
Winter 2006 CSE 548 - Advanced Caching
Techniques

1

Advanced Caching Techniques

Approaches to improving memory system performance
• eliminate memory operations
• decrease the number of misses
• decrease the miss penalty
• decrease the cache/memory access times
• hide memory latencies
• increase cache throughput
• increase memory bandwidth

Winter 2006 CSE 548 - Advanced Caching
Techniques

2

Handling a Cache Miss the Old Way

(1) Send the address & read operation to the next level of the hierarchy
(2) Wait for the data to arrive
(3) Update the cache entry with data*, rewrite the tag, turn the valid bit on, clear

the dirty bit (if data cache)
(4) Resend the memory address; this time there will be a hit.

* There are variations:
• get data before replace the block
• send the requested word to the CPU as soon as it arrives at the cache

(early restart)
• requested word is sent from memory first; then the rest of the block

follows (requested word first)

How do the variations improve memory system performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

3

Non-blocking Caches

Non-blocking cache (lockup-free cache)
• allows the CPU to continue executing instructions while a miss is

handled
• some processors allow only 1 outstanding miss (“hit under miss”)
• some processors allow multiple misses outstanding (“miss under miss”)
• miss status holding registers (MSHR)

• hardware structure for tracking outstanding misses
• physical address of the block
• which word in the block
• destination register number (if data)
• mechanism to merge requests to the same block
• mechanism to insure accesses to the same location execute in

program order

Winter 2006 CSE 548 - Advanced Caching
Techniques

4

Non-blocking Caches

Non-blocking cache (lockup-free cache)
• can be used with both in-order and out-of-order processors

• in-order processors stall when an instruction that uses the load
data is the next instruction to be executed (non-blocking loads)

• out-of-order processors can execute instructions after the load
consumer

How do non-blocking caches improve memory system performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

5

Victim Cache

Victim cache
• small fully-associative cache

• contains the most recently replaced blocks of a direct-mapped
cache

• alternative to 2-way set-associative cache
• check it on a cache miss

• swap the direct-mapped block and victim cache block

How do victim caches improve memory system performance?

Why do victim caches work?

Winter 2006 CSE 548 - Advanced Caching
Techniques

6

Sub-block Placement

Divide a block into sub-blocks

• sub-block = unit of transfer on a cache miss
• valid bit/sub-block
• misses:

• block-level miss: tags didn’t match
• sub-block-level miss: tags matched, valid bit was clear

+ the transfer time of a sub-block
+ fewer tags than if each sub-block were a block
- less implicit prefetching

How does sub-block placement improve memory system performance?

tag I data V data V data I data
tag I data V data V data V data
tag V data V data V data V data
tag I data I data I data I data

Winter 2006 CSE 548 - Advanced Caching
Techniques

7

Pseudo-set associative Cache

Pseudo-set associative cache
• access the cache
• if miss, invert the high-order index bit & access the cache again
+ miss rate of 2-way set associative cache
+ access time of direct-mapped cache if hit in the “fast-hit block”

• predict which is the fast-hit block
- increase in hit time (relative to 2-way associative) if always hit in the

“slow-hit block”

How does pseudo-set associativity improve memory system performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

8

Pipelined Cache Access

Pipelined cache access
• simple 2-stage pipeline

• access the cache
• data transfer back to CPU
• tag check & hit/miss logic with the shorter

How do pipelined caches improve memory system performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

9

Mechanisms for Prefetching

Stream buffers
• where prefetched instructions/data held
• if requested block in the stream buffer, then cancel the cache access

How do improve memory system performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

10

Trace Cache

Trace cache contents
• contains instructions from the dynamic instruction stream

+ fetch statically noncontiguous instructions in a single cycle
+ a more efficient use of “I-cache” space

• trace is analogous to a cache block wrt accessing

Winter 2006 CSE 548 - Advanced Caching
Techniques

11

Trace Cache

Assessing a trace cache
• trace cache state includes low bits of next addresses (target & fall-

through code) for the last instruction in a trace, a branch
• trace cache tag is high branch address bits + predictions for all

branches in the trace
• assess trace cache & branch predictor, BTB, I-cache in parallel
• compare high PC bits & prediction history of the current branch

instruction to the trace cache tag
• hit: use trace cache & I-cache fetch ignored
• miss: use the I-cache

 start constructing a new trace

Why does a trace cache work?

Winter 2006 CSE 548 - Advanced Caching
Techniques

12

Trace Cache

Effect on performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

13

Cache-friendly Compiler Optimizations

Exploit spatial locality
• schedule for array misses

• hoist first load to a cache block
Improve spatial locality

• group & transpose
• makes portions of vectors that are accessed together lie in memory

together
• loop interchange

• so inner loop follows memory layout
Improve temporal locality

• loop fusion
• do multiple computations on the same portion of an array

• tiling (also called blocking)
• do all computation on a small block of memory that will fit in the

cache

Winter 2006 CSE 548 - Advanced Caching
Techniques

14

Tiling Example
/* before */
for (i=0; i<n; i=i+1)

for (j=0; j<n; j=j+1){
r = 0;
for (k=0; k<n; k=k+1) {

r = r + y[i,k] * z[k,j]; }
x[i,j] = r;
};

/* after */
for (jj=0; jj<n; jj=jj+T)
for (kk=0; kk<n; kk=kk+T)

for (i=0; i<n; i=i+1)
for (j=jj; j<min(jj+T-1,n); j=j+1) {

r = 0;
for (k=kk; k<min(kk+T-1,n); k=k+1)

{r = r + y[i,k] * z[k,j]; }
x[i,j] = x[i,j] + r;
};

Winter 2006 CSE 548 - Advanced Caching
Techniques

15

Memory Banks

Interleaved memory:
• multiple memory banks

• word locations are assigned across banks
• interleaving factor: number of banks
• send a single address to all banks at once

Winter 2006 CSE 548 - Advanced Caching
Techniques

16

Memory Banks

Interleaved memory:
+ get more data for one transfer

• data is probably used (why?)
- larger DRAM chip capacity means fewer banks
- power issue

Effect on performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

17

Memory Banks

Independent memory banks
• different banks can be accessed at once, with different addresses
• allows parallel access, possibly parallel data transfer
• multiple memory controllers & separate address lines, one for each

access
• different controllers cannot access the same bank

• less area than dual porting

Effect on performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

18

Machine Comparison

Winter 2006 CSE 548 - Advanced Caching
Techniques

19

Today’s Memory Subsystems

Look for designs in common:

Winter 2006 CSE 548 - Advanced Caching
Techniques

20

Advanced Caching Techniques

Approaches to improving memory system performance
• eliminate memory operations

• decrease the number of misses

• decrease the miss penalty

• decrease the cache/memory access times

• hide memory latencies

• increase cache throughput

• increase memory bandwidth

Winter 2006 CSE 548 - Advanced Caching
Techniques

21

Wrap-up
Victim cache (reduce miss penalty)
TLB (reduce page fault time (penalty))
Hardware or compiler-based prefetching (reduce misses)
Cache-conscious compiler optimizations (reduce misses or hide miss penalty)
Coupling a write-through memory update policy with a write buffer (eliminate

store ops/hide store latencies)
Handling the read miss before replacing a block with a write-back memory

update policy (reduce miss penalty)
Sub-block placement (reduce miss penalty)
Non-blocking caches (hide miss penalty)
Merging requests to the same cache block in a non-blocking cache (hide miss

penalty)
Requested word first or early restart (reduce miss penalty)
Cache hierarchies (reduce misses/reduce miss penalty)
Virtual caches (reduce miss penalty)
Pipelined cache accesses (increase cache throughput)
Pseudo-set associative cache (reduce misses)
Banked or interleaved memories (increase bandwidth)
Independent memory banks (hide latency)
Wider bus (increase bandwidth)

