Svnchronization

Coherency protocols guarantee that a reading processor (thread) sees the
most current update to shared data.

Coherency protocols do not:

« make sure that only one thread accesses shared data or a shared
hardware or software resource at a time

order thread access to shared data

 force threads to start executing particular sections of code together

force threads to start executing particular sections of code
together

Winter 2006 CSE 548 - Synchronization

Critical Sections

A critical section
« a sequence of code that only one thread can execute at a time
« provides mutual exclusion

« athread has exclusive access to the code & the data that it
accesses

« guarantees that only one thread can update the data at a time
» to execute a critical section, a thread

 acquires a lock that guards it

* executes its code

* releases the lock

The effect is to synchronize/order the access of threads wrt their accessing
shared data

Winter 2006 CSE 548 - Synchronization 2

Barriers

Barrier synchronization

« abarrier: point in a program which all threads must reach before
any thread can cross

« threads reach the barrier & then wait until all other threads
arrive

- all threads are released at once & begin executing code
beyond the barrier

- example implementation of a barrier:
- set a lock-protected counter to the number of processors
 each thread (assuming 1/processor) decrements it

« when the lock value becomes 0, all threads have crossed the
barrier

« code that implements a barrier is a critical section
« useful for:

« programs that execute in phases

« synchronizing after a parallel loop

Winter 2006 CSE 548 - Synchronization

Locking

Locking facilitates access to a critical section.

Locking protocol:

- synchronization variable or lock
* 0:lock is available
« 1:lock is unavailable because another thread holds it

- athread obtains the lock before it can enter a critical section
 sets the lock to 1

- thread releases the lock before it leaves the critical section
« clears the lock

Winter 2006 CSE 548 - Synchronization

Acquiring a Lock

Atomic exchange instruction: swap a value in a register & a value in
memory in one operation

+ set the register to 1
- swap the reqister value & the lock value in memory
* new register value determines whether got the lock

AcquireLock:
1i R3, #1 /* create lock value
swap R3, 0(R4) /* exchange register & lock

bnez R3, AcquirelLock /* have to try again */

+ also known as atomic read-modify-write a location in memory
Other examples

« test & set: tests the value in a memory location & sets it to 1
- fetch & increment: returns the value of a memory location + 1

Winter 2006 CSE 548 - Synchronization

Releasing a Lock

Store a 0 in the lock

Winter 2006 CSE 548 - Synchronization

Load-linked & Store Conditional

Performance problem with atomic read-modify-write:
« 2 memory operations in one
« must hold the bus until both operations complete
Pair of instructions appears atomic
 avoids need for uninterruptible memory read & write
- load-locked & store-conditional
« load-locked returns the original (lock) value in memory

- if the contents of lock memory has not changed when the store-
conditional is executed, the processor still has the lock

« store-conditional returns a 1 if successful

GetLk: 1i R3, #1 /* create lock value
11 R2, O0(R1) /* read lock variable
scC R3, O(R1) /* try to lock it
begz R3, GetLk /* cleared if sc failed

. . . (critical section)

Winter 2006 CSE 548 - Synchronization 7

Load-linked & Store Conditional

Implemented with special lock-flag & lock-address registers

+ load-locked sets lock-address register to memory address & lock-
flag register to 1

- store-conditional updates memory if lock-flag register is still set &
returns lock-flag register value to store register

* lock-flag register cleared when the address is written by another
processor

* lock-flag register cleared if context switch or interrupt

Winter 2006 CSE 548 - Synchronization

Svnchronization APls

User-level software synchronization library routines constructed with
atomic hardware primitives

« spin locks
« busywaiting until obtain the lock

« contention with atomic exchange causes invalidations (for
the write) & coherency misses (for the rereads)

- avoid if separate reading the lock & testing it
+ spinning done in the cache rather than over the bus

getlLk: 1li R2, #1

spinLoop: 11 R1, lockVariable
blbs R1l, spinLoop
sc R2, lockVariable
beqgz R2, getLk
.... (critical section)
st RO, lockVariable

+ blocking locks
* block the thread after a certain number of spins

Winter 2006 CSE 548 - Synchronization

Svnchronization Performance

An example overall synchronization/coherence strategy:

 design cache coherency protocol for little interprocessor contention
for locks (the common case)

« add techniques to avoid performance loss if there is contention for
a lock & still provide low latency if no contention

Have a race condition for acquiring a lock when it is unlocked

« 0O(n?) bus transactions for n contending processors (write-
invalidate)

- exponential back-off - software solution
« each processor retries at a different time
* successive retries done an exponentially increasing time later
* queuing locks - hardware solution
* lock is passed from unlocking processor to waiting processor
- also addresses fairness

Winter 2006 CSE 548 - Synchronization 10

Atomic Exchange in Practice

Alpha
load-linked, store-conditional
UltraSPARCs (V9 architecture)
several primitives
compare & swap, test & set, etc.
Pentium Pro
compare & swap

Winter 2006 CSE 548 - Synchronization 11

