
What was it like….

• 1983:
– VLSI (maybe)

No caches, persay if $ is no object
Real compilers, with real compiler analysis

not automatic thread extraction

• 1999:
– Prior to intel buying Alpha technology



What is a VLIW machine?

• Single thread of control
– As implemented, but…

• Some parallelism is exposed in instruction
set encoding



Trace Scheduling

• Why?
– Basic blocks are 6 ot 7 instructions

– 1.5 – 3 ILP within a basic block

• What is it?
– Combine basic blocks into superblocks

– Schedule explicit ILP from superblocks

– Add fixup for when your wrong



Trace Scheduling – How?

• What can you do wrong…
– Register state

– Memory state

– Interrupts
• Better NOT happen

• Better be able to undo



Branching

• ISA:
– BEQ r0, r1, here; BLZ r4, r3, there; ADD ;



Pipelining?

• Delay slots
– W/semantics

• Stall

• Predict
– A little more challenging than non-VLIW



Memory bandwidth

• $
– Banked

• Multiple accesses to separate banks

• Cache
– Larger instruction cache

– Multi ported data cache

– Feeding the beast



Memory Disambiguation – pointers?

• What makes it hard
– Pointers
– Control flow
– Everything about OO programming
– Dynamic scoping

• What makes it easy (Why did
supercomputers focus on FORTRAN)
– Global arrays



Procedures?

• Inline if source available



Vector vs. VLIW

• Fisher: Vector is crucifying difficult to
program for
– Data and computation has to be very regular



What information is only
available dynamically?

• Cache misses

• Branches are a little easier





Software pipelining

• For(x=0;x<j;x++) {
r[x] = a[x]+b[x];
if(r[x]>255)

r[x]=255;
}


