Advanced Caching Techniques

Approaches to improving memory system performance

eliminate memory operations

decrease the number of misses

decrease the miss penalty

decrease the cache/memory access times
hide memory latencies

increase cache throughput

increase memory bandwidth

Winter 2006 CSE 548 - Advanced Caching

Techniques

Handling a Cache Miss the Old Way

(1) Send the address & read operation to the next level of the hierarchy
(2) Wait for the data to arrive

(3) Update the cache entry with data*, rewrite the tag, turn the valid bit on, clear
the dirty bit (if data cache)

(4) Resend the memory address; this time there will be a hit.

* There are variations:
get data before replace the block

send the requested word to the CPU as soon as it arrives at the cache
(early restart)

requested word is sent from memory first; then the rest of the block
follows (requested word first)

How do the variations improve memory system performance?

Winter 2006 CSE 548 - Advanced Caching 2
Techniques

Non-blocking Caches

Non-blocking cache (lockup-free cache)
 allows the CPU to continue executing instructions while a miss is

handled

« some processors allow only 1 outstanding miss (“hit under miss”)

« some processors allow multiple misses outstanding (“miss under miss”)
- miss status holding registers (MSHR)
 hardware structure for tracking outstanding misses

Winter 2006

physical address of the block

which word in the block

destination register number (if data)

mechanism to merge requests to the same block

mechanism to insure accesses to the same location execute in
program order

CSE 548 - Advanced Caching
Techniques

Non-blocking Caches

Non-blocking cache (lockup-free cache)
« can be used with both in-order and out-of-order processors

* in-order processors stall when an instruction that uses the load
data is the next instruction to be executed (non-blocking loads)

- out-of-order processors can execute instructions after the load
consumer

How do non-blocking caches improve memory system performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

Victim Cache

Victim cache
- small fully-associative cache

« contains the most recently replaced blocks of a direct-mapped
cache

- alternative to 2-way set-associative cache
« check it on a cache miss
« swap the direct-mapped block and victim cache block

How do victim caches improve memory system performance?

Why do victim caches work?

Winter 2006 CSE 548 - Advanced Caching
Techniques

Sub-block Placement

Divide a block into sub-blocks

tag

tag

tag

tag

I | data V | data V | data I | data
I | data V | data V | data V | data
V | data V | data V | data V | data
I | data I | data I | data I | data

sub-block = unit of transfer on a cache miss

valid bit/sub-block

misses:

- block-level miss: tags didn’t match

+ sub-block-level miss: tags matched, valid bit was clear
the transfer time of a sub-block

fewer tags than if each sub-block were a block

less implicit prefetching

How does sub-block placement improve memory system performance?

Winter 2006

CSE 548 - Advanced Caching
Techniques

Pseudo-set associative Cache

Pseudo-set associative cache
 access the cache
- if miss, invert the high-order index bit & access the cache again
+ miss rate of 2-way set associative cache
+ access time of direct-mapped cache if hit in the “fast-hit block”
- predict which is the fast-hit block

- increase in hit time (relative to 2-way associative) if always hit in the
“slow-hit block”

How does pseudo-set associativity improve memory system performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

Pipelined Cache Access

Pipelined cache access
simple 2-stage pipeline
- access the cache
* data transfer back to CPU
- tag check & hit/miss logic with the shorter

How do pipelined caches improve memory system performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

Mechanisms for Prefetching

Stream buffers
where prefetched instructions/data held
if requested block in the stream buffer, then cancel the cache access

How do improve memory system performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

Trace Cache

Trace cache contents
+ contains instructions from the dynamic instruction stream
+ fetch statically noncontiguous instructions in a single cycle
+ a more efficient use of “I-cache” space
- trace is analogous to a cache block wrt accessing

Winter 2006 CSE 548 - Advanced Caching
Techniques

10

Trace Cache

Assessing a trace cache

- trace cache state includes low bits of next addresses (target & fall-
through code) for the last instruction in a trace, a branch

 trace cache tag is high branch address bits + predictions for all
branches in the trace

« assess trace cache & branch predictor, BTB, I-cache in parallel

- compare high PC bits & prediction history of the current branch
instruction to the trace cache tag

« hit: use trace cache & I-cache fetch ignored
* miss: use the I-cache
start constructing a new trace

Why does a trace cache work?

Winter 2006 CSE 548 - Advanced Caching
Techniques

11

Effect on performance?

Winter 2006

Trace Cache

CSE 548 - Advanced Caching
Techniques

12

Cache-friendly Compiler Optimizations

Exploit spatial locality
- schedule for array misses
* hoist first load to a cache block
Improve spatial locality
- group & transpose

« makes portions of vectors that are accessed together lie in memory
together

« loop interchange
* so inner loop follows memory layout
Improve temporal locality
« loop fusion
- do multiple computations on the same portion of an array
- tiling (also called blocking)

 do all computation on a small block of memory that will fit in the
cache

Winter 2006 CSE 548 - Advanced Caching 13
Techniques

/* before */

for (1=0; 1<n; 1=
for (3=0;
r:
for

/* after */
for (Jjj=0; Jj<n;
for (kk=0; kk<n;

for (1i=0; 1<n;

for (3=373;
r:
for

Winter 2006

Tiling Example

i4+1)

Jj<n; J=3J+1){

0;

(k=0,; k<n; k=k+1)
r=r + y[i, k] *

J3=33+T)
kk=kk+T)

1=14+1)
Jj<min (3j+T-1,n);
0;
(k=kk; k<min(kk+T
{r = r + yl1i,k]
I

71 = x[1,7] r,

CSE 548 - Advanced Caching
Techniques

{

z[k,317)}
J=3+1) |
1,n); k=k+1)
*zlk, 317)

14

Memory Banks

Interleaved memory:
« multiple memory banks
- word locations are assigned across banks
* interleaving factor: number of banks
« send a single address to all banks at once

Winter 2006 CSE 548 - Advanced Caching
Techniques

15

Memory Banks

Interleaved memory:
+ get more data for one transfer
- data is probably used (why?)
- larger DRAM chip capacity means fewer banks
- power issue

Effect on performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

16

Memory Banks

Independent memory banks
- different banks can be accessed at once, with different addresses
 allows parallel access, possibly parallel data transfer

- multiple memory controllers & separate address lines, one for each
access

 different controllers cannot access the same bank
 less area than dual porting

Effect on performance?

Winter 2006 CSE 548 - Advanced Caching
Techniques

17

Winter

21264 R12000 Ulir aSPA KC-ITI FPentium I'V
L1I 64KBI J2KB I2KB kuop trace
onchip cache (~-8-10 KB}
2-mray with zet prediction 2-way d-wway
&4E hlock 6dB block 3Z2E block & opasline
| |virtually indexed| virtually indexed, wirtual
tags
2-oycle access pipelined 2-cycle accass
L1D |64KB o4 KB ZKE
onchip (2-way 4w ay -y
&4E block &4 block
write-back write throtgh
virtnally indexed, physical tags virtually indexed
physical tags
3 (int) or 4 (FEY oy cle reads 2-pycle acrass 2 gycle latency
phase-pipelined {read pipalined 2-cycle accass
twice each cycle)
miss under miss (32 loads nonblocking
or 8 blocks outstanding))
victim cache
L2 external external external onchip
1ME-16ME 1NE-16ME up to EME 256K E
direct-mapped 2-pvay peeudo, way dire ct-mapped S-away
prediction,
&4E block 135E blocks 32E blocka 128E block
&4E “mubbloclks”
wiite-bacl write-bacl
phyaical
nonblocking
12 cycles 12 cycles
TLE 128 enfries & entries, each
maps to 2 pages
Fa Fa
dual-ported

multiple page sizes
PAL code handling

4KkB -16MB pages I

multiple page sizes
softswware handling

multiple page sizes
hardware handling

18

Today’s Memory Subsystems

Look for designs in common:

Winter 2006 CSE 548 - Advanced Caching
Techniques

19

Advanced Caching Techniques

Approaches to improving memory system performance
 eliminate memory operations

decrease the number of misses

« decrease the miss penalty

« decrease the cache/memory access times
* hide memory latencies

* increase cache throughput

increase memory bandwidth

Winter 2006 CSE 548 - Advanced Caching
Techniques

20

Winter 2006

wrap-up
Victim cache (reduce miss penalty)
TLB (reduce page fault time (penalty))
Hardware or compiler-based prefetching (reduce misses)
Cache-conscious compiler optimizations (reduce misses or hide miss penalty)

Coupling a write-through memory update policy with a write buffer (eliminate
store ops/hide store latencies)

Handling the read miss before replacing a block with a write-back memory
update policy (reduce miss penalty)

Sub-block placement (reduce miss penalty)
Non-blocking caches (hide miss penalty)

Merging requests to the same cache block in a non-blocking cache (hide miss
penalty)

Requested word first or early restart (reduce miss penalty)
Cache hierarchies (reduce misses/reduce miss penalty)
Virtual caches (reduce miss penalty)

Pipelined cache accesses (increase cache throughput)
Pseudo-set associative cache (reduce misses)

Banked or interleaved memories (increase bandwidih)
Independent memory barcwlég 5(hide latenc

) . : 548 - Advanced g ching 21
Wider bus (increase bandwidth)rechniques

