } : \nabla^2 f(w_t) v_t = -\nabla f(w_t)$$

$$w_{t+1} = w_t + \eta v_t$$

$$\begin{array}{c} \mathsf{A}^t \text{ each time } t : \\ \mathsf{Sef } \mathcal{I}_t = I, \text{ if } f(w_t + \mathcal{I}_t) \\ \mathsf{A}_t = v_t + \eta v_t \end{array}$$

For quadratics, Newton's method can converge in one step! (No surprise, why?)

$$w_1 = w_0 - \eta (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} w_0 - y)$$

= $(1 - \eta) w_0 + \eta (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$
= $(1 - \eta) w_0 + \eta w_*$

In general, for w_t "close enough" to w_* one should use $\eta = 1$

General case

In general for Newton's method to achieve $f(w_t) - f(w_*) \le \epsilon$:

$$O(\log \log(1/\epsilon))$$

So why are ML problems overwhelmingly solved by gradient methods?

Hint: v_t is solution to : $\nabla^2 f(w_t)v_t = -\nabla f(w_t)$

General Convex case $f(w_t) - f(w_*) \le \epsilon$

Newton's method:

 $t\approx \log(\log(1/\epsilon))$

Gradient descent:

- f is smooth and strongly convex: $aI \preceq \nabla^2 f(w) \preceq bI$
- f is smooth: $\nabla^2 f(w) \preceq bI$
- f is potentially non-differentiable: $||\nabla f(w)||_2 \leq c$

952

Nocedal +Wright, Bubeck

Clean

converge nice proofs:

Bubeck

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,...

Revisiting... Logistic Regression

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 18, 2016

©Kevin Jamieson 2018

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form: $\{(x_i,y_i)\}_{i=1}^n$ $x_i\in\mathbb{R}^d, \;\;y_i\in\{-1,1\}$

$$\widehat{w}_{MLE} = \arg \max_{w} \prod_{i=1}^{n} P(y_i | x_i, w) \qquad P(Y = y | x, w) = \frac{1}{1 + \exp(-y \, w^T x)}$$

$$f(w) = \arg \min_{w} \sum_{i=1}^{n} \underbrace{\log(1 + \exp(-y_i \, x_i^T w))}_{\mathcal{L}_i(\omega)} \qquad ($$

$$\nabla f(w) = \sum_{i=1}^{n} \nabla \mathcal{L}_i(\omega) \qquad \nabla \mathcal{L}_i(\omega) = \underbrace{\frac{e_{\chi P}(-y_i \, x_i^T \omega)}_{\mathcal{L} + e_{\chi P}(-y_i \, x_i^T \omega)}}_{\mathcal{H}_i(\omega)} (-y_i \, x_i)$$

$$L_{nif} \quad w_0 = 0$$

$$\mathcal{L}_{ooP} \qquad \mathcal{L}_{i=1} \quad \mathcal{H}_{i=1} \quad \mathcal{L}_{i=1} \quad \mathcal{H}_{i=1} \quad \mathcal{L}_{i=1} \quad \mathcal{H}_{i=1} \quad \mathcal{L}_{i=1} \quad \mathcal$$

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 18, 2016

©Kevin Jamieson 2018

Have a bunch of iid data of the form:

$$\{(x_i, y_i)\}_{i=1}^n$$
 $x_i \in \mathbb{R}^d$ $y_i \in \mathbb{R}$
Learning a model's parameters:

Each $\ell_i(w)$ is convex.

$$\frac{g_i \in \mathbb{R}}{\left|\frac{1}{n}\sum_{i=1}^n \ell_i(w)\right|}$$

Have a bunch of iid data of the form:

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d \qquad y_i \in \mathbb{R}$$

Learning a model's parameters:
 Each l_i(w) is convex.

$$\frac{1}{n}\sum_{i=1}^{n}\ell_i(w)$$

Gradient Descent:

$$w_{t+1} = w_t - \eta \nabla_w \left(\frac{1}{n} \sum_{i=1}^n \ell_i(w) \right) \Big|_{w=w_t}$$

Have a bunch of iid data of the form:

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d$$

Learning a model's parameters:
 Each l_i(w) is convex.

Gradient Descent: O(dn) per step $w_{t+1} = w_t - \eta \nabla_w \left(\frac{1}{n} \sum_{i=1}^n \ell_i(w) \right)^{-1}$

Stochastic Gradient Descent: $v_{t+1} = w_t - \eta \left[\nabla_w \ell_{I_t}(w) \right]_{w=w_t}$

 I_t drawn uniform at random from $\{1, \ldots, n\}$

 $y_i \in \mathbb{R}$

$$\mathbb{E}[\nabla \ell_{I_t}(w)] = \sum_{i=1}^{n} \mathbb{P}(I_{t^{-i}}) \ \nabla l_i(w) = \prod_{n \geq v} \mathbb{P}(I_{t^{-i}})$$

Theorem

Let
$$w_{t+1} = w_t - \eta \nabla_w \ell_{I_t}(w) \Big|_{w=w_t}$$
 $I_t \operatorname{drawn uniform at}_{random from \{1, \dots, n\}}$ so that
 $u_{t+1} = w_t - \eta \nabla_w \ell_{I_t}(w) \Big|_{w=w_t} = \frac{1}{n} \sum_{i=1}^n \nabla \ell_i(w) \stackrel{\text{def}}{=:} \nabla \ell(w)$
If $||w_1 - w_{\mathbf{x}}||_2^2 \le R$ and $\sup_w \max_i ||\nabla \ell_i(w)||_2 \le G$ then
 $\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \le \frac{R}{2T\eta} + \frac{\eta G}{2} \le \sqrt{\frac{RG}{T}} = \sqrt{\frac{R}{GT}}$
 $\overline{w} = \frac{1}{T} \sum_{t=1}^T w_t$
(In practice use last iterate

Proof

$$\mathbb{E}[||w_{t+1} - w_*||_2^2] = \mathbb{E}[||w_t - \eta \nabla \ell_{I_t}(w_t) - w_*||_2^2]$$

Proof

$$\begin{split} \mathbb{E}[||w_{t+1} - w_*||_2^2] &= \mathbb{E}[||w_t - \eta \nabla \ell_{I_t}(w_t) - w_*||_2^2] \\ &= \mathbb{E}[||w_t - w_*||_2^2] - 2\eta \mathbb{E}[\nabla \ell_{I_t}(w_t)^T(w_t - w_*)] + \eta^2 \mathbb{E}[||\nabla \ell_{I_t}(w_t)||_2^2] \\ &\leq \mathbb{E}[||w_t - w_*||_2^2] - 2\eta \mathbb{E}[\ell(w_t) - \ell(w_*)] + \eta^2 G \\ & \longrightarrow \mathbb{E}[\nabla \ell_{I_t}(w_t)^T(w_t - w_*)] = \mathbb{E}\left[\mathbb{E}[\nabla \ell_{I_t}(w_t)^T(w_t - w_*)|I_1, w_1, \dots, I_{t-1}, w_{t-1}]\right] \\ & \underbrace{\mathsf{Genserify}}_{\{q\} \geq \{\infty\}} + \nabla f(\mathbf{x})^T(q-\mathbf{x}) = \mathbb{E}\left[\nabla \ell(w_t)^T(w_t - w_*)\right] \\ &\geq \mathbb{E}\left[\ell(w_t) - \ell(w_*)\right] \\ & \geq \mathbb{E}\left[\ell(w_t) - \ell(w_*)\right] \\ & = \frac{1}{2\eta} \left(\mathbb{E}[||w_1 - w_*||_2^2] - \mathbb{E}[||w_{T+1} - w_*||_2^2] + T\eta^2 G\right) \\ & \leq \frac{R}{2\eta} + \frac{T\eta G}{2} \end{split}$$

Proof

Jensen's inequality: For any random $Z \in \mathbb{R}^d$ and convex function $\phi : \mathbb{R}^d \to \mathbb{R}, \ \phi(\mathbb{E}[Z]) \leq \mathbb{E}[\phi(Z)]$

$$\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \le \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\ell(w_t) - \ell(w_*)] \qquad \bar{w} = \frac{1}{T} \sum_{t=1}^T w_t$$

Proof

Jensen's inequality: For any random $Z \in \mathbb{R}^d$ and convex function $\phi : \mathbb{R}^d \to \mathbb{R}, \phi(\mathbb{E}[Z]) \leq \mathbb{E}[\phi(Z)]$

$$\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \le \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\ell(w_t) - \ell(w_*)] \qquad \bar{w} = \frac{1}{T} \sum_{t=1}^T w_t$$

$$\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \le \frac{R}{2T\eta} + \frac{\eta G}{2} \le \sqrt{\frac{RG}{T}} \qquad \eta = \sqrt{\frac{R}{GT}}$$

Stochastic Gradient Descent: A Learning perspective

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 18, 2016

©Kevin Jamieson 2018

Learning Problems as Expectations

Minimizing loss in training data:

- Given dataset:
 - Sampled iid from some distribution p(x) on features:
- Loss function, e.g., hinge loss, logistic loss,...
- We often minimize loss in training data:

$$\ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \underbrace{\ell(\mathbf{w}, \mathbf{x}^{j})}_{\ell_{j}(\boldsymbol{\omega})}$$

- However, we should really minimize expected loss on all data:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x})\right] = \int p(\mathbf{x})\ell(\mathbf{w}, \mathbf{x})d\mathbf{x}$$

• So, we are approximating the integral by the average on the training data

Gradient descent in Terms of Expectations

• "True" objective function:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

• Taking the gradient:

$$\nabla l(w) = \int p(x) \nabla l(w, x) dx = \mathbb{E} \left[\nabla_{w} l(w, x) \right]$$

• "True" gradient descent rule:

$$W_{t+1} = W_t - Z E_x [U_w l(\omega, X)]$$

How do we estimate expected gradient?

where Xe i'd Pr

• "True" gradient:

$$\nabla \ell(\mathbf{w}) = E_{\mathbf{x}} \left[\nabla \ell(\mathbf{w}, \mathbf{x}) \right]$$

• Sample based approximation:

- What if we estimate gradient with just one sample???
 - Unbiased estimate of gradient
 - Very noisy!
 - Also Called stochastic gradient descent
 - Among many other names
 - VERY useful in practice!!!

Perceptron

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 18, 2018

©Kevin Jamieson 2018

Online learning

- Click prediction for ads is a streaming data task:
 - User enters query, and ad must be selected
 - Observe x^j, and must predict y^j
 - User either clicks or doesn't click on ad
 - Label y^j is revealed afterwards
 - Google gets a reward if user clicks on ad
 - Update model for next time

Online classification

New point arrives at time k

The Perceptron Algorithm [Rosenblatt '58, '62]

- Classification setting: y in {-1,+1}
- Linear model
 - Prediction:
- Training:
 - Initialize weight vector:
 - At each time step:
 - Observe features:
 - Make prediction:
 - Observe true class:
 - Update model:
 - If prediction is not equal to truth

The Perceptron Algorithm [Rosenblatt '58, '62]

- Classification setting: y in {-1,+1}
- Linear model

• Prediction: $\operatorname{sign}(w^T x_i + b)$

- Training:
 - Initialize weight vector: $w_0 = 0, b_0 = 0$
 - At each time step:
 - Observe features: x_k
 - Make prediction:

$$\sin(x_k^T w_k + b_k)$$

Observe true class:

$$y_k$$

- Update model:
 - If prediction is not equal to truth

$$\begin{bmatrix} w_{k+1} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} w_k \\ b_k \end{bmatrix} + y_k \begin{bmatrix} x_k \\ 1 \end{bmatrix}$$

Rosenblatt 1957

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

Linear Separability

Perceptron guaranteed to converge if

Data linearly separable:

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
 - Given a sequence of labeled examples:
 - Each feature vector has bounded norm:
 - If dataset is linearly separable:
- Then the number of mistakes made by the online perceptron on any such sequence is bounded by

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data
- Perceptron is useless in practice!
 - Real world not linearly separable
 - If data not separable, cycles forever and hard to detect
 - Even if separable may not give good generalization accuracy (small margin)

What is the Perceptron Doing???

When we discussed logistic regression:
 Started from maximizing conditional log-likelihood

When we discussed the Perceptron:
 Started from description of an algorithm

What is the Perceptron optimizing????

Support Vector Machines

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 18, 2018

©2018 Kevin Jamieson

Linear classifiers – Which line is better?

Distance from x_0 to hyperplane defined by $x^T w + b = 0$?

Distance from x_0 to hyperplane defined by $x^T w + b = 0$?

If \widetilde{x}_0 is the projection of x_0 onto the hyperplane then $||x_0 - \widetilde{x}_0||_2 = |(x_0^T - \widetilde{x}_0)^T \frac{w}{||w||_2}|$

 $= \frac{1}{||w||_2} |x_0^T w - \widetilde{x}_0^T w|$

 $= \frac{1}{||w||_2} |x_0^T w + b|$

What if the data is still not linearly separable?

$$x^T w + b = 0$$

$$1$$

$$||w||_2$$

$$1$$

$$1$$

$$||w||_2$$

If data is linearly separable

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

What if the data is still not linearly separable?

$$x^{T}w + b = 0$$

$$\int_{|w||_{2}} \frac{1}{|w||_{2}}$$

$$x^{T}w + b = 0$$

$$\int_{\xi_{1}} \frac{\xi_{3}}{\xi_{5}} \frac{1}{|w||_{2}}$$

$$\int_{|w||_{2}} \frac{1}{|w||_{2}}$$

If data is linearly separable

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

 If data is not linearly separable, some points don't satisfy margin constraint:

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$
$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

What if the data is still not linearly separable?

$$x^{T}w + b = 0$$

$$\int_{|w||_{2}} \frac{1}{|w||_{2}}$$

$$x^{T}w + b = 0$$

$$\int_{\xi_{1}} \frac{\xi_{3}}{\xi_{5}} \frac{1}{|w||_{2}}$$

$$\int_{|w||_{2}} \frac{1}{|w||_{2}}$$

• If data is linearly separable

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

 If data is not linearly separable, some points don't satisfy margin constraint:

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$
$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

• What are "support vectors?"

SVM as penalization method

Original quadratic program with linear constraints:

$$\min_{\substack{w,b}} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$
$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

SVM as penalization method

Original quadratic program with linear constraints:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

Using same constrained convex optimization trick as for lasso:

For any $\nu \ge 0$ there exists a $\lambda \ge 0$ such that the solution the following solution is equivalent:

$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2$$

How do we solve for w? The last two lectures!

Perceptron is optimizing what?

Perceptron update rule:

$$\begin{bmatrix} w_{k+1} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} w_k \\ b_k \end{bmatrix} + y_k \begin{bmatrix} x_k \\ 1 \end{bmatrix} \mathbf{1} \{ y_i(b + x_i^T w) < 0 \}$$

SVM objective:

$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2 = \sum_{i=1}^{n} \ell_i(w, b)$$

$$\nabla_{w}\ell_{i}(w,b) = \begin{cases} -x_{i}y_{i} + \frac{2\lambda}{n}w & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ 0 & \text{otherwise} \end{cases}$$

$$\nabla_{b}\ell_{i}(w,b) = \begin{cases} -y_{i} & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ 0 & \text{otherwise} \end{cases}$$
Perceptron is just SGD on SVM with $\lambda = 0, \eta = 1!$

SVMs vs logistic regression

• We often want probabilities/confidences, logistic wins here?

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?

- For classification loss, logistic and svm are comparable
- Multiclass setting:
 - Softmax naturally generalizes logistic regression
 - SVMs have
- What about good old least squares?

What about multiple classes?

