
Exploring Perceptrons in Branch
Prediction

February 28, 2002
Nick Deibel
Kevin Sikorski

Branch Prediction

l CPU speeds are increasing
l Pipeline lengths are increasing
l What to do with a branch:

– Stall? L
– Predict?

If correct: ☺
If not: L LL

Better Branch Prediction

l Current branch predictors do really well:
90+ percent accuracy

l How do they do it: Industry Secrets
l Is a 0.5% percent accuracy improvement really

that helpful?

100,000 branches
⇒ 500 less pipeline flushes
⇒ More throughput

But to quote Mark…

l “It’s all a HACK!”

l But it’s an interesting hack for Machine
Learning due to the requirement of

High Accuracy with Low Cost

l Most machine learners can’t do this, except…

PERCEPTRONS

Perceptrons

l Simple model of a human neuron.
l Contains a weight vector w.
l Takes a vector x of inputs.
l Outputs sgn(x•w)

Predi
ctor
S sgn

1

Perceptrons

l So how do we get the weights?
– Use Machine Learning!
– Perceptron Training Rule:

– Guaranteed to converge to an optimal weight
vector within finite time if:
l We use a small ?.
l The dataset is linearly separable.

ii

iii

x)ot(w
www

−η=∆
∆+←

Linear Separability

l Perceptrons can only learn functions of the
form: w1x1 + w2x2 + … +wn-1xn-1 + wn = 0.

l Means that we must be able to divide classes
of data using n-dimensional hyperplanes.

l Can still learn a lot of things:
– AND, OR, NAND, NOR, NOT.

Linear Separability

Why use Perceptrons for Branch
Prediction?

l Allows Dynamic Branch Prediction.
l Intrinsically robust to aliasing.
l Smaller hardware requirement than other AI

techniques.
l Supply confidence values.
l Fast to train and predict.

– Lots of multiplying by ±1 and adding
– Lots of parallelism.

l First to adapt perceptrons to branch prediction.
l Simplified training rule:
l Weight caps:
l Can’t achieve 100% accuracy on linearly-

inseparable branches.
– Empirically, still do well on inseparable ones.

l Argue that prediction takes about 2 cycles on a
700MHz clock.

Previous Work: Jimenez & Lin, 2000

iii xtww •+←
 1493.1 +=Θ h

Previous Work: continued

l Jimenez and Lin also explored a
gshare/perceptron hybrid predictor.
– Generally outperformed gshare or perceptron alone.

l Found that some branches are best done with
classical predictors.

l Michaud and Seznec (2001) found that using a
few bits from the branch address improves
linear-separability.

How to do Branch Prediction with
Perceptrons

l Hash the branch address to get an index into
a table of perceptrons.

l Fetch the appropriate perceptron.
l Compute the branch prediction.
l Act on the prediction.

l Train the given perceptron on the outcome.
l Write the trained perceptron back to table.

Previous Implementation
Approaches

l Tracing of SPEC Benchmarks:
– Run a benchmark
– Record each branch and outcome to a file
– Feed this file into a predictor simulator
– Compare performances for different predictors

l Pros:
– Faster than a CPU simulator

l Cons:
– Ignores speculative predictions and garbage history

Speculative Predictions and
Garbage History

X and Y are branches. X is predicted taken.
Global History = 1001

X ?
40 cycles

Y NO
10 cycles

0 1 0 0

0 1 0 1

Global History

0 1 1 0YES

0 0 1 0NO

Correct HistoryX’s Outcome

How to Deal with Speculation

l How do they do it in real processors?
– They don’t. It’s too costly to fix.

l Doesn’t that affect how the predictor learns?
– Yes, but these “errors” are consistent with its

behavior.

Our Implementation

l Add a perceptron branch predictor to sim-alpha
using the same design as the Jimenez paper

l Basic Configuration:
– # of perceptrons
– Size of the global history
– Size of the local history
– Threshold value on the weights
– One input to every perceptron is always set to 1

A Bit about History Bits

l Global History:
– A record of the last n branches (1 = taken)
– Shared by all perceptrons
– Updated speculatively

l Local History:
– IDEAL: A record of the last m branches for a

particular address
– REALITY: A record of the last m branches for a

particular perceptron
– Update speculatively

A Bit More about History Bits

l Gshare: After history length exceeds 10 bits,
performance degrades

l Perceptrons: Performance increases with
longer histories

l The Jimenez paper’s magic formula:

 14931 +=θ h.

Hardware Tradeoffs

l Gshare and other predictors use a small
amount of hardware: (usually 1024 2-bit SUD
counters)

l Each perceptron must store its weights and its
local history

l Compensation:
– Keep the local history relatively small compared to

the global history
– Use less perceptrons

Benchmark Testing

l Currently using these SPEC2000 benchmarks:
– CINT: vpr, gcc, parser, twolf
– CFP: lucas

l Due to time concerns, using only the test
inputs instead of the ref inputs

Our Experimental Method

l Compare the perceptron predictor’s
performance to other predictors:
– Always Taken Predictor
– Gshare:

1024 counters
Global history length: 8, 10, 16

– 21264 Predictor:
Sim-alpha’s guess of how the 21264 really works

Perceptron Configurations

l # of Perceptrons: 512 vs 128
l Local History Size: 0, 5, and 10 bits
l Global History Size: 20 and 25 bits
l Threshold: with and without the magic formula

GCC Benchmark

VPR Benchmark

TWOLF Benchmark

An Up Close Look at the Data

GCC Benchmark
Predictor Direction Hits Direction Misses Total Percentage Predicted
Perceptron: 512,0,20,52 238195317 79164520 317359837 75.06%
Perceptron: 512,5,20,52 265314537 52053250 317367787 83.60%
Perceptron: 512,5,20,62 265157819 52207845 317365664 83.55%
Perceptron: 512,0,25,62 238519623 78841970 317361593 75.16%
Perceptron: 512,10,20,81 272613439 44760254 317373693 85.90%
Perceptron:128,0,20,52 232351139 85012059 317363198 73.21%
Perceptron: 128,5,20,52 253213011 64152929 317365940 79.79%
Perceptron: 12,5,20,62 253003396 64363919 317367315 79.72%
Perceptron: 128,0,25,62 232594537 84767405 317361942 73.29%
Perceptron: 128,10,20,81 258691841 58677654 317369495 81.51%
Gshare: 1,1024,10,1 256427183 60948583 317375766 80.80%
Gshare: 1,1024,8,1 259465549 57910011 317375560 81.75%
Gshare: 1,1024,16,1 256427183 60948583 317375766 80.80%
Always Taken 193367708 123988295 317356003 60.93%
21264 295950630 21422272 317372902 93.25%

Local History Makes A Difference

GCC Benchmark
Predictor Direction Hits Direction Misses Total Percentage Predicted
Perceptron: 512,0,20,52 238195317 79164520 317359837 75.06%
Perceptron: 512,5,20,52 265314537 52053250 317367787 83.60%
Perceptron: 512,5,20,62 265157819 52207845 317365664 83.55%
Perceptron: 512,0,25,62 238519623 78841970 317361593 75.16%
Perceptron: 512,10,20,81 272613439 44760254 317373693 85.90%
Perceptron:128,0,20,52 232351139 85012059 317363198 73.21%
Perceptron: 128,5,20,52 253213011 64152929 317365940 79.79%
Perceptron: 12,5,20,62 253003396 64363919 317367315 79.72%
Perceptron: 128,0,25,62 232594537 84767405 317361942 73.29%
Perceptron: 128,10,20,81 258691841 58677654 317369495 81.51%
Gshare: 1,1024,10,1 256427183 60948583 317375766 80.80%
Gshare: 1,1024,8,1 259465549 57910011 317375560 81.75%
Gshare: 1,1024,16,1 256427183 60948583 317375766 80.80%
Always Taken 193367708 123988295 317356003 60.93%
21264 295950630 21422272 317372902 93.25%

The Magic Formula Flops

GCC Benchmark
Predictor Direction Hits Direction Misses Total Percentage Predicted
Perceptron: 512,0,20,52 238195317 79164520 317359837 75.06%
Perceptron: 512,5,20,52 265314537 52053250 317367787 83.60%
Perceptron: 512,5,20,62 265157819 52207845 317365664 83.55%
Perceptron: 512,0,25,62 238519623 78841970 317361593 75.16%
Perceptron: 512,10,20,81 272613439 44760254 317373693 85.90%
Perceptron:128,0,20,52 232351139 85012059 317363198 73.21%
Perceptron: 128,5,20,52 253213011 64152929 317365940 79.79%
Perceptron: 12,5,20,62 253003396 64363919 317367315 79.72%
Perceptron: 128,0,25,62 232594537 84767405 317361942 73.29%
Perceptron: 128,10,20,81 258691841 58677654 317369495 81.51%
Gshare: 1,1024,10,1 256427183 60948583 317375766 80.80%
Gshare: 1,1024,8,1 259465549 57910011 317375560 81.75%
Gshare: 1,1024,16,1 256427183 60948583 317375766 80.80%
Always Taken 193367708 123988295 317356003 60.93%
21264 295950630 21422272 317372902 93.25%

Gshare and History Size

GCC Benchmark
Predictor Direction Hits Direction Misses Total Percentage Predicted
Perceptron: 512,0,20,52 238195317 79164520 317359837 75.06%
Perceptron: 512,5,20,52 265314537 52053250 317367787 83.60%
Perceptron: 512,5,20,62 265157819 52207845 317365664 83.55%
Perceptron: 512,0,25,62 238519623 78841970 317361593 75.16%
Perceptron: 512,10,20,81 272613439 44760254 317373693 85.90%
Perceptron:128,0,20,52 232351139 85012059 317363198 73.21%
Perceptron: 128,5,20,52 253213011 64152929 317365940 79.79%
Perceptron: 12,5,20,62 253003396 64363919 317367315 79.72%
Perceptron: 128,0,25,62 232594537 84767405 317361942 73.29%
Perceptron: 128,10,20,81 258691841 58677654 317369495 81.51%
Gshare: 1,1024,10,1 256427183 60948583 317375766 80.80%
Gshare: 1,1024,8,1 259465549 57910011 317375560 81.75%
Gshare: 1,1024,16,1 256427183 60948583 317375766 80.80%
Always Taken 193367708 123988295 317356003 60.93%
21264 295950630 21422272 317372902 93.25%

Set-Associative Perceptron Tables

l Usually, we use a hash to index into a table of
perceptrons.
– This is exactly like indexing into a direct-mapped

cache.

l Try applying 4-way set associativity to
perceptron tables.

Index Index

Set-Associative Perceptron Tables

l It is not immediately clear if associativity will
be effective:
– Set-Associativity is a tool for avoiding aliasing.
– Perceptrons are already robust to aliasing.
– Is there a better way to spend hardware budget?
– What to do on a replace? Load a blank

perceptron? Maintain a “common”
perceptron? Do nothing?

– Victim caching? L2 Cache?
Index

Learning Rule Enhancements

l Imagine a human training a perceptron by
hand - what would the human do?

Perceptron Mispredicted: Decrement the Weight.
Perceptron Mispredicted: Decrement the Weight.
Perceptron Mispredicted: Decrement the Weight.
Perceptron Mispredicted: Decrement the Weight.

l Human would cheat - If perceptron is way off,
decrement by a larger number.

l Hopefully, this would speed convergence.

Learning Rule Enhancements:
First Approach

First Approach:
l Employ a Saturating Counter.
l Set to zero on a correct prediction, increment

on a misprediction.
l When we are saturated and mispredict, adjust

weight by 2 instead of by 1.

Learning Rule Enhancements:
Second Approach

l See how far off the perceptron is in predicting
the outcome.

l If we are VERY far off, adjust weight by 2
instead of 1.

() nwxw n >>−•

Learning Rule Enhancements:
Risks

l Increased chance of oscillation.
l Increased hardware complexity.
l Good if we are in a tight loop. Bad if we aren’t.

Immediate Plans

l Implement and collect data on:
– Set-associative predictor

l With or without the common perceptron
l With or without the victim cache

– All designs with the advanced learning rule

l Determine what specific data to collect:
– Dependence on # of perceptrons
– Proper threshold values when using local history
– Good sizes for the victim cache

And some future plans…

l Add all of our perceptron predictors as a
configurable option in sim-alpha

l Potentially investigate:
– Hybridizing our predictors with gshare
– Using perceptrons as part of a tournament predictor

like the Alpha 21264 predictor
– The performance of a perceptron predictor in a

multithreaded environment

And the Oracle says…

THE THE
ENDEND

