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Warm up: risk prediction with logistic regression

■ Boss gives you a bunch of data on loans defaulting or not: 
 
 

■ You model the data as:

 1

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

P (Y = y|x,w) = 1

1 + exp(�y wTx)

■ And compute the maximum likelihood estimator: 
 
 
 
For a new loan application x, boss recommends to give loan if your model 
says they will repay it with probability at least .95 (i.e. low risk): 
 
 
 

■ One year later only half of loans are paid back and the bank folds. What might 
have happened?

bwMLE = argmax
w

nY

i=1

P (yi|xi, w)

1

1 + exp(� bwT
MLEx)

� .95Give loan to x if
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Projects

 2

Proposal due Thursday 10/25

- Study a real-world dataset 
- Evaluate multiple machine learning methods 
- Why does one work better than another? Form a hypothesis and test the 

hypothesis with a subset of the real data or, if necessary, synthetic data 
- Study a method 

- Evaluate on multiple real-world datasets 
- Why does the method work better on one dataset versus another? Form a 

hypothesis…

Guiding principles (for evaluation of project) 
- Keep asking yourself “why” something works or not. Dig deeper than just 

evaluating the method and reporting a test error. 
- Must use real-world data available NOW 
- Must report metrics 
- Must reference papers and/or books
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Perceptron
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■ Learn: f:X —>Y 
X – features 
Y – target classes 

■ Expected loss of f:  
 
 
 

■ Bayes optimal classifier: 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Binary Classification

 4

`(f(x), y) = 1{f(x) 6= y}

EXY [1{f(X) 6= Y }] = EX [EY |X [1{f(x) 6= Y }|X = x]]

f(x) = argmax
y

P(Y = y|X = x)

EY |X [1{f(x) 6= Y }|X = x] =
X

i

P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

EY |X [1{f(x) 6= Y }|X = x] =
X

i

P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

■ Loss function:  

Y 2 {�1, 1}



■ Learn: f:X —>Y 
X – features 
Y – target classes 

■ Expected loss of f:  
 
 
 

■ Bayes optimal classifier: 

■ Model of logistic regression: 
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Binary Classification

 5

`(f(x), y) = 1{f(x) 6= y}

EXY [1{f(X) 6= Y }] = EX [EY |X [1{f(x) 6= Y }|X = x]]

f(x) = argmax
y

P(Y = y|X = x)

EY |X [1{f(x) 6= Y }|X = x] =
X

i

P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

EY |X [1{f(x) 6= Y }|X = x] =
X

i

P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

■ Loss function:  

P (Y = y|x,w) = 1

1 + exp(�y wTx)

What if the model is wrong?

Y 2 {�1, 1}
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Can we do classification without a model of                              ? 

Binary Classification

f(x) = argmax
y

P(Y = y|X = x)
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The Perceptron Algorithm [Rosenblatt ‘58, ‘62]

■ Classification setting: y in {-1,+1} 
■ Linear model 

Prediction:  

■ Training:  
Initialize weight vector:  
At each time step: 

■ Observe features: 
■ Make prediction: 
■ Observe true class: 

■ Update model:  
If prediction is not equal to truth

 7
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The Perceptron Algorithm [Rosenblatt ‘58, ‘62]

■ Classification setting: y in {-1,+1} 
■ Linear model 

Prediction:  

■ Training:  
Initialize weight vector:  
At each time step: 

■ Observe features: 
■ Make prediction: 
■ Observe true class: 

■ Update model:  
If prediction is not equal to truth

 8

sign(wTxi + b)

w0 = 0, b0 = 0


wk+1

bk+1

�
=


wk

bk

�
+ yk


xk

1

�

xk
sign(xT

kwk + bk)
yk
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Rosenblatt 1957
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"the embryo of an electronic computer that [the Navy] expects will be able to walk, 
talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958
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Linear Separability

■ Perceptron guaranteed to converge if 
■ Data linearly separable:



©Kevin Jamieson 2016

Perceptron Analysis: Linearly Separable Case

■ Theorem [Block, Novikoff]:  
Given a sequence of labeled examples: 
Each feature vector has bounded norm: 
If dataset is linearly separable: 

■ Then the number of mistakes made by the online perceptron on any such sequence is 
bounded by

 11
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Beyond Linearly Separable Case
■ Perceptron algorithm is super cool! 

No assumption about data distribution!  
■ Could be generated by an oblivious adversary, no 

need to be iid 
Makes a fixed number of mistakes, and it’s done 
for ever! 

■ Even if you see infinite data

 12
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Beyond Linearly Separable Case
■ Perceptron algorithm is super cool! 

No assumption about data distribution!  
■ Could be generated by an oblivious adversary, no 

need to be iid 
Makes a fixed number of mistakes, and it’s done 
for ever! 

■ Even if you see infinite data 

■ Perceptron is useless in practice! 
Real world not linearly separable 
If data not separable, cycles forever and hard to 
detect 
Even if separable may not give good 
generalization accuracy (small margin)

 13
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What is the Perceptron Doing???

■ When we discussed logistic regression: 
Started from maximizing conditional log-likelihood 

■ When we discussed the Perceptron: 
Started from description of an algorithm 

■ What is the Perceptron optimizing????

 14
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Linear classifiers – Which line is better?
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margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!
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x
T
w
+
b
=

0

Pick the one with the largest margin!

w
x0

Distance from x0 to
hyperplane defined
by xTw + b = 0?
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x
T
w
+
b
=

0

Pick the one with the largest margin!

w
x0

Distance from x0 to
hyperplane defined
by xTw + b = 0?

If ex0 is the projection of x0

onto the hyperplane then
||x0 � ex0||2 = |(xT

0 � ex0)T
w

||w||2 |

= 1
||w||2 |x

T
0 w + b|

= 1
||w||2 |x

T
0 w � exT

0 w|
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margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!

Distance of x0 from
hyperplane xTw + b:

Optimal Hyperplane

1

||w||2
(xT

0 w + b)

max
w,b

�

subject to
1

||w||2
yi(x

T
i w + b) � � 8i
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margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!

Distance of x0 from
hyperplane xTw + b:

Optimal Hyperplane

(reparameterized)Optimal Hyperplane

1

||w||2
(xT

0 w + b)

max
w,b

�

subject to
1

||w||2
yi(x

T
i w + b) � � 8i

min
w,b

||w||22

subject to yi(x
T
i w + b) � 1 8i
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margin 2γ

x
T
w
+
b
=

0

Pick the one with the largest margin!

(reparameterized)Optimal Hyperplane

■ Solve efficiently by many methods, 
e.g., 

quadratic programming (QP) 
■ Well-studied solution algorithms 

Stochastic gradient descent 
Coordinate descent (in the dual) 

min
w,b

||w||22

subject to yi(x
T
i w + b) � 1 8i
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What if the data is still not linearly 
separable?

1

||w||2

1

||w||2

xTw + b = 0

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

■ If data is linearly separable
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What if the data is still not linearly 
separable?

■ If data is not linearly separable, some 
points don’t satisfy margin constraint:

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

1

||w||2

1

||w||2

1

||w||2

1

||w||2

xTw + b = 0

xTw + b = 0

■ If data is linearly separable
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What if the data is still not linearly 
separable?

■ If data is not linearly separable, some 
points don’t satisfy margin constraint:

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

1

||w||2

1

||w||2

1

||w||2

1

||w||2

xTw + b = 0

xTw + b = 0

■ If data is linearly separable

■ What are “support vectors?”
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SVM as penalization method

■ Original quadratic program with linear constraints:

 26

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫
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SVM as penalization method

■ Original quadratic program with linear constraints: 

■ Using same constrained convex optimization trick as for lasso:

 27

For any ⌫ � 0 there exists a � � 0 such that the solution
the following solution is equivalent:

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22
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■ Have a bunch of iid data of the form:

{(xi, yi)}ni=1

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

xi 2 Rd yi 2 R

■ Learning a model’s parameters: nX

i=1

`i(w)Each `i(w) is convex.

Hinge Loss: `i(w) = max{0, 1� yixT
i w}

How do we solve for w? The last two lectures!

Machine Learning Problems
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Perceptron is optimizing what?


wk+1

bk+1

�
=


wk

bk

�
+ yk


xk

1

�
Perceptron update rule:

SVM objective:

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22 =

nX

i=1

`i(w, b)

rw`i(w, b) =

1{yi(b+ xT
i w) < 0}
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Perceptron is optimizing what?


wk+1

bk+1

�
=


wk

bk

�
+ yk


xk

1

�
Perceptron update rule:

SVM objective:

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22 =

nX

i=1

`i(w, b)

rw`i(w, b) =

1{yi(b+ xT
i w) < 0}

(
�xiyi +

2�
n w if yi(b+ xT

i w) < 1

0 otherwise

rb`i(w, b) =

(
�yi if yi(b+ xT

i w) < 1

0 otherwise

Perceptron is just SGD
on SVM with � = 0, ⌘ = 1!
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SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here?
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SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here? 
■ No! Perform isotonic regression or non-parametric bootstrap 

for probability calibration. Predictor gives some score, how 
do we transform that score to a probability?
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SVMs vs logistic regression

■ We often want probabilities/confidences, logistic wins here? 
■ No! Perform isotonic regression or non-parametric bootstrap 

for probability calibration. Predictor gives some score, how 
do we transform that score to a probability? 

■ For classification loss, logistic and svm are comparable 
■ Multiclass setting: 

Softmax naturally generalizes logistic regression 
SVMs have 

■ What about good old least squares?
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What about multiple classes?


