
©Kevin Jamieson 2018

Warm up

 1

Regrade requests submitted directly in
Gradescope, do not email instructors.

For each block compute the memory required in terms of n, p, d.
If d << p << n, what is the most memory efficient program (blue, green, red)?
If you have unlimited memory, what do you think is the fastest program?

1 float in NumPy = 8 bytes
106 ⇡ 220 bytes = 1 MB
109 ⇡ 230 bytes = 1 GB

o

8dm 8 dn1n
8n

8 pd p
8PM

I8fpntpkp8p
8p SpZ

p 8p

8p

8 ptp 812p't p

©Kevin Jamieson 2018
 2

Gradient Descent

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2016

©Kevin Jamieson 2018

Machine Learning Problems

 3

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.

©Kevin Jamieson 2018

Machine Learning Problems

 4

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

nX

i=1

`i(w)
■ Learning a model’s parameters:

Each `i(w) is convex.

x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2f(x) � `I 8x

f `-strongly convex:

f (�x+ (1� �)y)  �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

g is a subgradient at x if f(y) � f(x) + gT (y � x)

g is a subgradient at x if f(y) � f(x) + gT (y � x)

©Kevin Jamieson 2018

Machine Learning Problems

 5

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

©Kevin Jamieson 2018

Least squares

 6

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

1
2 ||Xw � y||22How does software solve:

©Kevin Jamieson 2018

Least squares

 7

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

How does software solve:

…its complicated: Do you need high precision?
Is X column/row sparse?
Is bwLS sparse?
Is XTX “well-conditioned”?
Can XTX fit in cache/memory?

(LAPACK, BLAS, MKL…)

1
2 ||Xw � y||22

©Kevin Jamieson 2018

Taylor Series Approximation

 8

■ Taylor series in one dimension:

f(x+ �) = f(x) + f 0(x)� + 1
2f

00(x)�2 + . . .

■ Gradient descent:

f K

Z f Ex

µ

ffa 1 F a g z

I
i
s

©Kevin Jamieson 2018

Taylor Series Approximation

 9

■ Taylor series in d dimensions:
f(x+ v) = f(x) +rf(x)T v + 1

2v
Tr2f(x)v + . . .

■ Gradient descent:

Init Xo

Loop

Xu Xt Z Of Xe

©Kevin Jamieson 2018

Gradient Descent

 10

wt+1 = wt � ⌘rf(wt)

rf(w) =

f(w) = 1
2 ||Xw � y||22

©Kevin Jamieson 2018

Gradient Descent

 11

wt+1 = wt � ⌘rf(wt)

rf(w) =

f(w) = 1
2 ||Xw � y||22

XT (Xw � y)

w⇤ = argminw f(w) =) rf(w⇤) = 0

wt+1 � w⇤ = wt � w⇤ � ⌘rf(wt)

= wt � w⇤ � ⌘(rf(wt)�rf(w⇤))

= wt � w⇤ � ⌘XTX(wt � w⇤)

= (I � ⌘XTX)(wt � w⇤)

= (I � ⌘XTX)t+1(w0 � w⇤)

I oldfffeput.at on

©Kevin Jamieson 2018

Gradient Descent

 12

wt+1 = wt � ⌘rf(wt)

Example: X =


10�3 0
0 1

�
y =


10�3

1

�
w⇤ =

(wt+1 � w⇤) = (I � ⌘XTX)(wt � w⇤)

= (I � ⌘XTX)t+1(w0 � w⇤)

w0 =


0
0

�

f(w) = 1
2 ||Xw � y||22

©Kevin Jamieson 2018

Gradient Descent

 13

wt+1 = wt � ⌘rf(wt)

Example: X =


10�3 0
0 1

�
y =


10�3

1

�
w⇤ =

(wt+1 � w⇤) = (I � ⌘XTX)(wt � w⇤)

= (I � ⌘XTX)t+1(w0 � w⇤)

w0 =


0
0

�

f(w) = 1
2 ||Xw � y||22


1
1

�

XTX =


10�6 0
0 1

�

|wt+1,2 � w⇤,2| = |1� ⌘|t+1 |w0,2 � w⇤,2| = |1� ⌘|t+1

|wt+1,1 � w⇤,1| = |1� ⌘10�6|t+1 |w0,1 � w⇤,1| = |1� ⌘10�6|t+1

Pick ⌘ such that
max{|1� ⌘10�6|, |1� ⌘|} < 1

Z max xxx

expfzio.ie

©Kevin Jamieson 2018

Taylor Series Approximation

 14

■ Taylor series in one dimension:

f(x+ �) = f(x) + f 0(x)� + 1
2f

00(x)�2 + . . .

■ Newton’s method:
fly

Ily fix t f Cx y x O

yJ x Htx J

y

y

©Kevin Jamieson 2018

Taylor Series Approximation

 15

■ Taylor series in d dimensions:
f(x+ v) = f(x) +rf(x)T v + 1

2v
Tr2f(x)v + . . .

■ Newton’s method:
0 Diii's

I quadratic fit to fly at there

j arsgins.ly x vf c

ifeng.pe
utionEo

©Kevin Jamieson 2018

Newton’s Method

 16

rf(w) =

r2f(w) =

wt+1 = wt + ⌘vt

vt is solution to : r2f(wt)vt = �rf(wt)

f(w) = 1
2 ||Xw � y||22

0

©Kevin Jamieson 2018

Newton’s Method

 17

rf(w) =

r2f(w) =

wt+1 = wt + ⌘vt

vt is solution to : r2f(wt)vt = �rf(wt)

f(w) = 1
2 ||Xw � y||22

For quadratics, Newton’s method can converge in one step! (No surprise, why?)

XT (Xw � y)

XTX

w1 = w0 � ⌘(XTX)�1XT (Xw0 � y)

= (1� ⌘)w0 + ⌘(XTX)�1XT y

= (1� ⌘)w0 + ⌘w⇤

In general, for wt “close enough” to w⇤ one should use ⌘ = 1

e
W

At each time C
set Zoe if f wetZe Zsome

then 2 EZE

©Kevin Jamieson 2018

General case

 18

In general for Newton’s method to achieve f(wt)� f(w⇤)  ✏:

So why are ML problems overwhelmingly solved
by gradient methods?

vt is solution to : r2f(wt)vt = �rf(wt)Hint:

0 loglog He

©Kevin Jamieson 2018

General Convex case

 19

f(wt)� f(w⇤)  ✏

Newton’s method:

t ⇡ log(log(1/✏))

Gradient descent:
• f is smooth and strongly convex: :  
 

• f is smooth:  
 

• f is potentially non-differentiable:

r2f(w) � bI

aI � r2f(w) � bI

||rf(w)||2  c

Other: BFGS, Heavy-ball, BCD, SVRG, ADAM, Adagrad,…
Nocedal
+Wright,
Bubeck

Clean
converge
nice
proofs:
Bubeck

b log HE

b c

2

©Kevin Jamieson 2018
 20

Revisiting… 
Logistic Regression

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2016

©Kevin Jamieson 2018

Loss function: Conditional Likelihood

■ Have a bunch of iid data of the form:

 21

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

= argmin
w

nX

i=1

log(1 + exp(�yi x
T
i w))f(w)

rf(w) =

01dm ei

D I reins oe.us i taxi
Init Wo O

M w

Loop n

wet We 2 Mihal y X
c i

©Kevin Jamieson 2018
 22

Stochastic Gradient
Descent

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2016

©Kevin Jamieson 2018

Stochastic Gradient Descent

 23

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

■ Learning a model’s parameters:
Each `i(w) is convex.

1

n

nX

i=1

`i(w)0

©Kevin Jamieson 2018

Stochastic Gradient Descent

 24

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

■ Learning a model’s parameters:
Each `i(w) is convex.

1

n

nX

i=1

`i(w)

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

©Kevin Jamieson 2018

Stochastic Gradient Descent

 25

■ Have a bunch of iid data of the form:
{(xi, yi)}ni=1 xi 2 Rd yi 2 R

■ Learning a model’s parameters:
Each `i(w) is convex.

1

n

nX

i=1

`i(w)

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

Stochastic Gradient Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

E[r`It(w)] =

01dm perstep

F

yp oeas IEoe

©Kevin Jamieson 2018

Stochastic Gradient Descent

 26

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

Let so that

If sup
w

max
i

kr`i(w)k2  Gkw1 � w0k22  R and then

w̄ =
1

T

TX

t=1

wt

E[`(w̄)� `(w⇤)] 
R

2T⌘
+

⌘G

2


r
RG

T
⌘ =

r
R

GT

Theorem

(In practice use last iterate)

E
⇥
r`It(w)

⇤
=

1

n

nX

i=1

r`i(w) =: r`(w)we aI

O

©Kevin Jamieson 2018

Stochastic Gradient Descent

 27

E[||wt+1 � w⇤||22] = E[||wt � ⌘r`It(wt)� w⇤||22]
Proof

©Kevin Jamieson 2018

Stochastic Gradient Descent

 28

E[||wt+1 � w⇤||22] = E[||wt � ⌘r`It(wt)� w⇤||22]

= E[||wt � w⇤||22]� 2⌘E[r`It(wt)
T (wt � w⇤)] + ⌘2E[||r`It(wt)||22]

E[r`It(wt)
T (wt � w⇤)] = E

⇥
E[r`It(wt)

T (wt � w⇤)|I1, w1, . . . , It�1, wt�1]
⇤

= E
⇥
r`(wt)

T (wt � w⇤)
⇤

� E
⇥
`(wt)� `(w⇤)

⇤

 E[||wt � w⇤||22]� 2⌘E[`(wt)� `(w⇤)] + ⌘2G

TX

t=1

E[`(wt)� `(w⇤)] 
1

2⌘

�
E[||w1 � w⇤||22]� E[||wT+1 � w⇤||22] + T⌘2G

�

 R

2⌘
+

T⌘G

2

Proof

Convexity
fly 2 f x Offxply se

D

©Kevin Jamieson 2018

Stochastic Gradient Descent

 29

Jensen’s inequality:
For any random Z 2 Rd and convex function � : Rd ! R, �(E[Z])  E[�(Z)]

E[`(w̄)� `(w⇤)] 
1

T

TX

t=1

E[`(wt)� `(w⇤)] w̄ =
1

T

TX

t=1

wt

Proof

0

©Kevin Jamieson 2018

Stochastic Gradient Descent

 30

Jensen’s inequality:
For any random Z 2 Rd and convex function � : Rd ! R, �(E[Z])  E[�(Z)]

E[`(w̄)� `(w⇤)] 
1

T

TX

t=1

E[`(wt)� `(w⇤)] w̄ =
1

T

TX

t=1

wt

E[`(w̄)� `(w⇤)] 
R

2T⌘
+

⌘G

2


r
RG

T
⌘ =

r
R

GT

Proof

©Kevin Jamieson 2018
 31

Stochastic Gradient
Descent: A Learning
perspective
Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2016

©Sham Kakade 2016

Learning Problems as Expectations

■ Minimizing loss in training data:
Given dataset:

■ Sampled iid from some distribution p(x) on features:
Loss function, e.g., hinge loss, logistic loss,…
We often minimize loss in training data:

■ However, we should really minimize expected loss on all data:

■ So, we are approximating the integral by the average on the training data
 32

©Sham Kakade 2016

Gradient descent in Terms of Expectations

■ “True” objective function:

■ Taking the gradient:

■ “True” gradient descent rule:

■ How do we estimate expected gradient?

 33

Pllw Spex Oecw a doc E Aw xD

Wet wt Z E OwlCw X

Wai we ZQ.nl we xt where Xe R

©Sham Kakade 2016

SGD: Stochastic Gradient Descent

■ “True” gradient:

■ Sample based approximation:

■ What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Also called stochastic gradient descent
■ Among many other names

VERY useful in practice!!!

 34

©Kevin Jamieson 2018
 35

Perceptron

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2018

©Kevin Jamieson 2016

Online learning

■ Click prediction for ads is a streaming data task:
User enters query, and ad must be selected

Observe xj, and must predict yj

User either clicks or doesn’t click on ad
■ Label yj is revealed afterwards

Google gets a reward if user clicks on ad

Update model for next time

 36

©Kevin Jamieson 2016 37

Online classification

New point arrives at time k

©Kevin Jamieson 2016

The Perceptron Algorithm [Rosenblatt ‘58, ‘62]

■ Classification setting: y in {-1,+1}
■ Linear model

Prediction:

■ Training:
Initialize weight vector:
At each time step:

■ Observe features:
■ Make prediction:
■ Observe true class:

■ Update model:
If prediction is not equal to truth

 38

©Kevin Jamieson 2016

The Perceptron Algorithm [Rosenblatt ‘58, ‘62]

■ Classification setting: y in {-1,+1}
■ Linear model

Prediction:

■ Training:
Initialize weight vector:
At each time step:

■ Observe features:
■ Make prediction:
■ Observe true class:

■ Update model:
If prediction is not equal to truth

 39

sign(wTxi + b)

w0 = 0, b0 = 0


wk+1

bk+1

�
=


wk

bk

�
+ yk


xk

1

�

xk
sign(xT

kwk + bk)
yk

©Kevin Jamieson 2016

Rosenblatt 1957

 40

"the embryo of an electronic computer that [the Navy] expects will be able to walk,
talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

©Kevin Jamieson 2016 41

Linear Separability

■ Perceptron guaranteed to converge if
■ Data linearly separable:

©Kevin Jamieson 2016

Perceptron Analysis: Linearly Separable Case

■ Theorem [Block, Novikoff]:
Given a sequence of labeled examples:
Each feature vector has bounded norm:
If dataset is linearly separable:

■ Then the number of mistakes made by the online perceptron on any such sequence is
bounded by

 42

©Kevin Jamieson 2016

Beyond Linearly Separable Case
■ Perceptron algorithm is super cool!

No assumption about data distribution!
■ Could be generated by an oblivious adversary, no

need to be iid
Makes a fixed number of mistakes, and it’s done
for ever!

■ Even if you see infinite data

 43

©Kevin Jamieson 2016

Beyond Linearly Separable Case
■ Perceptron algorithm is super cool!

No assumption about data distribution!
■ Could be generated by an oblivious adversary, no

need to be iid
Makes a fixed number of mistakes, and it’s done
for ever!

■ Even if you see infinite data

■ Perceptron is useless in practice!
Real world not linearly separable
If data not separable, cycles forever and hard to
detect
Even if separable may not give good
generalization accuracy (small margin)

 44

©Kevin Jamieson 2016

What is the Perceptron Doing???

■ When we discussed logistic regression:
Started from maximizing conditional log-likelihood

■ When we discussed the Perceptron:
Started from description of an algorithm

■ What is the Perceptron optimizing????

 45

©2018 Kevin Jamieson 46

Support Vector
Machines

Machine Learning – CSE546
Kevin Jamieson
University of Washington

October 18, 2018

©2018 Kevin Jamieson 47

Linear classifiers – Which line is better?

©2018 Kevin Jamieson 48

margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!

©2018 Kevin Jamieson 49

x
T
w
+
b
=

0

Pick the one with the largest margin!

w
x0

Distance from x0 to
hyperplane defined
by xTw + b = 0?

©2018 Kevin Jamieson 50

x
T
w
+
b
=

0

Pick the one with the largest margin!

w
x0

Distance from x0 to
hyperplane defined
by xTw + b = 0?

If ex0 is the projection of x0

onto the hyperplane then
||x0 � ex0||2 = |(xT

0 � ex0)T
w

||w||2 |

= 1
||w||2 |x

T
0 w + b|

= 1
||w||2 |x

T
0 w � exT

0 w|

©2018 Kevin Jamieson 51

margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!

Distance of x0 from
hyperplane xTw + b:

Optimal Hyperplane

1

||w||2
(xT

0 w + b)

max
w,b

�

subject to
1

||w||2
yi(x

T
i w + b) � � 8i

©2018 Kevin Jamieson 52

margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!

Distance of x0 from
hyperplane xTw + b:

Optimal Hyperplane

(reparameterized)Optimal Hyperplane

1

||w||2
(xT

0 w + b)

max
w,b

�

subject to
1

||w||2
yi(x

T
i w + b) � � 8i

min
w,b

||w||22

subject to yi(x
T
i w + b) � 1 8i

©2018 Kevin Jamieson 53

margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!

(reparameterized)Optimal Hyperplane

■ Solve efficiently by many methods,
e.g.,

quadratic programming (QP)
■ Well-studied solution algorithms

Stochastic gradient descent
Coordinate descent (in the dual)

min
w,b

||w||22

subject to yi(x
T
i w + b) � 1 8i

©2018 Kevin Jamieson 54

What if the data is still not linearly
separable?

1

||w||2

1

||w||2

xTw + b = 0

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

■ If data is linearly separable

©2018 Kevin Jamieson 55

What if the data is still not linearly
separable?

■ If data is not linearly separable, some
points don’t satisfy margin constraint:

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

1

||w||2

1

||w||2

1

||w||2

1

||w||2

xTw + b = 0

xTw + b = 0

■ If data is linearly separable

©2018 Kevin Jamieson 56

What if the data is still not linearly
separable?

■ If data is not linearly separable, some
points don’t satisfy margin constraint:

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

1

||w||2

1

||w||2

1

||w||2

1

||w||2

xTw + b = 0

xTw + b = 0

■ If data is linearly separable

■ What are “support vectors?”

©2018 Kevin Jamieson

SVM as penalization method

■ Original quadratic program with linear constraints:

 57

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

©2018 Kevin Jamieson

SVM as penalization method

■ Original quadratic program with linear constraints:

■ Using same constrained convex optimization trick as for lasso:

 58

For any ⌫ � 0 there exists a � � 0 such that the solution
the following solution is equivalent:

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22

©Kevin Jamieson 2018 59

■ Have a bunch of iid data of the form:

{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

Hinge Loss: `i(w) = max{0, 1� yixT
i w}

How do we solve for w? The last two lectures!

Machine Learning Problems

©2018 Kevin Jamieson 60

Perceptron is optimizing what?


wk+1

bk+1

�
=


wk

bk

�
+ yk


xk

1

�
Perceptron update rule:

SVM objective:

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22 =

nX

i=1

`i(w, b)

rw`i(w, b) =

1{yi(b+ xT
i w) < 0}

(
�xiyi +

2�
n w if yi(b+ xT

i w) < 1

0 otherwise

rb`i(w, b) =

(
�yi if yi(b+ xT

i w) < 1

0 otherwise

Perceptron is just SGD
on SVM with � = 0, ⌘ = 1!

©2018 Kevin Jamieson 61

SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here?

©2018 Kevin Jamieson 62

SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here?
■ No! Perform isotonic regression or non-parametric bootstrap

for probability calibration. Predictor gives some score, how
do we transform that score to a probability?

©2018 Kevin Jamieson 63

SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here?
■ No! Perform isotonic regression or non-parametric bootstrap

for probability calibration. Predictor gives some score, how
do we transform that score to a probability?

■ For classification loss, logistic and svm are comparable
■ Multiclass setting:

Softmax naturally generalizes logistic regression
SVMs have

■ What about good old least squares?

©2018 Kevin Jamieson 64

What about multiple classes?

