CSE 546 Review Problems
Jennifer Rogers and Kevin Jamieson
October 12018

1 Probability and Statistics

Many of these are borrowed from or inspired by problems and examples in All of Statistics by Wasserman.

1. Ross, Ch 5, problem 29. Let X be a random variable with a continuous cumulative distribution function F. Define the random variable Y by $Y=F(X)$. Show that Y is uniformly distributed over $(0,1)$.
2. Ross, Ch 5, problem 30. Let X have probability density f. Find the probability density function of the random variable Y defined by $Y=a X+b$.
3. Let X be a positive random variable with probability density function f so that $\mathbb{P}(X>0)=1$ and $\mathbb{E}[X]=\int_{0}^{\infty} x f(x) d x$. Show that $\mathbb{E}[X]=\int_{0}^{\infty} \mathbb{P}(X \geq x) d x$.
4. Let $X \sim \operatorname{unifom}(0,1)$. Let $0<a<b<1$. Let

$$
Y=\left\{\begin{array}{ll}
1 & \text { if } 0<X<b \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad Z= \begin{cases}1 & \text { if } a<X<1 \\
0 & \text { otherwise }\end{cases}\right.
$$

(a) Are Y and Z independent? Why or why not?
(b) Find $\mathbb{E}[Y \mid Z=z]$
5. Let $X_{1}, \ldots, X_{n} \sim \operatorname{uniform}(0,1)$ and let $Y=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Find $\mathbb{E}\left[Y_{n}\right]$
6. Let X_{1}, \ldots, X_{n} be independent random variables expectation $\mathbb{E}\left[X_{i}\right]=\mu_{i}$ and variance $\mathbb{V}\left(X_{i}\right)=\mathbb{E}\left[\left(X_{i}-\right.\right.$ $\left.\left.\mu_{i}\right)^{2}\right]=\sigma_{i}^{2}$. For scalars a_{1}, \ldots, a_{n} define $Z=\sum_{i=1}^{n} a_{i} X_{i}$. What is $\mathbb{E}[Z]$ and $\mathbb{V}(Z)=\mathbb{E}\left[(Z-\mathbb{E}[Z])^{2}\right]$?
7. For $i=1, \ldots, n$ let $X_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$. Let $\widehat{\mu}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. What is the distribution of $\widehat{\mu}$?
8. For any two random variables X, Y define $\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$.
(a) If $\mathbb{E}[Y \mid X=x]=x$ show that $\operatorname{Cov}(X, Y)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$.
(b) If X, Y are independent show that $\operatorname{Cov}(X, Y)=0$.

2 Linear Algebra

1. An Orthogonal matrix U is a matrix whose rows (and columns) are orthogonal vectors of unit norm. This means that $U^{T} U=U U^{T}=I$.
(a) Show that orthogonal matrices preserve the dot product; i.e. if U is orthogonal, then

$$
\langle u, v\rangle=\langle U u, U v\rangle
$$

where $\langle u, v\rangle=u^{T} v$.
(b) If P and Q are orthogonal matrices, show that their product $P Q$ is also orthogonal.
2. Let C and B be square matrices, and let C be invertible. Show that, for $k=1,2, \ldots$,

$$
\left(C B C^{-1}\right)^{k}=C\left(B^{k}\right) C^{-1}
$$

Hint: Begin by proving this for $k=2$.
3. Prove that if A is a symmetric matrix with n distinct eigenvalues, then its eigenvectors are orthogonal.
4. Suppose that A is a symmetric matrix. Prove, without appealing to calculus, that the solution to $\arg \max _{x} x^{T} A x$ s.t. $\|x\|_{2}=1$ is the eigenvector x_{1} corresponding to the largest eigenvalue λ_{1} of A.
5. The trace of a matrix is the sum of the diagonal entries; $\operatorname{Tr}(A)=\sum_{i} A_{i i}$. If $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times n}$, show that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.
6. Let v_{1}, \ldots, v_{n} be a set of non-zero vectors in \mathbb{R}^{d}. Let $V=\left[v_{1}, \ldots, v_{n}\right]$ be the vectors concatenated.
(a) What is the minimum and maximum rank of $\sum_{i=1}^{n} v_{i} v_{i}^{T}$?
(b) What is the minimum and maximum rank of V ?
(c) Let $A \in \mathbb{R}^{D \times d}$ for $D>d$. What is the minimum and maximum rank of $\sum_{i=1}^{n}\left(A v_{i}\right)\left(A v_{i}\right)^{T}$?
(d) What is the minimum and maximum rank of $A V$? What if V is rank d ?

