
Winter 2006 CSE 548 - Reorder Buffer 1

Reorder Buffer Implementation (Pentium Pro)

Hardware data structures
• retirement register file (RRF)

(~ IBM 360/91 physical registers)
• physical register file that is the same size as the architectural

registers
• holds values of committed instructions



Winter 2006 CSE 548 - Reorder Buffer 2

Reorder Buffer Implementation (Pentium Pro)

Hardware data structures
• reorder buffer (ROB)

(~ R10K active list)
• provides in-order instruction commit
• circular queue with head & tail pointers
• holds 40 “executing” instructions in program order

(dispatched but not yet committed)
• field for either integer or FP result after it has been computed
• a result value is put in its register in the RRF after its producing

instruction has committed (i.e., reaches the head of the buffer &
is removed)



Winter 2006 CSE 548 - Reorder Buffer 3

Reorder Buffer Implementation (Pentium Pro)

Hardware data structures
• register alias table (RAT)

(~ R10K map table)
• provides register renaming

• important because very few GPRs in the x86 architecture
• indicates whether a source operand of a new instruction points

to the reorder buffer or the physical register file
• do an associative search of ROB destination registers for the

new source operands
• if found, consumer instruction points to the producer

instruction in the ROB
• the data hazard check before instruction dispatch



Winter 2006 CSE 548 - Reorder Buffer 4

Reorder Buffer Implementation (Pentium Pro)

Hardware data structures
• reservation station

(~ IBM 360/91 reservation stations, R10000 instruction queues)
• holds instructions waiting to execute
• provides forwarding to reduce RAW hazards

• result values go back to the reservation station (as well as
ROB) so dependent instructions have source operand
values

• provides out-of-order execution



Winter 2006 CSE 548 - Reorder Buffer 5



Winter 2006 CSE 548 - Reorder Buffer 6

Pentium Pro Execution

In-order issue
• decode instructions
• rename registers via register alias table
• enter uops into reorder buffer for in-order completion
• detect structural hazards for reservation station

Out-of-order execution
• one reservation station, multiple entries
• check source operands for RAW hazards
• check structural hazards for separate integer, FP, memory units
• execute instruction
• result goes to reservation station & reorder buffer

In-order commit
• this & previous uops have completed
• write “G”PR registers
• rollback on interrupts



Winter 2006 CSE 548 - Reorder Buffer 7

Pentium Pro

fetch & decode pipeline
BTB access (1 stage)
instruction fetch & align for decoding (2.5 stages)
decode & uop generation (2.5 stages)
register renaming & instruction issue to reservation stations

(3 stages minimum)
integer pipeline

execute, resolve branch
write registers & commit

load pipeline
address calculation & to memory reorder buffer
integrated L1 & L2 data cache access

pipelined FP add & multiply



Winter 2006 CSE 548 - Reorder Buffer 8

Pentium Pro



Winter 2006 CSE 548 - Reorder Buffer 9

Pentium Pro



Winter 2006 CSE 548 - Reorder Buffer 10

Pentium Pro
Some bandwidth constraints: maximum for one cycle

• 16 bytes fetched
• 3 instructions decoded
• 6 µops issued to the reorder buffer
• 3 µops dispatched to reservation station & functional units
• 1 load & 1 store access to the L1 data cache
• 1 cache result returned
• 3 µops committed

if
• good instruction mix
• right instruction order
• operands available
• functional units available
• load & store to different cache banks
• all previous instructions already committed



Winter 2006 CSE 548 - Reorder Buffer 11

Pool of Physical Registers vs. Reorder Buffer

Think about the advantages and disadvantages of these implementations
• book claims that physical register commit is simpler

• record that value no longer speculative in register busy table
• unmap previous mapping for the architectural register

• instruction issue simpler (physical register pool)
• only look in one place for the source operands (the physical

register file)

• book claims that deallocating register is more complicated with a
physical register pool

• have to search for outstanding uses in the active list
• but not done in practice: wait until the instruction that redefines

the architectural register commits

• faster to index map table to get source operands than do
associative search on ROB

• can have more outstanding results



Winter 2006 CSE 548 - Reorder Buffer 12

Limits

Limits on out-of-order execution
• amount of ILP in the code
• scheduling window size

• need to do associative searches & its effect on cycle time
• relatively few instructions in window

• number & types of functional units
• number of ports to memory


