Svnchronization

Coherency protocols guarantee that a reading processor (thread) sees the
most current update to shared data.

Coherency protocols do not:

« make sure that only one thread accesses shared data or a shared
hardware or software resource at a time

order thread access to shared data

 force threads to start executing particular sections of code together

force threads to start executing particular sections of code
together
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Critical Sections

A critical section
« a sequence of code that only one thread can execute at a time
« provides mutual exclusion

« athread has exclusive access to the code & the data that it
accesses

« guarantees that only one thread can update the data at a time
» to execute a critical section, a thread

 acquires a lock that guards it

* executes its code

* releases the lock

The effect is to synchronize/order the access of threads wrt their accessing
shared data
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Barriers

Barrier synchronization

« abarrier: point in a program which all threads must reach before
any thread can cross

« threads reach the barrier & then wait until all other threads
arrive

- all threads are released at once & begin executing code
beyond the barrier

- example implementation of a barrier:
- set a lock-protected counter to the number of processors
 each thread (assuming 1/processor) decrements it

« when the lock value becomes 0, all threads have crossed the
barrier

« code that implements a barrier is a critical section
« useful for:

« programs that execute in phases

« synchronizing after a parallel loop
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Locking

Locking facilitates access to a critical section.

Locking protocol:

- synchronization variable or lock
* 0:lock is available
« 1:lock is unavailable because another thread holds it

- athread obtains the lock before it can enter a critical section
 sets the lock to 1

- thread releases the lock before it leaves the critical section
« clears the lock
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Acquiring a Lock

Atomic exchange instruction: swap a value in a register & a value in
memory in one operation

+ set the register to 1
- swap the reqister value & the lock value in memory
* new register value determines whether got the lock

AcquireLock:
1i R3, #1 /* create lock value
swap R3, 0(R4) /* exchange register & lock

bnez R3, AcquirelLock /* have to try again */

+ also known as atomic read-modify-write a location in memory
Other examples

« test & set: tests the value in a memory location & sets it to 1
- fetch & increment: returns the value of a memory location + 1
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Releasing a Lock

Store a 0 in the lock
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Load-linked & Store Conditional

Performance problem with atomic read-modify-write:
« 2 memory operations in one
« must hold the bus until both operations complete
Pair of instructions appears atomic
 avoids need for uninterruptible memory read & write
- load-locked & store-conditional
« load-locked returns the original (lock) value in memory

- if the contents of lock memory has not changed when the store-
conditional is executed, the processor still has the lock

« store-conditional returns a 1 if successful

GetLk: 1i R3, #1 /* create lock value
11 R2, O0(R1) /* read lock variable
scC R3, O(R1) /* try to lock it
begz R3, GetLk /* cleared if sc failed

. . . (critical section)
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Load-linked & Store Conditional

Implemented with special lock-flag & lock-address registers

+ load-locked sets lock-address register to memory address & lock-
flag register to 1

- store-conditional updates memory if lock-flag register is still set &
returns lock-flag register value to store register

* lock-flag register cleared when the address is written by another
processor

* lock-flag register cleared if context switch or interrupt
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Svnchronization APls

User-level software synchronization library routines constructed with
atomic hardware primitives

« spin locks
« busywaiting until obtain the lock

« contention with atomic exchange causes invalidations (for
the write) & coherency misses (for the rereads)

- avoid if separate reading the lock & testing it
+ spinning done in the cache rather than over the bus

getlLk: 1li R2, #1

spinLoop: 11 R1, lockVariable
blbs R1l, spinLoop
sc R2, lockVariable
beqgz R2, getLk
.... (critical section)
st RO, lockVariable

+ blocking locks
* block the thread after a certain number of spins
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Svnchronization Performance

An example overall synchronization/coherence strategy:

 design cache coherency protocol for little interprocessor contention
for locks (the common case)

« add techniques to avoid performance loss if there is contention for
a lock & still provide low latency if no contention

Have a race condition for acquiring a lock when it is unlocked

« 0O(n?) bus transactions for n contending processors (write-
invalidate)

- exponential back-off - software solution
« each processor retries at a different time
* successive retries done an exponentially increasing time later
* queuing locks - hardware solution
* lock is passed from unlocking processor to waiting processor
- also addresses fairness
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Atomic Exchange in Practice

Alpha
load-linked, store-conditional
UltraSPARCs (V9 architecture)
several primitives
compare & swap, test & set, etc.
Pentium Pro
compare & swap
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