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ABSTRACT 

By compiling ordinary scientific applications programs with a 

radical technique called trace scheduling, we are generating 

code for a parallel machine that will run these programs faster 

than an equivalent sequential machine - we expect 10 to 30 

times faster. 

Trace scheduling generates code for machines called Very 
Long Instruction Word architectures. In Very Long Instruction 

Word machines, many statically scheduled, tightly coupled, 

fintgrained operations execute in parallel within a single 

instruction stream. VUWs are more parallel extensions of 

several current architectures. 

These current architectures have never cracked a 

fundamental barrier. The speedup they get from parallelism is 
never more than a factor of 2 to 3. Not that we couldn’t build 

more parallel machines of this type; but until trace scheduling 

we didn’t know how to generate code for them. Trace 

scheduling finds sufficient parallelism in ordinary code to 

justify thinking about a highly parallel VLIW. 

At Yale we are actually building one. Our machine, the 

ELI-512, has a horizontal instruction word of over 500 bits and 
will do 10 to 30 RISC-level operations per cycle [Pattenon 821. 
ELI stands for Enormously Longword Instructions; 512 is the 
size of the instruction word we hope to achieve. (The current 
design has a 1200-bit instruction word.) 

Once it became clear that we could actually compile code for 

a VLIW machine, some new questions appeared, and answers 
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are presented in this paper. How do we put enough tests in 

each cycle without making the machine too big? How do we 

put enough memory references in each cycle without making 

the machine too slow? 

Everyone wants to use cheap hardware in parallel to speed 

up computation. One obvious approach would be to take your 
favorite Reduced Instruction Set Computer, let it be capable of 

executing 10 to 30 RISC-level operations per cycle controlled by 

a very long instruction word. (In fact, call it a VLIW.) A 

VLIW looks like very parallel horizontal microcode. 

More formally, VLIW architectures have the following 

properties: 

There is one central control unit issuing a single long 

instruction per cycle. 

Each long instruction consists of many tightly coupled 

independent operations. 

Each operation requires a small, statically predictable 

number of cycles to execute. 

Operations can be pipelined. These properties distinguish 
VLlWs from multipmcasors (with large asynchronous tasks) 
and dataflow machines (without a single flow of contml, and 

without the tight coupling). VLIWs have none of the required 
regularity of a vector processor, or true array processor. 

Many machines appmximately like this have been built, but 

they have all hit a very low ceiling in the degree of parallelism 

they provide. Besides horizontal microcode engines, these 

machines include the CDC 6600 and its many successors, such 
as the scalar portion of the CRAY-1; the IBM Stretch and 

360/91; and the Stanford MIPS [Hennessy 821. It’s not 

surprising that they didn’t offer very much parallelism. 
Experiments and experience indicated that only a factor of 2 to 
3 speedup fmm parallelism was available within basic blocks. 

(A basic block of code h= no jumps in except at the beginning 
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and no jumps out except at the end.) No one knew how to find 

parallelism beyond conditional jumps, and evidently no one was 

even looking. It seemed obvious that you couldn’t put 

operations from different basic blocks into the same instruction. 

There was no way to tell beforehand about the flow of control. 
How would you know whether you wanted them to be executed 

together? 

Occasionally people have built much more parallel VLIW 

machines for special purposes. But these have been hand- 

Coded. Hand-coding long-instruction-word machines is a 

horrible task, as anyone who’s written horizontal microcode will 

tell you. The code arrangements are unintuitive and nearly 

impossible to follow. Special-purpose processon can get away 

with hand coding because they need only a very few lines of 

code. The Floating Point Systems AP-120b can offer speedup 

by a factor of 5 or B in a few special-purpose applications for 

which code has been handwritten at enormous cost. But this 
code does not generalize, and most users get only the standard 

2 or 3 - and then only after great labor and on small 

programs. 

We’re talking about an order of magnitude more parallelism; 

obviously we can forget about hand coding. But where does 

the parallelism come fmm? 

Not from basic blocks. Experiments showed that the 

parallelism within basic blocks is very limited [Tjaden 

70, Foster 72). But a radically new global compaction 

technique called trace scheduling can find large degrees of 

parallelism beyond basic-block boundaries. Trace scheduling 

doesn’t work on some code, but it will work on most general 

scientific code. And it works in a way that makes it possible to 

bnild a compiler that generates highly parallel code. 

Experiments done with trace scheduling in mind verify the 

existence of huge amounts of parallelism beyond basic blocks 
[Nicolau 811. NicolauEl repeats an earlier experiment done in 

a different context that found the same parallelism but 

dismissed it; trace scheduling was then unknown and immense 
amounts of hardware would have been needed to take 

advantage of the parallelism [Riseman 721. 

WHY NOT VECTOR MACHINES? 

Vector machines seem to offer much more parallelism than 
the factor of 2 or 3 that current VLIWs offer. Although vector 
machines have their place, we don’t believe they have much 

chance of success on general-purpose scientific code. They are 

crueifyingly difficult to program, and they speed up only inner 

loops, not the rest of the code. 

To program a vector machine, the compiler or hand coder 

must make the data structures in the code fit neariy exactly the 

regular structure built into the hardware. That’s hard to do in 

first place, and just as hard to change. One tweak, and the 

low-level code has to be rewritten by a very smart and 

dedicated programmer who knows the hardware and often the 

subtleties of the application area. Ofkn the rewriting is 
unsuccessful; it’s back to the drawing boards again. Many 
people hope that highly vector&d code can be produced from 

ordinary scalar code by a very intellegent compiler [Padua 801. 

We believe that vectoriting will produce sufficient parallelism 

in only a small percentage of programs. 

And vectoricing works only on inner loops; the rest of the 

code gets no speedup whatsoever. Even if 90% of the code 
were in inner loops, the other 10% would run at the same speed 

as on a sequential machine. Even if you could get the 90% to 
run in zem time, the other 10% would limit the speedup to a 

factor of 10. 

TRACE SCIIEDULING 

The VLIW compiler we have built uses a recent global 

compaction technique called trace scheduling Fisher 811. This 
technique ww originally developed for microcode compaction, 

compaction being the pmeess of generating very long 
instructions fmm some sequential souree. 

Horizontal micmcode is like VLIW architectures in its style 

of parallelism. It differs in having idiosyncratic operations and 

less parallel hardware. Other techniques besides trace 

scheduling have been developed for microcode compaction 

[Tokom 78, Daagupta 79, Jacobs 821. They differ from trace 

scheduling in taking already compacted basic blocks and 
searching for parallelism in individual code motions between 
blocks. That might work for horizontal microcode but it 
probably won’t work for VLlWs. VLlWs have much more 

parallelism than horizontal microcode, and these techniques 
require too expensive a search to exploit it. 

Trace scheduling replaces block-by-block compaction of code 

with the compaction of long streams of code, possibly 

thousands of instructions long. Here’s the trick: You do a 

little bit of preprocessing. Then you schedule the long streams 
of code as if they were basic blocks. Then you undo the bad 
effects of pretending that they were basic blocks. What you 
get out of this is the ability to use well-known, very efficient 

scheduling techniques on the whole stream. These techniques 

previously seemed confined to basic blocks. 

To sketch briefly, we start with loop-free code that has no 

back edges. Given a reducable flow graph, we can find loop 
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fm innermost code [Aho’l’l]. 

TRACE SCHEDULING LOOP-FREE CODE 

(a) A flow graph, with each block representing a basic block 

of code. (b) A trace picked fmm the flow graph. (c) The trace 

has been scheduled but it hasn’t been relinked to t,he rest of the 
code. (d) The sections of unscheduled code that allow re- 

linking. 

Part (a) of the figure shows a 

small flow graph without back edges. Dynamic information - 

jump predictions - is used at compile time to select streams 

with the highest probability of execution. Those streams we 

call “traces.” We pick our first trace from the most frequently 

executed code. In part (b) of the figure, a trace has been 

selected fmm the flow graph. 

Preprocessing prevents the scheduler from making absolutely 
illegal code motions between blocks, ones that would clobber 
the values of live variables off the trace. This is done by 

adding new, special edges to the data precedence graph built 

for the trace. The new edges are drawn between the test 

operations that conditionally jump to where the variable is live 

and the operations that might clobber the variable. The edges 
are added to the data precedence graph and look just like all 

the other edges. The scheduler, none the wiser, is then 

permitted to behave just as if it were scheduling a single basic 
block. It pays no attention whatsoever to block boundaries. 

After scheduling is complete, the scheduler has made many 

code motions that will not correctly preserve jumps fmm the 

stream to the outside world (or rejoins back). So a 

postprocessor inserts new code at the stream exits and 
entrances to recover the correct machine state outside the 

stream. Without this ability, available parallelism would be 
unduly constrained by the need to preserve jump boundaries. 

In part (c) of the figure, the trace has been isolated and in part 

(d) the new, uncompacted code appears at the code splits and 

rejoins. 

Then we look for our second trace. Again we look at the 

most frequently executed code, which by now includes not only 

the source code beyond the tint trace but also any new code 
that we generated to recover splits and rejoins. We compact 

the second trace the same way, possibly producing recovery 
code. (In our actual implementation so far, we have been 

pleuantly surprised at the small amount of recovery code that 

gets generated.) Eventually, this process works its way out to 

code with little probability of execution, and if need be more 
mnndane compaction methods are used so as not to produce 

new code. 

Trace scheduling provides a natural solution for loops. Hand 
coders use software pipelining to increase parallelism, rewriting 
a loop so as to do pieces of several consecutive iterations 
simultaneously. Trace scheduling can be trivially extended to 

do software pipelining on any loop. We simply uuroll the loop 

for many iterations. The unrolled loop is a stream, all the 

intermediate loop tests are now conditional jumps, and the 
stream gets compacted as above. 

While this method of handling loops may be somewhat less 
space efficient than is theoretically necessary-, it can handle 
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TRACESCHEDULINGLOOPS 

(a) A loop body, which might contain arbitrary flow of 

control, and the exit code it jumps to. (b) The loop body 

unwound k times. (c) Traces are picked through the unwound 

loop and it is scheduled. (d) The newly scheduled loop is ro 

linked to the rest of the code. 

arbitrary flow of control within each old loop iteration, a major 

advantage in attempting to compile reai code. The figure 
above, which is generally analogous to the one before, shows 

how loops are handled. 

BULLDOG,ATRACE-SCHEDULINGCOMPILER 

We have implemented a traecschcduling compiler in 

compiled Maclisp on a DEC-2060. We call it Bulldog to 
suggest its tenacity (and prevent people from thinking it was 

written at Harvard). Bulldog has 5 major modules, as outlined 

in the figure to the right. 

Our first code generator is for an idealized VLIW machine 
that takes a single cycle to execute each of its RISC-level 

operations (not too drastic an idealization) and does unlimited 

memory accesses per cycle (entirely too drastic an idealization). 

We are using the code generator to help debug the other 

modules of the compiler and to measure available parallelism. 

Average operations packed per intruction is a spurious measure 
of speedup. Instead we divide the number of parallel cycles the 

code took to execute by the number of sequential cycles in 

running the uncompiled code. 

By comparison with the idealized code, real ELI code will 

contain many incidental small operations. 1Mether that 
THEBULLDOCCOMPILER 
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implies the same speedup, or less, or more, is subject to debate. 

These incidental operations may slow down the sequential code 
more than the parallel, making the speedup due to parallelism 

all the greater. Only time will tell. 

The fmnt end we are currently using generates our RISC- 

level intermediate code, N-address code or NADDR. The input 

is a local Lisp-sugared FORTRAN, C, or Pascal level language 

called Tiny-Lisp. It was something we built quickly to give us 

maximal flexibility. We have an easy time writing sample code 
for it, we didn’t have to write a pamer, and we can fiddle with 

the compiler easily, which has pmved to be quite useful. A 
FORTRAN ‘77 subset compiler into NADDR is written and 

being debugged, and we will consider other languages after 

that. Our RISC-level NADDR is very easy to generate code for 

and to apply standard compiler optimizations to. 

We have two more code generaton being written right now. 

A full ELI-512 generator is quite far along - a subset of it is 

now being interfaced to the trace picker and fixup code. We 
are also writing a FPS-184 code generator. The FPS-164 is the 

successor to the Floating Point Systems AP-12Ob, probably the 

largest-selling machine ever to have horizontal microcode ru its 

only language. There is a FORTRAN compiler for the 

FPS164, but our experience has been that it finds little of even 

the small amount of parallelism available on that machine. A 

compiler that competes with hand code would really change the 

pokntial usability of that machine (it’s very difficult to hand 

code) and would demonstrate the versatility of trace scheduling. 

MEMORY ANTI-ALIASINC ON BULLDOG 

Trace scheduling makes it necessary to do massive numbers 

of code motions in order to fill instructions with operations that 

come from widely separakd places in the program. Code 

motions are restricted by data pmedence. For example, 

suppose our program has the steps: 

(1) z:= A*X 
(2) A:= Y*Y 

Our code motions must not canse (2) to be scheduled earlier 
than (1). So the trace scheduler builds a data-precedence edge 

before scheduling. 

But what happens when A is an array reference? 

(1) z := A[axprl] l X 

(2) A[axprP] := Y l Y 

Whether (2) may be done earlier than (1) is ambiguous. If 
rxprl can be guaranteed to be different from l xpr2, then the 

code motion is legal; otherwise not. Answering this question is 

the problem of anti-aliasing memory references. V&h other 
forms of indirection, such as chruing down pointers, anti- 
aliasing has little hope of success. But when indirect references 

are to array elements, we can usually tell they are different at 

compile time. Indirect references in inner loops of scientific 

code am almost always to array elements. 

The system implemented in the Bulldog compiler attempts to 

solve the equation axprl = axpr2. It uses reaching definitions 

[Aho 77) to narrow the range of each variable in the 
expressions. We can assume that the variables are integers and 

use a diophantine equation solver to determine whether they 

could be the same. Range analysis can be quik sophisticated. 
In the implemented system, definitions are propagated as far as 

possible, and equations are solved in terms of simplest variables 

possible. We do not yet use branch conditions to narrow the 

range of values a variable could take, but we will. 

Anti-aliasing has been implemented and works correctly (if 

not quickly). Unfortunately, it is missing a few of its abilities 
- very few, but enough to slow it down badly. In this case the 
truism really holds: The chain is only as strong as its weakest 

link. So far we get speedups in the range of 5 to 10 for the 
practical code we’ve looked at. Good, but not what we want. 

Examining the results by hand makes it clear that when the 

missing pieces are supplied the speedup will be considerable. 

A MACHINE To RUN TRACE-SCHEDULED CODE 

The ELI-512 has 18 cluatcra, each containing an ALU and 

some storage. The dusters are arranged circularly, with each 

communicating to its nearest neighbors and some 
communicating with farther removed clusters. (Rough sketches 

of the ELI and its clusters are on the next page.) 

The ELI uses its 500+ bit instruction word to initiate all of 

the following in each instruction cycle: 

16 ALU operations. 8 will be 32-bit integer operations, 

and 8 will be done using &t-bit ALUs with a varied 

repertoire, including pipelined floating-point calculations. 

8 pipelined memory references - more about these lakr. 

32 register accesses. 

Very many data movements, including operand selects for 

the above operations. 

A multiway conditional jump based on several 
independent tests - more about these later too. (With 

this much happening at once, only a maniac would want to 
code the ELI by hand.) 

To carry out these operations, the ELI has 8 M-clusters and 8 
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F-clusters. Each M-cluster has within it: 

CLOBALINTERCONNECTIONSCHEMEOF THE ELI-512 

-- 

TYPICALMANDFCLUSTERBLOCKDIACRAMS 

A local memory module (of so far undetermined sire). 

An integer ALU which is likely to spend most of its time 

doing address calculations. The exact repertoires may 
vary from cluster to cluster, and won’t be fixed until we 

tune the architecture using actual code. 

A multiport integer register bank. 

A limited cluster crossbar, with 8 or fewer participants. 

Some of the participants will be off-cluster busses. Some 
of the crossbar connections will not be made. 

And each F-cluster has within it: 

A floating point ALU. The repertoires of the ALUs will 

vary from cluster to cluster and won’t be fiied until we 

tune the architecture. 

A multiport floating qister bank. 

A limited cluster crossbar, with 8 or fewer participants. 

Some of the participants will be off-cluster busses. Some 

of the crossbar connections will not be made. 

Do not be deceived by occasional regularities in the structure. 

They are there to make the hardware easier to build. The 

compiler doesn’t know about them, and it doesn’t attempt to 

make any nse of them. When we start running scientific code 

through the compiler, we will undoubtedly further tune the 
architecture. We will want to remove as many busses as we 

can, and many of the regularities may disappear. 

Current plans are to construct the prototype ELI from IOOK 

ECL logic, though we may opt for Shottkey TTL. 

PROBLEMS 

Nobody’s ever wanted to build a Sit-hit-wide instruction 

word machine before. As soon u we started considering it, we 

discovered that there are two big problems. How do you put 

enough tests in each instruction without making the machine 

too big? How do you put enough memory references in each 
instruction without making the machine too slow! 

Comparing VLlWs with vector machincs illustrates the 

problems to be solred. VLIWs put fine-gained, tightly 

coupled, but logically unrelated operations in single 

instructions. Vector machines do many finograined, tightly 

coupled, logically related opemtions at once to the elements of 

a vector. Vector machines can do many parallel operations 
between tests; VUWs cannot. Vector machines can structure 

memory iwferences to entire armys or slices of armys; VLIWs 

cannot. We’ve argued, of coume, that vector machines fail on 

268 



general scientific code for other reasons. How do we get their 

virtues nitbouL their vices! 

VLIWS NEED CLEVER JUMP MECIIANISMS 

Short basic blocks implied a lack of local parallelism. They 

also imply a low ratio of operations to tests. If we are going to 

pack a great many operations into each cycle, we had better be 

prepared LO make more than one test per cycle. Note that this 

is not a problem for today’s statically scheduled operation 

machines, which don’t pack enough operations in each 

instruction LO hit this ratio. 

Clearly we need a mechanism for jumping to one of several 

places indicated by the results of several tests. But not just 

any multiway jump mechanism will do. Many horizontally 

microcodable machines allow several testa to be specified in 

each microinstruction. But the mechanisms for doing this are 

too inflexible to be of significant use here. They do not allow 

for multiple independent tats, but rather offer a hardwired 

selection of tests that may be done at the same time. Some 
mxhines allow some specifbz set of bits to alter the next 

address calculation, allowing a 2”~way jump. This is used, for 

example, to implement an opcode decode, or some other 

hardware case statement. 

Another approach that won’t suffice for us is found in VAX 

II/780 microcode [Patterson 791. There, any one of several 

f&d sets of tests can be specified in a given instruction. A 
mask can be used to select any subset of those tests, which are 

logically ANDcd into the jump addnws. Unfortunately, the 
probability that two given conditional tests appear in the same 

set in the npemire is very low. In compacting it is extremely 

unlikely that one can place exactly the tests one wants to in a 

single instruction, or even a large subset of them. Instead, 

combinations are hardwired in advance. One would guess that 

the combinations reprwaent a convenient grouping for some 

given application program, in the case of the VAX, presumably 
the VAX instrnction set emulator. 

The most convenient support the architecture could possibly 
provide would be a 2”-way jump based on the results of testing 

n indenendent conditions. This is not as ttmwalistic as it 
sounds; such a mechanism was considered in the comae of 

developing trrce scheduling [Fisher 801, and seemed quite 

practical. It twned out, however, to be more general than we 
net&d. 

Nter we had actualiy implemented trace scheduling, a 

surprising fact emerged: What trace scheduling requires is a 
mechanism for jumping to any of n+l locations as the result of 

n independent tests. The tests should be any combination of n 
from the repertoire of tests available on the machine. 

The jump works just the way a COND statement works in 

LISP. For simplicity, we will pretend that a test’s FAILing 

means failing and wanting to stay on the trace and that 

SlJCCEEDing means succeeding and wanting to jump off the 

trace. A statement to express the multiway jump might appear 

3% 

(COND (test1 label11 
(toat lobolt) 

(tostk Isbolk) 

(tostn Isbrln) 
(SUCCEED Irbol-fa I I-through) ) 

If the first test, trstl. FAILS, it wants to stay on the trace 

and the second test, trst2. is made. If that FAILs, it too 

wants to stay on the trace. If a test, testk. SUCCEEDs, then it 

wants to jump off the trace to lobr I k : no on-trace tests after 

tostk will be made. If all the tests FAIL, we findly get to the 

last address in the instruction and fall through. 

We find that n+l target labels suffice; 2” aren’t needed. We 

sort aI1 the tests for one instruction in the order in which they 

appeared in the tme. Then when a test SUCCEEDs we are glad 

that we &ady executed the testi that came eanlicr in tbo 

sonrce order but we don’t much care about the ones that came 

later since we’re now off the trace. 

It is not hard to build a n+I-way jump mechanism. The 

figwe shows that all we need is a priority encoder and n test 

multiplexen. The wide instruction word selects each of the n 

tests with n j-bit (where j is log the number of tests) fields. 

The fint of the n tests (in sequence order) that wants to jump 

off the trace in effect selects the next instruction. 

But how do we actually produce the next address? We could 

place n+l candidates for the post of next ad&us in full in each 

instruction. But even on the ELI using so many instruction 
bits for that would seem like overkill. The idea of using the 
select bits as part of the next address (as in the rest,&tod 

multiway jumps referred to above) seems right, if we can 
overcome a small packing problem. 

For example, if n-3, and if the current instruction haa l 

next instruction address field of, say, OooOOU11, then we have 
the following situation: 

E CONDITION ADDRESS IF TEST IS 
EuQSELEC_TED u8sIIQsUCCEED 

0 tart1 00 00000011 
1 tost2 01 00000011 
2 test3 10 00000011 
3 SUCCEED 11 00000011 



lBIyym/ I 
lhipL~bft3NTING N+I-WAY INDEPENDENT JUMPS 

In this scheme WC do not increment a progam counter to get 

the next ad&s, though that could be fitted in if thenr were 

some advantage in speed for a particular ha&are 
implementation. 

What happens when we pack fewer than n tests in a cycle? 
From the example above, with ~-3, it might seem that we 

netd to spend four program memory locations for each set of 
target addressw~ But what if we hare straightline code, or 

want to do only one or two tests in some cycles (M we surely 

will)! Do we have Co w~stc the unused slots? We can avoid 

wahg slots if we include a test that always SUCCEEDS and 
another that always FAILs. With these tests, we can cawe two 
instructions which each want Co pack one test to share an 

address slice, or we can pack an instruction that does two tests 
with an instruction that wants to do no test. For example, 
take two instructions, INSTRl, which wants to do TESTl, and 

INSTR2, which wants to do TESTS. We can arrange Co have 

them both jump to a label in the address slice 00000011 (and 

thus both have 00000011 as their nextaddress field) = follows: 

After INSTRl, we jump to either 00 00000011 or to 01 
OOOOOOll. As a result, the next address field of INSTRl is 

00000011, and the test fields are filled in 1u below. 

I!zz CONDITION ADDRESS IF TEST IS 
FIELD SELECTED FIRST TO SUCCEED 

0 tort1 00 00000011 
1 SUCCEED 01 00000011 
2 don’t care won’t happen 
3 SUCCEED won’t happen 

After INSTR2, we jump to either 10 

00000011. So it looks like: 

OOODDOll or to 11 

TEST CONDITION ADDRESS IF TEST IS ---- 
m SELECTED FIRST TO $UCCEQ 

0 FAIL uon't happen 
1 FAIL won't happen 
2 TEST2 10 00000011 
3 SUCCEED 11 00000011 

Since we don’t have an incremented pmgram counter and 

can rearrange addresses at will, these allocations can be done in 

a straightforward matter in a postpass program. A little space 

may be wasted at code rejoins, but not much. 

Our previous work on 2"-way jumps applies also Co n+l-way 
jumps and contains a more complete explanation of these ideaa 

Fisher 801. 

THE JUMP MECHANISM ON THE ELI-512 

The ELI-512 will have an n+l-way jump mechanism like the 

one described above. During the time when we are tuning the 

machine design and the compiler, we will determine how many 

teata are appropriate; it scemS likely that n will be 3, 4, or 5. 

We have two instruction-fetch mechanisms under consideration. 

Delayed branches are an old microcode instruction-fetch trick 
that works particularly well here for (Groas 82, Pattermn 821. 

In a delayed-branch mechanism the ad&s of instruction M+k 

ia determined by the result of a test in instruction M. The k 

instructions betwetn M and M+k are done whether the teat 

rueceecla or faila. Using tract scheduling, wt know which way 

moot jumps go; ao we can P the gap with instrncCions that 

will probably be in the execution stream. The current compiler 
ha&la delayed jumps w a matter of course, but we’ve taktn 

no measurements on wheCher or how much they slow down the 
code. 

The alternative is to fetch an entire slice at once. We would 

have n+l banks of instruction memory and would fetch all the 

ntxt candidate words, using the nextinstruction addreas of an 

instruction a soon IU it is selected. Then, when the tests have 
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settled down, the bits coming out of the priority encoder can 

multiplex from among the n+l choices. The large words on 
the ELI may make this technique difficult. 

VL,IW COMPILERS MUST PREDICT MEMORY BANKS 

With so many operations packed in each cycle, many of them 

will have to be memory references. But (m in any parallel 
processing system) we cannot simply issue many references each 

cycle; two things will go wrong. Getting the addresses through 
some kind of global arbitration system will take a long time. 

And the probability of bank conflict will approach 1, requiring 

IU to freeze the entire machine most cpcies. 

But here we can rely (as usual) on a combination of smart 

compiler and static code. We ask our compiler to look at the 

code and try to predict what bank the reference is in. When 

we can predict the bank, we can use a dedicated address 

register to refer to it directly. To make several references each 

cycle, we access each of the memory banks’ address registen 

individually. No arbitration is necessary, since the paths of the 

addre~3 will never cross. 

When we mk the compiler which bank a reference is going to 

be in, what are the chances of getting an answer? In the static 

code we expect to run on a VLIW, very good. Scalars always 

have known locations. ‘what about arrays! The same system 

that does anti-aliwing can attempt to see which bank a 

reference is in. As you’ll recall, loops get unwound to increase 

parallelism. In fact, it’s the anti-abasing system that does the 

onwinding, since it knows which are induction variables and 

which aren’t. (It renames non-induction variables that appear 

in successive unwound iterations to avoid unnecessary data- 

precedence.) By unrolling so that the array subscripts increase 

by a multiple of the number of banks every iteration, the anti- 

aliuing system often makes it possible to predict banks. 

What about unpredictable references! Two kinds of 

unpredictable references muddy up this scheme. 

First of all, we might simply have no chance to predict the 

bank address of a refennce. For example, we might be chresing 

down a pointer and need access to the entire memory address 

space. But such accesses are suumed to be in the tiny 

minority; all we have to do is be sure they don’t excessively 
L&W down the local, predictable acceaau. Our solution is ta 

build a shadow memory-access system that takes addresses for 
any bank whatsoever and returns the values at those addresses. 
This requires our memory banks to be dual-ported and hare 

lockout capabilities. The allocation of hardware resowces 
should favor predictable access; unpredictable access can be 

made slower. And the predictable accesses should have priority 

in case of bank ronflict; we can make the machine freeze when 

an unpredictable reference doesn’t finish in time. If there are 

too many of these references, the machine will perform badly. 

But in that case conservative data-precedence would have 

destroyed any chance at large amounts of parallelism anyway. 

The second problem is that even when we have arrays and 

have unrolled the loops properly, we might not be able to 

predict the bank location of a subscript. For example the 
subscript value might depend on a loop index variable with a 

data-dependent starting point. Unknown starting values don’t 

ruin our chances of doing predictable references inside the loop. 

All we have to do is ask the compiler to set up a kind of pm 

loop. The pn-loop looks like the original loop, but it exits 

when the unknown variable reaches some known value m&do 
the number of banks. Although it may itself be unwound and 

compacted, the pre-loop has to use the slow unpredictable 

addressing system on the unpredictable references. But it will 
execute some short number of cycles compared to the very long 

unwound loop. The situation given B banks is illustrated on 

the next page. 

MEMORY ACCESSING IN THE ELI-512 

The current design of the ELI counts on the system outlined 

above: bank prediction, precedence for local searches, and prr- 

looping. Each of the 8 M-clusters has one memory access port 

used for times when the bank is known. We will start one 

pipelined access per cycle per M-cluster (which may requhw us 
to be able to distinguish among at least 16 physical banks, 2 

per module, depending upon the design of the memory). This 

will give us a potential data memory access bandwidth of about 

400 Mbytes/set. if our cycle time is in the neighborhood of 150 

ns. To implement pre-looping, we will have tests for addresses 

module the number of banks. 

In addition, the ELI will have two access ports that address 
memory globally. When they are ready, the results of a global 

fetch are put in a local register bank. When a reference is 
made to the data, the system freezes if the data isn’t in the 

registers, and all the pending global references sneak in while 

they have a chance. We expect this state of affairs to he quite 

infrequent. 

WHAT WE ARE DOING AND NOT DOING 

This paper offem solutions to the problems standing in the 
way of using Very Long Instruction Word architecturea to 

speed up scientific code. These problems include highly parallel 
code generation, multiple tests in each cycle, and multiple 

memory references in each cycle. 
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(I) 

for I = k to n 
do (loop body) 

(b) 

I=k 
LOOP: tloop body) 

if I >= n &oU, FALLTHROUGH 
I := I*1 
(loop body) 
if I >= n &oto FALLTHROUGH 
I := 1*1 
(loop body) 
If I >= n goto FALLTHROUGH 
I := I*1 

{loop body) 

if I < n got0 LOOP 

I=k 
PRELOOP: If I = 0 nod(B) goto LOOP 

{loop body) 
I := 1*1 
if I > n eoto FALLTHROUGH 
goto PRELOOP 

LOOP : {loop body> * deduce I=0 
* mod (8) 

if I >= n goto FALLTHROUGH 
I := 1+1 
{loop body) 
If I >= n goto FALLTHROUGH 
I := I*1 
{loop body) 
if I >= n goto FALlTHROUCH 
I := I*1 
<loop body) 

if I < n got0 LOOP 
FALLTHROUGH: 

FALLTHROUGH: 

ADDING A PRE-LOOP 

Adding a pre-loop to canse unknown bank references to start 

the loop with known values, modulo the number of banks. (a) 

contains a source loop. Note that we are using FORTRAN 
loop style with the test at the end. In (b) the loop is unwound. 

In (c) we have added a p-loop that xecutes until I is a known 

value modulo the number of banks. 

The Bulldog compiler and experiments done oa real code 

have demonstrated that a large degree of parallelism exists in 

typical scientific code. Given that the e.xist.eace of this 

parallelism makes VLIW machines desirable, we are building 

one: the ELI-512, a very parallel attached processor with a 

SW+ bit instruction word. We expect the ELI to speed up 
code by a faetor of 1040 over an equivalent sequential 
machine. We will be generating good code for the ELI before 

we build it. We are also writing a compiler for the FPS-164, a 

much less parallel but otherwise similar ar&itecture. 

Our code generators use trace scheduling for locating and 

specifying parallelism originating in far removed places in the 

code. The n+l-way jump mechanism makes it possible to 

schedule enough tests in each cycle without making the 
machine too big. Bank prediction, precedence for local 
searches, and p-looping make it possible to schedule enough 
memory references in each cycle without making the machine 

too slow. 

Partly to reduce the scope of the project and partly because 

of the the nature of VLIWs, we are limiting ourselves in various 

ways. ELI will be an attached processor - no I/O, no 

compilen, no ELI simulators, no user amenities. Rather we will 

choose a sane host. ELI will not be optimized for effcieat 

context switch or procedure call. The ELI will be running 

computobound scientific code. It is difficult to extend VLIW 
parallelism beyond procedure calls: when we want to, we can 
expand such calls in line. Any VLIW architecture is likely to 
perform badly on dynamic code, including most systems and 
general-purpose code and some scientific code. We will be 

content to have ELI perform very well on most scientific code. 
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