Announcements
=

1]
= Don’t Cheat

= Proposals due tonight
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Machine Learning Problems ~

Squared Error
—— Class Huber

= Have a bunch of iid data of the form:

S -

{(xzayz) ?:1 ZIJZ'ERd yz'GR g_; [ S

= Learning a model’'s parameters: ZZ-(w)
Each ¢;(w) is convex. ‘

Hinge Loss: /;(w) = max{0,1 — y;z} w}

Logistic Loss: ¢;(w) = log(1 + exp(—y; z} w))

Squared error Loss: £;(w) = (y; — xl w)?

How do we solve for w? The last two lectures!
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Perceptron is optimizing what?
"

Perceptron update rule:

[ﬁ:] = [TZ):] + Yk [mlk] 1{y; (b + z] w) < 0}

SVM objective:

S max{0,1—yi(b+aTw)} + Nwlly = ti(w,b)

1=1 i=1

2y + 2w ify(b+alw) <1

otherwise

wai(w, b) = { 2\

n

Perceptron is almost SGD

0 otherwise

Ly if (b a7 15 AlHost b
Voli(w, b) = { i ifyilb+aiw) <1 on SVM with A = 0, n = 1!
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SVMs vs logistic regression
" NN

= \We often want probabilities/confidences, logistic wins here?
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SVMs vs logistic regression
" J—
= \We often want probabilities/confidences, logistic wins here?

= No! Perform isotonic regression or non-parametric bootstrap
for probability calibration. Predictor gives some score, how
do we transform that score to a probability?
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Bootstrap
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Limitations of CV
" A

=  An 80/20 split throws out a relatively large amount of data if
only have, say, 20 examples.

= Test error is informative, but how accurate is this number?
(e.g., 3/5 heads vs. 30/50)

= How do | get confidence intervals on statistics like the median
or variance of a distribution?

= |nstead of the error for the entire dataset, what if | want to
study the error for a particular example x?
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Limitations of CV
" A

=  An 80/20 split throws out a relatively large amount of data if
only have, say, 20 examples.

= Test error is informative, but how accurate is this number?
(e.g., 3/5 heads vs. 30/50)

= How do | get confidence intervals on statistics like the median
or variance of a distribution?

= |nstead of the error for the entire dataset, what if | want to
study the error for a particular example x?

The Bootstrap: Developed by Efron in 1979.

“The most important innovation in statistics of the last 40 years”

— famous ML researcher and statistician, 2015
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Bootstrap: basic idea
" JEEE
Given dataset drawn iid samples with CDF F':

1.1.d.
D:{Zl,.. Zn} ~ FZ
We compute a statistic of the data to get: 6’ — t(D)
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Bootstrap: basic idea
"
Given dataset drawn iid samples with CDF F':

1.1.d.
D:{Zl,.. Zn} ~ FZ
We compute a statistic of the data to get: 6’ — t(D)

For b=1,...,B define the bth bootstrapped dataset as
drawing n samples W|th replacement from D

b 1.1.d.
and the bth bootstrapped statlstlc as: H*b — t(D*b)
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Bootstrap: basic idea

Given dataset drawn iid samples with CDF F':
1.1.d. ~
D={z1,...,2n} ~ Fy 0 = t(D)

For b=1,...,B, samples sampled with replacement from D
b +b «by 2.1.d. «b b
D*b = {23 VR By, 0% = ¢(D)

Fz7 60

Probability

-3 -2 -
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Bootstrap: basic idea

Given dataset drawn iid samples with CDF F':
1.1.d. ~
D={z1,...,z.} """ Fz;  §=1(D)
For b=1,...,B, samples sampled with replacement from D

7Zf;kzb} @}\Jd F\Z,n e*b _ t(D*b)

D*0 = {20, ...

sup |Fo(z) — F(z)] = 0 asn — oo

Fz7 60

Probability

13

-3 -2 -
©2018 Kevin Jamieson Ol bservations



Applications
" S

Common applications of the bootstrap:

« Estimate parameters that escape simple analysis like the variance or median of an
estimate

» Confidence intervals

« Estimates of error for a particular example:

S
D ) 95% confidence interval
. . 0 A . o A
<+ A < 4 < 4
> 7 : / > "] “
060 05 10 15 20 25 30 00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0
X X X

Figures from Hastie et al
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Takeaways
" JEE—

Advantages:

» Bootstrap is very generally applicable. Build a confidence interval
around anything

* Very simple to use

» Appears to give meaningful results even when the amount of data is very
small

* Very strong asymptotic theory (as num. examples goes to infinity)
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Takeaways
"

Advantages:

» Bootstrap is very generally applicable. Build a confidence interval
around anything

* Very simple to use

» Appears to give meaningful results even when the amount of data is very
small

* Very strong asymptotic theory (as num. examples goes to infinity)

Disadvantages

 Very few meaningful finite-sample guarantees

* Potentially computationally intensive

* Reliability relies on test statistic and rate of convergence of empirical
CDF to true CDF, which is unknown

* Poor performance on “extreme statistics” (e.g., the max)

Not perfect, but better than nothing.
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Warm up: risk prediction with logistic regression
" JEEE—

Boss gives you a bunch of data on loans defaulting or not:
{(zisyi)timy e Ry e {-1,1}

1
1+ exp(—yw!x)
And compute the maximum likelihood estimator:

You model the dataas: P(Y = ylz,w) =

WMLE = argmaXH P(y;|z;, w)
1=1
For a new loan application x, boss recommends to give loan if your model
says they will repay it with probability at least .95 (i.e. low risk):

1
> .95

_@MLEQU) N

Give loan to x if 1+ exp(

One year later only half of loans are paid back and the bank folds. What might
have happened?
How would you use the bootstrap to do this differently?
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Binary Classification
" JE—

= Learn: X —>Y = Loss function:
X — features ((f(x),y) = 1{f(z) #y}
Y — target classes
Ye{-1,1}

= Expected loss of f:

Exy [1{f(X) # Y}] = Ex[Ey x[1{f(z) # Y}|X = a]]
Eyix[1{f(z) Y} X =2] =1 - P(Y = f(2)|X = z)

= Bayes optimal classifier: | f(z) = argmaxP(Y = y|X = z)
Y

1

* Model of logistic regression: | P(y = yjz,w) = T exp(—y wla)
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Binary Classification
"

= Learn: X —>Y
X — features Y €
Y — target classes

{_17 1}

= Bayes optimal classifier:

f(x) = arg m:?XIP’(Y = y|X = x)

20



Binary Classification

" S
= Learn: X —>Y

X — features Y e{-11}

Y — target classes

= Bayes optimal classifier: | f(z) = arg m:?xIP’(Y = y|X = 1)

f(x) = arg mgxIP’(X =z|Y =y)P(Y =y)

P(X =z|Y = y)P(Y = y)
P(X =x)

Bayes rule: Py =y/x =2)=
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Binary Classification

" JEE—
= Learn: X —>Y
X — features Y e{-11}
Y — target classes
= Bayes optimal classifier: | f(z) = arg m:?XIP’(Y = y| X = 2)

f(x) = arg manIP’(X =z|Y =y)P(Y =y)
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Binary classification: Gaussians
"

Let P(X=2)=PX =2|Y =0)PY =0) +P(X =z[Y =1)P(Y =1)
=:(1—-m)Py(z) + P (z)
Suppose PO('CE) :N($;N0702) Pl(x) :,/\/—(Qj;,uhOQ)
fz) = argmaxP(Y” =y|X = o) Py (z)

=1if 1
= argmgxIP’(X =z|Y =y)P(Y =y) fe) Po(z)(1 —m) -
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Binary classification: Gaussians
" JE

Let P(X=2)=PX =2|Y =0)PY =0) +P(X =z[Y =1)P(Y =1)
=: (1 —m)Py(x) + 7P (x)
Suppose PO('CU) :N(ZE;:LLOaJZ) Pl(x) :N(ZU;/Ll,O'Q)
_ 1 Pl
fl)=11it B =) > 1

fla) = Lif B350 (z — #550) = —log(775)

2

fla) =1ifw 2 gk - 22 log(175)
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Binary classification: Gaussians
" JE

P(X =) =P(X =z|Y =0)P(Y =0) +P(X =z|Y = )P(Y = 1)

Let =: (1 —m)Py(x) + 7P (x)
Suppose Py(x) = N(z; po, 0°) Py(z) = N(z; py, 0%)
. Pl(CC)T(' . 1 0 o2 I
fle) = 1if Py(z)(1 —m) =21 || flz) =Life =5 _QHL ~ H1—Ho log(17)
T=1/2 me(1/2,1) m e (0,1/2)

2 2 2
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Binary classification: Gaussians
" JE

Same ideas extend to higher dimensions:

Pi(z) = N(z; p, X1) Po(z) = N(z; po, Xo)
fle)=1it Po(il)((ﬁ)i n ol
Cases:
20 — 21 .

207&21:



Binary classification: Gaussians
"
Same ideas extend to higher dimensions:

Pi(z) = N(z; p, X1) Po(z) = N(z; po, Xo)

. . Pl(ilf)ﬂ'
f(x) =1if Po(a)(1 — ) > 1

In practice we observe {(x;,y;)}i,

- 1
Hk EyRY Z L

|{Z - Yi 1y =k
5y = : S (s — i) (1 — )"
{ityi=ki[ -1 2=
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Binary Classification
"

» Learn: f:X —>Y

X — features Y e{-11}

Y — target classes
= Bayes optimal classifier:

flx) = argm:?XIP’(Y = y|X = x)

f(x) = arg HlanP(X =z|Y =y)P(Y =y)

Discriminative learning directly models P(Y = y|X = x)

Example:

Generative learning models P(X = z,Y =y) = P(X = z|Y = y)P(Y =y)

Example:

ieson 2018 28
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Anomaly detection
" JE—

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a feature vector X:
{ email-address, age of account, anonymous PO box, price of items, copies

of purchased item, etc. }
and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:
HO: X ~ P, P, =P(X =z|Y =k)

H1: X ~ P

Your job is to build a (possibly randomized) decision function §(x) € {0, 1}
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Anomaly detection
" JE—

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a feature vector X:
{ email-address, age of account, anonymous PO box, price of items, copies

of purchased item, etc. }
and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:

HO: X ~ P, P, =P(X = 2|V = k)
H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0, 1}
Bayesian Hypothesis Testing:
Assume P(Y =1)=nr as méin Pxy (Y # (X))

P(X =z)=nPi(z) + (1 — 7)Fy(x)
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Anomaly detection
"

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a feature vector X:
{ email-address, age of account, anonymous PO box, price of items, copies

of purchased item, etc. }
and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:
HO: X ~ P, P, =P(X =z|Y =k)
H1: X ~ P

Your job is to build a (possibly randomized) decision function §(x) € {0, 1}

Minimax Hypothesis Testing:

arg m(sin max{P(6(X) =0|Y =1),P(6(X) =1]Y =0)}
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Anomaly detection
" JE—

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a feature vector X:
{ email-address, age of account, anonymous PO box, price of items, copies

of purchased item, etc. }
and the transaction is either real (Y=0) or fraudulent (Y=1)

Hypothesis testing:
HO: X ~ P, P, =P(X =z|Y =k)

H1: X ~ P
Your job is to build a (possibly randomized) decision function §(x) € {0, 1}

Neyman-Pearson Hypothesis Testing:

argm?XIP’((S(X) = 1|Y = 1), subject to P(6(X) =1]Y =0) < a}
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Neyman-Pearson Testing
"

Hypothesis testing:
HO: X ~ P, P, =P(X =z|Y =k)
H1: X ~ P
Neyman-Pearson Hypothesis Testing:

argm?XIP’(cS(X) = 1Y = 1), subject to P(6(X) =1]Y =0) < a}

Theorem: The optimal test 6* has the form (1 it ? (z)
P(5*(X)=1) =~ if oi& =
and satisfies P(6*(X) = 1Y =0) = « 0 if Dule
\




