Where does the power go – Itsy vs. Laptop

- Laptop
 - Display 30-68% (backlight largely)
 - Disk 0 20%
 - Processor 15%
 - Clock: 30%
 - Cache: 15%
 - Control: 25%
 - Floating point 10%
 - Integer 10%
 - MMU 10%
 - Memory 10%

- Itsy
 - Low-power
 - Display 0.04W
 - Processor 0.09W
 - Mid-power
 - Display 0.04W
 - Processor 0.18W
 - Full-power
 - Display 0.604W
 - Processor 0.596

Where does the power go - TinyOS

- Communication
 - RF unit: per bit: 1uJ
- Processor
 - 5mA / pins: 1.5mA
- Sensors
 - LED 4.6mA each
 - Temp: 1mA
- Memory
 - 3 mA EEPROM

Principles of low-power computing

- Want control of performance
 - Voltage and frequency scaling
 - Sleep mode
- Compartmentalized
- Carefully use large associative structures
- Control your use of speculation
- Efficient scheduling
- Don't waste!

Power density continues to get worse

Surpassed hot-plate power density in 0.5µ. Not too long to reach nuclear reactor

How to solve the power problem?

- Liquid Nitrogen
- Small Nuclear Devices
- Fuel Cell
- Gas-burning batteries
- Kinetic devices
- Inductive energy
- Typing on keyboard
- Energy gas
- Photosynthesis
- Bio-Electrical synthesis of systems

Is the Post-PC Era for real?

- Yes
 - So many opportunities for computation