Announcements

- Don't Cheat
- Proposals due tonight

Logistic, SVM, and Perceptron

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 25, 2018

How do we solve for *w*? The last two lectures!

Perceptron is optimizing what?

Perceptron update rule:

$$\begin{bmatrix} w_{k+1} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} w_k \\ b_k \end{bmatrix} + y_k \begin{bmatrix} x_k \\ 1 \end{bmatrix} \mathbf{1} \{ y_i(b + x_i^T w) < 0 \}$$

SVM objective:

$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2 = \sum_{i=1}^{n} \ell_i(w, b)$$

$$\nabla_{w}\ell_{i}(w,b) = \begin{cases} -x_{i}y_{i} + \frac{2\lambda}{n}w & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ \frac{2\lambda}{n} & \text{otherwise} \end{cases}$$

$$\nabla_{b}\ell_{i}(w,b) = \begin{cases} -y_{i} & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ 0 & \text{otherwise} \end{cases}$$
Perceptron is almost SGD on SVM with $\lambda = 0, \eta = 1!$

SVMs vs logistic regression

• We often want probabilities/confidences, logistic wins here?

SVMs vs logistic regression

- We often want probabilities/confidences, logistic wins here?
- No! Perform isotonic regression or non-parametric bootstrap for probability calibration. Predictor gives some score, how do we transform that score to a probability?

Bootstrap

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 25, 2018

Limitations of CV

- An 80/20 split throws out a relatively large amount of data if only have, say, 20 examples.
- Test error is informative, but how accurate is this number? (e.g., 3/5 heads vs. 30/50)
- How do I get confidence intervals on statistics like the median or variance of a distribution?
- Instead of the error for the entire dataset, what if I want to study the error for a *particular example* x?

Limitations of CV

- An 80/20 split throws out a relatively large amount of data if only have, say, 20 examples.
- Test error is informative, but how accurate is this number? (e.g., 3/5 heads vs. 30/50)
- How do I get confidence intervals on statistics like the median or variance of a distribution?
- Instead of the error for the entire dataset, what if I want to study the error for a *particular example* x?

The Bootstrap: Developed by Efron in 1979.

"The most important innovation in statistics of the last 40 years" — famous ML researcher and statistician, 2015

Given dataset drawn iid samples with CDF F_Z :

$$\mathcal{D} = \{z_1, \dots, z_n\} \stackrel{i.i.d.}{\sim} F_Z$$

We compute a *statistic* of the data to get: $\widehat{\theta} = t(\mathcal{D})$

Given dataset drawn iid samples with CDF F_Z :

 $\mathcal{D} = \{z_1, \dots, z_n\} \stackrel{i.i.d.}{\sim} F_Z$ We compute a *statistic* of the data to get: $\widehat{\theta} = t(\mathcal{D})$

For b=1,...,B define the *b*th *bootstrapped* dataset as drawing *n* samples **with replacement** from *D*

 $\mathcal{D}^{*b} = \{z_1^{*b}, \dots, z_n^{*b}\} \stackrel{i.i.d.}{\sim} \widehat{F}_{Z,n}$ and the *b*th bootstrapped statistic as: $\theta^{*b} = t(\mathcal{D}^{*b})$

Given dataset drawn iid samples with CDF F_Z :

Given dataset drawn iid samples with CDF F_Z :

Applications

Common applications of the bootstrap:

- Estimate parameters that escape simple analysis like the variance or median of an estimate
- Confidence intervals
- Estimates of error for a particular example:

Figures from Hastie et al

Takeaways

Advantages:

- Bootstrap is very generally applicable. Build a confidence interval around anything
- Very simple to use
- Appears to give meaningful results even when the amount of data is very small
- Very strong asymptotic theory (as num. examples goes to infinity)

Takeaways

Advantages:

- Bootstrap is very generally applicable. Build a confidence interval around anything
- Very simple to use
- Appears to give meaningful results even when the amount of data is very small
- Very strong **asymptotic theory** (as num. examples goes to infinity)

Disadvantages

- Very few meaningful finite-sample guarantees
- Potentially computationally intensive
- Reliability relies on test statistic and rate of convergence of empirical CDF to true CDF, which is unknown
- Poor performance on "extreme statistics" (e.g., the max)

Not perfect, but better than nothing.

Warm up: risk prediction with logistic regression

Boss gives you a bunch of data on loans defaulting or not:

$$\{(x_i, y_i)\}_{i=1}^n \ x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}$$

- You model the data as: $P(Y = y | x, w) = \frac{1}{1 + \exp(-y w^T x)}$
- And compute the maximum likelihood estimator:

$$\widehat{w}_{MLE} = \arg\max_{w} \prod_{i=1}^{n} P(y_i | x_i, w)$$

For a new loan application x, boss recommends to give loan if your model says they will repay it with probability at least .95 (i.e. low risk):

Give loan to x if
$$\frac{1}{1 + \exp(-\widehat{w}_{MLE}^T x)} \ge .95$$

 One year later only half of loans are paid back and the bank folds. What might have happened?

How would you use the bootstrap to do this differently?

Decision Theory

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 25, 2018

- Learn: f:X —>Y
 - □ X features
 - □ Y target classes $Y \in \{-1, 1\}$
- Expected loss of f:

Loss function:

 $\ell(f(x),y) = \mathbf{1}\{f(x) \neq y\}$

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$
$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = 1 - P(Y = f(x)|X = x)$$

Bayes optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

Model of logistic regression:

$$P(Y = y | x, w) = \frac{1}{1 + \exp(-y \, w^T x)}$$

- Learn: f:X —>Y
 - X features

$$Y \in \{-1,1\}$$

- Y target classes
- Bayes optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

- Learn: f:X —>Y
 - X features

$$Y \in \{-1,1\}$$

- Y target classes
- Bayes optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

$$f(x) = \arg\max_y \mathbb{P}(X = x | Y = y) \mathbb{P}(Y = y)$$

Bayes rule:
$$\mathbb{P}(Y = y | X = x) = \frac{\mathbb{P}(X = x | Y = y)\mathbb{P}(Y = y)}{P(X = x)}$$

- Learn: f:X —>Y
 - □ **X** features

$$Y \in \{-1,1\}$$

- Y target classes
- Bayes optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

$$f(x) = \arg\max_y \mathbb{P}(X = x | Y = y) \mathbb{P}(Y = y)$$

 $\mathbb{P}(y=1) = 1/3 \ \mathbb{P}(y=0) = 2/3$

$$\mathbb{P}(X = x) = \mathbb{P}(X = x | Y = 0) \mathbb{P}(Y = 0) + \mathbb{P}(X = x | Y = 1) \mathbb{P}(Y = 1)$$

=: $(1 - \pi) P_0(x) + \pi P_1(x)$

Suppose
$$P_0(x) = \mathcal{N}(x; \mu_0, \sigma^2)$$
 $P_1(x) = \mathcal{N}(x; \mu_1, \sigma^2)$

$$f(x) = \arg \max_{y} \mathbb{P}(Y = y | X = x)$$
$$= \arg \max_{y} \mathbb{P}(X = x | Y = y) \mathbb{P}(Y = y)$$

$$f(x) = 1$$
 if $\frac{P_1(x)\pi}{P_0(x)(1-\pi)} \ge 1$

Let

$$\mathbb{P}(X = x) = \mathbb{P}(X = x | Y = 0) \mathbb{P}(Y = 0) + \mathbb{P}(X = x | Y = 1) \mathbb{P}(Y = 1)$$

=: $(1 - \pi) P_0(x) + \pi P_1(x)$

Suppose
$$P_0(x) = \mathcal{N}(x; \mu_0, \sigma^2)$$
 $P_1(x) = \mathcal{N}(x; \mu_1, \sigma^2)$

$$f(x) = 1$$
 if $\frac{P_1(x)\pi}{P_0(x)(1-\pi)} \ge 1$

$$f(x) = 1 \text{ if } \frac{\mu_1 - \mu_0}{\sigma^2} \left(x - \frac{\mu_1 + \mu_0}{2} \right) \ge -\log\left(\frac{\pi}{1 - \pi}\right)$$
$$f(x) = 1 \text{ if } x \ge \frac{\mu_1 + \mu_0}{2} - \frac{\sigma^2}{\mu_1 - \mu_0} \log\left(\frac{\pi}{1 - \pi}\right)$$

Let

Let
$$\mathbb{P}(X = x) = \mathbb{P}(X = x | Y = 0) \mathbb{P}(Y = 0) + \mathbb{P}(X = x | Y = 1) \mathbb{P}(Y = 1)$$
$$=: (1 - \pi) P_0(x) + \pi P_1(x)$$

Suppose $P_0(x) = \mathcal{N}(x; \mu_0, \sigma^2)$ $P_1(x) = \mathcal{N}(x; \mu_1, \sigma^2)$

$$f(x) = 1 \text{ if } \frac{P_1(x)\pi}{P_0(x)(1-\pi)} \ge 1 \qquad f(x) = 1 \text{ if } x \ge \frac{\mu_1 + \mu_0}{2} - \frac{\sigma^2}{\mu_1 - \mu_0} \log(\frac{\pi}{1-\pi})$$

$$\pi = 1/2$$
 $\pi \in (1/2, 1)$ $\pi \in (0, 1/2)$

Same ideas extend to higher dimensions:

$$P_1(x) = \mathcal{N}(x; \mu_1, \Sigma_1)$$

$$P_0(x) = \mathcal{N}(x; \mu_0, \Sigma_0)$$

$$f(x) = 1$$
 if $\frac{P_1(x)\pi}{P_0(x)(1-\pi)} \ge 1$

Cases:

$$\Sigma_0 = \Sigma_1 :$$

 $\Sigma_0 \neq \Sigma_1$:

Same ideas extend to higher dimensions:

$$P_1(x) = \mathcal{N}(x; \mu_1, \Sigma_1)$$

$$P_0(x) = \mathcal{N}(x; \mu_0, \Sigma_0)$$

$$f(x) = 1$$
 if $\frac{P_1(x)\pi}{P_0(x)(1-\pi)} \ge 1$

In practice we observe $\{(x_i, y_i)\}_{i=1}^n$

$$\widehat{\mu}_{k} = \frac{1}{|\{i : y_{i} = k\}|} \sum_{i:y_{i} = k} x_{i}$$
$$\widehat{\Sigma}_{k} = \frac{1}{|\{i : y_{i} = k\}| - 1} \sum_{i:y_{i} = k} (x_{i} - \widehat{\mu}_{k})(x_{i} - \widehat{\mu}_{k})^{T}$$

©2018 Kevin Jamieson

- Learn: f:X —>Y
 - □ X features

$$Y \in \{-1,1\}$$

- Y target classes
- Bayes optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

$$f(x) = \arg\max_y \mathbb{P}(X = x | Y = y) \mathbb{P}(Y = y)$$

Discriminative learning directly models $\mathbb{P}(Y = y | X = x)$

Example:

Generative learning models $\mathbb{P}(X=x,Y=y)=\mathbb{P}(X=x|Y=y)\mathbb{P}(Y=y)$

Example:

Hypothesis testing

Machine Learning – CSE546 Kevin Jamieson University of Washington

October 25, 2018

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a **feature vector X**: { email-address, age of account, anonymous PO box, price of items, copies of purchased item, etc. } and the transaction is either **real (Y=0)** or **fraudulent (Y=1)**

Hypothesis testing:

H0:
$$X \sim P_0$$
 $P_k = \mathbb{P}(X = x | Y = k)$
H1: $X \sim P_1$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0, 1\}$

$$\mathbb{P}(X = x) = \pi \mathbb{P}_1(x) + (1 - \pi) \mathbb{P}_0(x)$$

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a **feature vector X**: { email-address, age of account, anonymous PO box, price of items, copies of purchased item, etc. } and the transaction is either **real (Y=0)** or **fraudulent (Y=1)**

Hypothesis testing:

H0:
$$X \sim P_0$$
 $P_k = \mathbb{P}(X = x | Y = k)$
H1: $X \sim P_1$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0, 1\}$

Bayesian Hypothesis Testing:

Assume
$$\mathbb{P}(Y=1) = \pi$$

 $\mathbb{P}(X=x) = \pi P_1(x) + (1-\pi)P_0(x)$

$$\arg\min_{\delta} \mathbb{P}_{XY}(Y \neq \delta(X))$$

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a **feature vector X**: { email-address, age of account, anonymous PO box, price of items, copies of purchased item, etc. } and the transaction is either **real (Y=0)** or **fraudulent (Y=1)**

Hypothesis testing:

H0:
$$X \sim P_0$$
 $P_k = \mathbb{P}(X = x | Y = k)$
H1: $X \sim P_1$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0, 1\}$

Minimax Hypothesis Testing:

$$\arg\min_{\delta} \max\{\mathbb{P}(\delta(X) = 0 | Y = 1), \mathbb{P}(\delta(X) = 1 | Y = 0)\}$$

You are Amazon and wish to detect transactions with stolen credit cards.

For each transaction we observe a **feature vector X**: { email-address, age of account, anonymous PO box, price of items, copies of purchased item, etc. } and the transaction is either **real (Y=0)** or **fraudulent (Y=1)**

Hypothesis testing:

H0:
$$X \sim P_0$$
 $P_k = \mathbb{P}(X = x | Y = k)$
H1: $X \sim P_1$

Your job is to build a (possibly randomized) decision function $\delta(x) \in \{0, 1\}$

Neyman-Pearson Hypothesis Testing:

$$\arg\max_{\delta} \mathbb{P}(\delta(X) = 1 | Y = 1), \text{ subject to } \mathbb{P}(\delta(X) = 1 | Y = 0) \le \alpha \}$$

Neyman-Pearson Testing

Hypothesis testing:

H0: $X \sim P_0$ $P_k = \mathbb{P}(X = x | Y = k)$ H1: $X \sim P_1$

Neyman-Pearson Hypothesis Testing:

$$\arg\max_{\delta} \mathbb{P}(\delta(X) = 1 | Y = 1), \text{ subject to } \mathbb{P}(\delta(X) = 1 | Y = 0) \le \alpha \}$$

Theorem: The optimal test δ^* has the form $\mathbb{P}(\delta^*(X) = 1) = \begin{cases} 1 & \text{if } \frac{P_1(x)}{P_0(x)} > \eta \\ \gamma & \text{if } \frac{P_1(x)}{P_0(x)} = \eta \\ 0 & \text{if } \frac{P_1(x)}{P_0(x)} < \eta \end{cases}$ and satisfies $\mathbb{P}(\delta^*(X) = 1 | Y = 0) = \alpha$