What is computation?

- Computation
 - Transformations (operations)
 - Conditionals
 - Data
- Correctness

How can you express computation?

- Basic ops
 - A=b+c
- Variables
- If...then.. While...
- Classes (data structures)
- Functions (recursion)
- Thread

Registers

- Fast
- Temporary storage
- Memory addressing

Memory addressing modes

- Memory
 - Direction: la <memory>
 - Memory: [\$reg], [\$reg+constant]
 - [\$reg1 + \$reg2]
 - A = b[I]

$$- \text{Reg1} = \text{b}$$

- Reg2 = I
- Branches
 - PC relative
 - Absolute

Instructions

- Minimum set:
 - Nand, sub, branch-less-than-zero
- Real set:
 - Memory I/O
 - Jump, branches
 - Arithmetic

Return of the CISC

- Cryptographic instructions
 - Strange bit twiddles
- Domain specific processing
 - Silicon now is cheap / free
 - Bundle of computation common to domain
 - Different model
 - DSP
 - Don't want to be on critical-path
 - Would like to compile for it

Encodings

- Desirables:
 - Uniformity
 - Less decoding time
 - Compactness
 - Potential down side
 - Less of everything
 - Less registers
 - Smaller constants
 - Optimizing for common case

When is CISC good?

- No compilers
- When RISC is over, go CISC

– Everything old will be new again

- Slow memory
- Expensive memory
- Language specific computing SYMBOL, LISP machines
 - Limited languages

When is RISC good?

- Cheap memory
- Start again
- Logic is expensive
 - Area constraints
- Lower power because of less control logic
- You have compilers

What was 1980 like, for RISC?

- Conditions are right
 - Cheap enough memory
 - VLSI
 - Carp / Meade work (Cal-Tech)
- Studies that show VAX instructions were not being used
 - 65 of 100's of x86 instructions get used

What else might we want to express?

- Vector
 - Exposes parallelism
 - <a> = + <c>
 - Exposes regularity
 - Reduces the need for speculation
- VLIW
 - Exposing parallelism
- Compiling for these?
 - Easier with global variables, no pointers