Instruction-Level Parallelism (ILP)

Fine-grained parallelism

Obtained by:
* instruction overlap in a pipeline

« executing instructions in parallel (later, with multiple instruction
issue)

ILP hindered by:
- data dependence: arises from the flow of values through programs

* name dependence: instructions use the same register but no flow of
data between them

- control dependence: arises from the flow of control

Winter 2006 CSE 548 - Basics of Pipelining

Pipelining

Implementation technique (but it is visible in the architecture)
- overlaps execution of different instructions

« execute all steps in the execution cycle simultaneously, but on
different instructions

Exploits ILP by executing several instructions “in parallel”
Goal is to increase instruction throughput

Twiﬁmut pipe _ 1xn

= #¥ of pipe stages

Winter 2006 CSE 548 - Basics of Pipelining

Winter 2006

Pipelining

fetch |d&r ex

mem

wh

¢

1 t#1 12 1+3 t+d

fetch |d&r ex

mem

wh

+5 [+6 {+7

fetch[F Had ex

mem

fobd

fotch | -Hed ex

mem

b

fetch

& ex

mem

Tad ox

memiwb{]

{+8

fillthe pipeline

3 ex |mempwhbt

{+3

fetch|::

&f memwhi

fetch|:]j&l ox Imem

b

fetch [

Had ex

mem

WIS E

Pipelining

Not that simple!
« pipeline hazards (structural, data, control)
« place a soft “limit” on the number of stages
* increase instruction latency (a little)

 write & read pipeline registers for data that is computed in a
stage

« information produced in a stage travels down the pipeline
with the instruction

- time for clock & control lines to reach all stages

- all stages are the same length which is determined by the
longest stage

+ stage length determines clock cycle time

IBM Stretch (1961): the first general-purpose pipelined computer
Winter 2006 CSE 548 - Basics of Pipelining

Hazards

Structural hazards
Data hazards
Control hazards
What happens on a hazard
* instruction that caused the hazard & previous instructions complete

- all subsequent instructions stall until the hazard is removed
(in-order execution)

 only instructions that depend on that instruction stall
(out-of-order execution)

 hazard removed
* instructions continue execution

Winter 2006 CSE 548 - Basics of Pipelining 5

Structural Hazards

Cause: instructions in different stages want to use the same resource in
the same cycle
e.g., 4 FP instructions ready to execute & only 2 FP units

Solutions:
- more hardware (eliminate the hazard)
- stall (tolerate the hazard)
- less hardware, lower performance
- only for big hardware components

Winter 2006 CSE 548 - Basics of Pipelining

Program Execution Order

PP

(IN INstructions)

Tume [in Clock Cyolos)

Winter 2006

ol RUCTORB L

HKAZOP NS -

EXErmMny <

I NCREMNENT
AR TH}_ OPfs

R%Q :

READ | WR(TE
REG (STERS

e COMPARISOI
THRGLET CALLuloon

CSE 548 - Basics of Pipelining

Data Hazards

Cause:

an instruction early in the pipeline needs the result produced by an
instruction farther down the pipeline before it is written to a register

would not have occurred if the implementation was not pipelined
Types

RAW (data: flow), WAR (name: antidependence), WAW (name:
output)

HW solutions
forwarding hardware (eliminate the hazard)
stall via pipelined interlocks

Compiler solution
code scheduling (for loads)

Winter 2006 CSE 548 - Basics of Pipelining

Winter 2006

Dependences vs. Hazards

data dependence
sub$2,$1,$3 data hazard

~|:|_|:K:B{_ no hazard

and $12, $2, %5

Y
—
]

or$13. $&. §2 s
add $14, $2, 2 |] |]
sw$15,100(%2) |:|

Forwarding

Forwarding (also called bypassing):

« output of one stage (the result in that stage’s pipeline register) is
bused (bypassed) to the input of a previous stage

- why forwarding is useful

* results are computed 1 or more stages before they are written
to a register

- at the end of the EX stage for computational instructions
- at the end of MEM for a load
- results are used 1 or more stages after registers are read

- if you forward a result to an ALU input as soon as it has been
computed, you can eliminate the hazard or reduce stalling

Winter 2006 CSE 548 - Basics of Pipelining 10

Winter 20(

Forwarding Example

%7is computed here

add$7, %12, $15 \ ‘|’ '/$?is written here
L

$7 is read here - %7 is needed here

sub $8, $7, $12 ™ -

-

/ $7 isneeded here

and $9. $13. $7 |:| |:‘ |:|
C’ %7 is read here

11

Forwarding Implementation

Forwarding unit checks whether forwarded values should be used:
between instructions in ID and EX

- compare the R-type destination register number in EXMEM
pipeline register to each source register number in ID/EX

between instructions in ID and MEM

- compare the R-type destination register number in MEM/WB
to each source register number in ID/EX

If a match, set MUX to choose bussed values from EX/MEM or

Winter 2006 CSE 548 - Basics of Pipelining 12

consumer producer producer

1D/1EX EX/MEM MEM/WB
e e e
e M
u >
L X
Registers
“! ForwardA >ALU . e
= .
i Data 2
memory =k H M
u
X

LA

EX/MEM.RegisterRd

Forwarding

MEM/WB.RegisterRd
unit RS

h. Wilh forwarding

Winter 2006 CSE 548 - Basics of Pipelining 13

Forwarding Hardware

Hardware to implement forwarding:

destination register number in pipeline registers
(but need it anyway because we need to know which register to
write when storing an ALU or load result)

source register numbers
(probably only one, e.g., rs on MIPS R2/3000) is extra)

a comparator for each source-destination register pair
buses to ship data and register numbers - the BIG cost
larger ALU MUXes for 2 bypass values

Winter 2006 CSE 548 - Basics of Pipelining

14

Loads

Loads

- data hazard caused by a load instruction & an immediate use of the
loaded value

- forwarding won't eliminate the hazard
why? data not back from memory until the end of the MEM stage

+ 2 solutions used together
- stall via pipelined interlocks

« schedule independent instructions into the load delay slot
(a pipeline hazard that is exposed to the compiler) so that there
will be no stall

Winter 2006 CSE 548 - Basics of Pipelining 15

Loads

data dependence
Iw %2, 20(%1) %2 is available here hazard

\ no hazard
‘ ‘ ‘ ‘ E ‘ \ — %2 is written here
$2is neede
and $4. 52, $5
|:| {
or $8, %2, $a :| —E — |:|

Winter 2006 CSE 548 - Basics of Pipelining 16

Implementing Pipelined Interlocks

Detecting a stall situation
Hazard detection unit stalls the use after a load
« is the instruction in EX a load?

+ does the destination register number of the load = either source
register number in the next instruction?

« compare the load write register number in ID/EX to each read
register number in IF/ID

if both yes, stall the pipe 1 cycle

Winter 2006 CSE 548 - Basics of Pipelining

17

Implementing Pipelined Interlocks

How stalling is implemented:

nullify the instruction in the 1D stage, the one that uses the
loaded value

- change EX, MEM, WB control signals in ID/EX pipeline register
to0

+ the instruction in the ID stage will have no side effects as it
passes down the pipeline

restart the instructions that were stalled in ID & IF stages

+ disable writing the PC --- the same instruction will be fetched
again

- disable writing the IF/ID pipeline register --- the load use
instruction will be decoded & its registers read again

Winter 2006 CSE 548 - Basics of Pipelining 18

Loads

hazard detection
data dependence
w52, 200%1) no hazard

==
e S e

or $8. 2. $6 fﬁ

/

the bubble

add $9. 4. T2 — — — |:|

Winter 2006 CSE 548 - Basics of Pipelining 19

Implementing Pipelined Interlocks

Hardware to implement stalling:

rt register number in ID/EX pipeline register
(but need it anyway because we need to know what register to
write when storing load data)

both source register numbers in IF/ID pipeline register
(already there)

a comparator for each source-destination register pair
buses to ship register numbers
write enable/disable for PC
write enable/disable for the IF/ID pipeline register
a MUX to the ID/EX pipeline register (+ 0s)
Trivial amount of hardware & needed for cache misses anyway

Winter 2006 CSE 548 - Basics of Pipelining 20

Control Hazards

Cause: condition & target determined after the next fetch has already been
done

Early HW solutions

- stall

« assume an outcome & flush pipeline if wrong

« move branch resolution hardware forward in the pipeline
Compiler solutions

- code scheduling

- static branch prediction
Today’s HW solutions

« dynamic branch prediction

Winter 2006 CSE 548 - Basics of Pipelining 21

