
VERY LONG INSTRUCTION WORD

ARCHITECTURES

AND THE ELI-512

JOSEPH A. FISHER

YALE UNIVERSITY

NEW HAVEN, CONNECTICUT 013520

ABSTRACT

By compiling ordinary scientific applications programs with a

radical technique called trace scheduling, we are generating

code for a parallel machine that will run these programs faster

than an equivalent sequential machine - we expect 10 to 30

times faster.

Trace scheduling generates code for machines called Very
Long Instruction Word architectures. In Very Long Instruction

Word machines, many statically scheduled, tightly coupled,

fintgrained operations execute in parallel within a single

instruction stream. VUWs are more parallel extensions of

several current architectures.

These current architectures have never cracked a

fundamental barrier. The speedup they get from parallelism is
never more than a factor of 2 to 3. Not that we couldn’t build

more parallel machines of this type; but until trace scheduling

we didn’t know how to generate code for them. Trace

scheduling finds sufficient parallelism in ordinary code to

justify thinking about a highly parallel VLIW.

At Yale we are actually building one. Our machine, the

ELI-512, has a horizontal instruction word of over 500 bits and
will do 10 to 30 RISC-level operations per cycle [Pattenon 821.
ELI stands for Enormously Longword Instructions; 512 is the
size of the instruction word we hope to achieve. (The current
design has a 1200-bit instruction word.)

Once it became clear that we could actually compile code for

a VLIW machine, some new questions appeared, and answers

This research is sponsored in part by the National Science
Foundation under grants MCS-81-08181 and MCS-81-07846, in
part by the Office of Naval Research under grant number

NOOO14-82-K-0184, and in part by the Army Research Office

under grant number DAAC2881-K-0171.

are presented in this paper. How do we put enough tests in

each cycle without making the machine too big? How do we

put enough memory references in each cycle without making

the machine too slow?

Everyone wants to use cheap hardware in parallel to speed

up computation. One obvious approach would be to take your
favorite Reduced Instruction Set Computer, let it be capable of

executing 10 to 30 RISC-level operations per cycle controlled by

a very long instruction word. (In fact, call it a VLIW.) A

VLIW looks like very parallel horizontal microcode.

More formally, VLIW architectures have the following

properties:

There is one central control unit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled

independent operations.

Each operation requires a small, statically predictable

number of cycles to execute.

Operations can be pipelined. These properties distinguish
VLlWs from multipmcasors (with large asynchronous tasks)
and dataflow machines (without a single flow of contml, and

without the tight coupling). VLIWs have none of the required
regularity of a vector processor, or true array processor.

Many machines appmximately like this have been built, but

they have all hit a very low ceiling in the degree of parallelism

they provide. Besides horizontal microcode engines, these

machines include the CDC 6600 and its many successors, such
as the scalar portion of the CRAY-1; the IBM Stretch and

360/91; and the Stanford MIPS [Hennessy 821. It’s not

surprising that they didn’t offer very much parallelism.
Experiments and experience indicated that only a factor of 2 to
3 speedup fmm parallelism was available within basic blocks.

(A basic block of code h= no jumps in except at the beginning

0 1983 ACM 0149-7111/83/0600/0140$01.00

263

and no jumps out except at the end.) No one knew how to find

parallelism beyond conditional jumps, and evidently no one was

even looking. It seemed obvious that you couldn’t put

operations from different basic blocks into the same instruction.

There was no way to tell beforehand about the flow of control.
How would you know whether you wanted them to be executed

together?

Occasionally people have built much more parallel VLIW

machines for special purposes. But these have been hand-

Coded. Hand-coding long-instruction-word machines is a

horrible task, as anyone who’s written horizontal microcode will

tell you. The code arrangements are unintuitive and nearly

impossible to follow. Special-purpose processon can get away

with hand coding because they need only a very few lines of

code. The Floating Point Systems AP-120b can offer speedup

by a factor of 5 or B in a few special-purpose applications for

which code has been handwritten at enormous cost. But this
code does not generalize, and most users get only the standard

2 or 3 - and then only after great labor and on small

programs.

We’re talking about an order of magnitude more parallelism;

obviously we can forget about hand coding. But where does

the parallelism come fmm?

Not from basic blocks. Experiments showed that the

parallelism within basic blocks is very limited [Tjaden

70, Foster 72). But a radically new global compaction

technique called trace scheduling can find large degrees of

parallelism beyond basic-block boundaries. Trace scheduling

doesn’t work on some code, but it will work on most general

scientific code. And it works in a way that makes it possible to

bnild a compiler that generates highly parallel code.

Experiments done with trace scheduling in mind verify the

existence of huge amounts of parallelism beyond basic blocks
[Nicolau 811. NicolauEl repeats an earlier experiment done in

a different context that found the same parallelism but

dismissed it; trace scheduling was then unknown and immense
amounts of hardware would have been needed to take

advantage of the parallelism [Riseman 721.

WHY NOT VECTOR MACHINES?

Vector machines seem to offer much more parallelism than
the factor of 2 or 3 that current VLIWs offer. Although vector
machines have their place, we don’t believe they have much

chance of success on general-purpose scientific code. They are

crueifyingly difficult to program, and they speed up only inner

loops, not the rest of the code.

To program a vector machine, the compiler or hand coder

must make the data structures in the code fit neariy exactly the

regular structure built into the hardware. That’s hard to do in

first place, and just as hard to change. One tweak, and the

low-level code has to be rewritten by a very smart and

dedicated programmer who knows the hardware and often the

subtleties of the application area. Ofkn the rewriting is
unsuccessful; it’s back to the drawing boards again. Many
people hope that highly vector&d code can be produced from

ordinary scalar code by a very intellegent compiler [Padua 801.

We believe that vectoriting will produce sufficient parallelism

in only a small percentage of programs.

And vectoricing works only on inner loops; the rest of the

code gets no speedup whatsoever. Even if 90% of the code
were in inner loops, the other 10% would run at the same speed

as on a sequential machine. Even if you could get the 90% to
run in zem time, the other 10% would limit the speedup to a

factor of 10.

TRACE SCIIEDULING

The VLIW compiler we have built uses a recent global

compaction technique called trace scheduling Fisher 811. This
technique ww originally developed for microcode compaction,

compaction being the pmeess of generating very long
instructions fmm some sequential souree.

Horizontal micmcode is like VLIW architectures in its style

of parallelism. It differs in having idiosyncratic operations and

less parallel hardware. Other techniques besides trace

scheduling have been developed for microcode compaction

[Tokom 78, Daagupta 79, Jacobs 821. They differ from trace

scheduling in taking already compacted basic blocks and
searching for parallelism in individual code motions between
blocks. That might work for horizontal microcode but it
probably won’t work for VLlWs. VLlWs have much more

parallelism than horizontal microcode, and these techniques
require too expensive a search to exploit it.

Trace scheduling replaces block-by-block compaction of code

with the compaction of long streams of code, possibly

thousands of instructions long. Here’s the trick: You do a

little bit of preprocessing. Then you schedule the long streams
of code as if they were basic blocks. Then you undo the bad
effects of pretending that they were basic blocks. What you
get out of this is the ability to use well-known, very efficient

scheduling techniques on the whole stream. These techniques

previously seemed confined to basic blocks.

To sketch briefly, we start with loop-free code that has no

back edges. Given a reducable flow graph, we can find loop

264

fm innermost code [Aho’l’l].

TRACE SCHEDULING LOOP-FREE CODE

(a) A flow graph, with each block representing a basic block

of code. (b) A trace picked fmm the flow graph. (c) The trace

has been scheduled but it hasn’t been relinked to t,he rest of the
code. (d) The sections of unscheduled code that allow re-

linking.

Part (a) of the figure shows a

small flow graph without back edges. Dynamic information -

jump predictions - is used at compile time to select streams

with the highest probability of execution. Those streams we

call “traces.” We pick our first trace from the most frequently

executed code. In part (b) of the figure, a trace has been

selected fmm the flow graph.

Preprocessing prevents the scheduler from making absolutely
illegal code motions between blocks, ones that would clobber
the values of live variables off the trace. This is done by

adding new, special edges to the data precedence graph built

for the trace. The new edges are drawn between the test

operations that conditionally jump to where the variable is live

and the operations that might clobber the variable. The edges
are added to the data precedence graph and look just like all

the other edges. The scheduler, none the wiser, is then

permitted to behave just as if it were scheduling a single basic
block. It pays no attention whatsoever to block boundaries.

After scheduling is complete, the scheduler has made many

code motions that will not correctly preserve jumps fmm the

stream to the outside world (or rejoins back). So a

postprocessor inserts new code at the stream exits and
entrances to recover the correct machine state outside the

stream. Without this ability, available parallelism would be
unduly constrained by the need to preserve jump boundaries.

In part (c) of the figure, the trace has been isolated and in part

(d) the new, uncompacted code appears at the code splits and

rejoins.

Then we look for our second trace. Again we look at the

most frequently executed code, which by now includes not only

the source code beyond the tint trace but also any new code
that we generated to recover splits and rejoins. We compact

the second trace the same way, possibly producing recovery
code. (In our actual implementation so far, we have been

pleuantly surprised at the small amount of recovery code that

gets generated.) Eventually, this process works its way out to

code with little probability of execution, and if need be more
mnndane compaction methods are used so as not to produce

new code.

Trace scheduling provides a natural solution for loops. Hand
coders use software pipelining to increase parallelism, rewriting
a loop so as to do pieces of several consecutive iterations
simultaneously. Trace scheduling can be trivially extended to

do software pipelining on any loop. We simply uuroll the loop

for many iterations. The unrolled loop is a stream, all the

intermediate loop tests are now conditional jumps, and the
stream gets compacted as above.

While this method of handling loops may be somewhat less
space efficient than is theoretically necessary-, it can handle

265

(a) i

0
Lin BaN

b EXIT

.

.

(b)

' E
.
cl

.

TRACESCHEDULINGLOOPS

(a) A loop body, which might contain arbitrary flow of

control, and the exit code it jumps to. (b) The loop body

unwound k times. (c) Traces are picked through the unwound

loop and it is scheduled. (d) The newly scheduled loop is ro

linked to the rest of the code.

arbitrary flow of control within each old loop iteration, a major

advantage in attempting to compile reai code. The figure
above, which is generally analogous to the one before, shows

how loops are handled.

BULLDOG,ATRACE-SCHEDULINGCOMPILER

We have implemented a traecschcduling compiler in

compiled Maclisp on a DEC-2060. We call it Bulldog to
suggest its tenacity (and prevent people from thinking it was

written at Harvard). Bulldog has 5 major modules, as outlined

in the figure to the right.

Our first code generator is for an idealized VLIW machine
that takes a single cycle to execute each of its RISC-level

operations (not too drastic an idealization) and does unlimited

memory accesses per cycle (entirely too drastic an idealization).

We are using the code generator to help debug the other

modules of the compiler and to measure available parallelism.

Average operations packed per intruction is a spurious measure
of speedup. Instead we divide the number of parallel cycles the

code took to execute by the number of sequential cycles in

running the uncompiled code.

By comparison with the idealized code, real ELI code will

contain many incidental small operations. 1Mether that
THEBULLDOCCOMPILER

266

implies the same speedup, or less, or more, is subject to debate.

These incidental operations may slow down the sequential code
more than the parallel, making the speedup due to parallelism

all the greater. Only time will tell.

The fmnt end we are currently using generates our RISC-

level intermediate code, N-address code or NADDR. The input

is a local Lisp-sugared FORTRAN, C, or Pascal level language

called Tiny-Lisp. It was something we built quickly to give us

maximal flexibility. We have an easy time writing sample code
for it, we didn’t have to write a pamer, and we can fiddle with

the compiler easily, which has pmved to be quite useful. A
FORTRAN ‘77 subset compiler into NADDR is written and

being debugged, and we will consider other languages after

that. Our RISC-level NADDR is very easy to generate code for

and to apply standard compiler optimizations to.

We have two more code generaton being written right now.

A full ELI-512 generator is quite far along - a subset of it is

now being interfaced to the trace picker and fixup code. We
are also writing a FPS-184 code generator. The FPS-164 is the

successor to the Floating Point Systems AP-12Ob, probably the

largest-selling machine ever to have horizontal microcode ru its

only language. There is a FORTRAN compiler for the

FPS164, but our experience has been that it finds little of even

the small amount of parallelism available on that machine. A

compiler that competes with hand code would really change the

pokntial usability of that machine (it’s very difficult to hand

code) and would demonstrate the versatility of trace scheduling.

MEMORY ANTI-ALIASINC ON BULLDOG

Trace scheduling makes it necessary to do massive numbers

of code motions in order to fill instructions with operations that

come from widely separakd places in the program. Code

motions are restricted by data pmedence. For example,

suppose our program has the steps:

(1) z:= A*X
(2) A:= Y*Y

Our code motions must not canse (2) to be scheduled earlier
than (1). So the trace scheduler builds a data-precedence edge

before scheduling.

But what happens when A is an array reference?

(1) z := A[axprl] l X

(2) A[axprP] := Y l Y

Whether (2) may be done earlier than (1) is ambiguous. If
rxprl can be guaranteed to be different from l xpr2, then the

code motion is legal; otherwise not. Answering this question is

the problem of anti-aliasing memory references. V&h other
forms of indirection, such as chruing down pointers, anti-
aliasing has little hope of success. But when indirect references

are to array elements, we can usually tell they are different at

compile time. Indirect references in inner loops of scientific

code am almost always to array elements.

The system implemented in the Bulldog compiler attempts to

solve the equation axprl = axpr2. It uses reaching definitions

[Aho 77) to narrow the range of each variable in the
expressions. We can assume that the variables are integers and

use a diophantine equation solver to determine whether they

could be the same. Range analysis can be quik sophisticated.
In the implemented system, definitions are propagated as far as

possible, and equations are solved in terms of simplest variables

possible. We do not yet use branch conditions to narrow the

range of values a variable could take, but we will.

Anti-aliasing has been implemented and works correctly (if

not quickly). Unfortunately, it is missing a few of its abilities
- very few, but enough to slow it down badly. In this case the
truism really holds: The chain is only as strong as its weakest

link. So far we get speedups in the range of 5 to 10 for the
practical code we’ve looked at. Good, but not what we want.

Examining the results by hand makes it clear that when the

missing pieces are supplied the speedup will be considerable.

A MACHINE To RUN TRACE-SCHEDULED CODE

The ELI-512 has 18 cluatcra, each containing an ALU and

some storage. The dusters are arranged circularly, with each

communicating to its nearest neighbors and some
communicating with farther removed clusters. (Rough sketches

of the ELI and its clusters are on the next page.)

The ELI uses its 500+ bit instruction word to initiate all of

the following in each instruction cycle:

16 ALU operations. 8 will be 32-bit integer operations,

and 8 will be done using &t-bit ALUs with a varied

repertoire, including pipelined floating-point calculations.

8 pipelined memory references - more about these lakr.

32 register accesses.

Very many data movements, including operand selects for

the above operations.

A multiway conditional jump based on several
independent tests - more about these later too. (With

this much happening at once, only a maniac would want to
code the ELI by hand.)

To carry out these operations, the ELI has 8 M-clusters and 8

267

F-clusters. Each M-cluster has within it:

CLOBALINTERCONNECTIONSCHEMEOF THE ELI-512

--

TYPICALMANDFCLUSTERBLOCKDIACRAMS

A local memory module (of so far undetermined sire).

An integer ALU which is likely to spend most of its time

doing address calculations. The exact repertoires may
vary from cluster to cluster, and won’t be fixed until we

tune the architecture using actual code.

A multiport integer register bank.

A limited cluster crossbar, with 8 or fewer participants.

Some of the participants will be off-cluster busses. Some
of the crossbar connections will not be made.

And each F-cluster has within it:

A floating point ALU. The repertoires of the ALUs will

vary from cluster to cluster and won’t be fiied until we

tune the architecture.

A multiport floating qister bank.

A limited cluster crossbar, with 8 or fewer participants.

Some of the participants will be off-cluster busses. Some

of the crossbar connections will not be made.

Do not be deceived by occasional regularities in the structure.

They are there to make the hardware easier to build. The

compiler doesn’t know about them, and it doesn’t attempt to

make any nse of them. When we start running scientific code

through the compiler, we will undoubtedly further tune the
architecture. We will want to remove as many busses as we

can, and many of the regularities may disappear.

Current plans are to construct the prototype ELI from IOOK

ECL logic, though we may opt for Shottkey TTL.

PROBLEMS

Nobody’s ever wanted to build a Sit-hit-wide instruction

word machine before. As soon u we started considering it, we

discovered that there are two big problems. How do you put

enough tests in each instruction without making the machine

too big? How do you put enough memory references in each
instruction without making the machine too slow!

Comparing VLlWs with vector machincs illustrates the

problems to be solred. VLIWs put fine-gained, tightly

coupled, but logically unrelated operations in single

instructions. Vector machines do many finograined, tightly

coupled, logically related opemtions at once to the elements of

a vector. Vector machines can do many parallel operations
between tests; VUWs cannot. Vector machines can structure

memory iwferences to entire armys or slices of armys; VLIWs

cannot. We’ve argued, of coume, that vector machines fail on

268

general scientific code for other reasons. How do we get their

virtues nitbouL their vices!

VLIWS NEED CLEVER JUMP MECIIANISMS

Short basic blocks implied a lack of local parallelism. They

also imply a low ratio of operations to tests. If we are going to

pack a great many operations into each cycle, we had better be

prepared LO make more than one test per cycle. Note that this

is not a problem for today’s statically scheduled operation

machines, which don’t pack enough operations in each

instruction LO hit this ratio.

Clearly we need a mechanism for jumping to one of several

places indicated by the results of several tests. But not just

any multiway jump mechanism will do. Many horizontally

microcodable machines allow several testa to be specified in

each microinstruction. But the mechanisms for doing this are

too inflexible to be of significant use here. They do not allow

for multiple independent tats, but rather offer a hardwired

selection of tests that may be done at the same time. Some
mxhines allow some specifbz set of bits to alter the next

address calculation, allowing a 2”~way jump. This is used, for

example, to implement an opcode decode, or some other

hardware case statement.

Another approach that won’t suffice for us is found in VAX

II/780 microcode [Patterson 791. There, any one of several

f&d sets of tests can be specified in a given instruction. A
mask can be used to select any subset of those tests, which are

logically ANDcd into the jump addnws. Unfortunately, the
probability that two given conditional tests appear in the same

set in the npemire is very low. In compacting it is extremely

unlikely that one can place exactly the tests one wants to in a

single instruction, or even a large subset of them. Instead,

combinations are hardwired in advance. One would guess that

the combinations reprwaent a convenient grouping for some

given application program, in the case of the VAX, presumably
the VAX instrnction set emulator.

The most convenient support the architecture could possibly
provide would be a 2”-way jump based on the results of testing

n indenendent conditions. This is not as ttmwalistic as it
sounds; such a mechanism was considered in the comae of

developing trrce scheduling [Fisher 801, and seemed quite

practical. It twned out, however, to be more general than we
net&d.

Nter we had actualiy implemented trace scheduling, a

surprising fact emerged: What trace scheduling requires is a
mechanism for jumping to any of n+l locations as the result of

n independent tests. The tests should be any combination of n
from the repertoire of tests available on the machine.

The jump works just the way a COND statement works in

LISP. For simplicity, we will pretend that a test’s FAILing

means failing and wanting to stay on the trace and that

SlJCCEEDing means succeeding and wanting to jump off the

trace. A statement to express the multiway jump might appear

3%

(COND (test1 label11
(toat lobolt)

(tostk Isbolk)

(tostn Isbrln)
(SUCCEED Irbol-fa I I-through))

If the first test, trstl. FAILS, it wants to stay on the trace

and the second test, trst2. is made. If that FAILs, it too

wants to stay on the trace. If a test, testk. SUCCEEDs, then it

wants to jump off the trace to lobr I k : no on-trace tests after

tostk will be made. If all the tests FAIL, we findly get to the

last address in the instruction and fall through.

We find that n+l target labels suffice; 2” aren’t needed. We

sort aI1 the tests for one instruction in the order in which they

appeared in the tme. Then when a test SUCCEEDs we are glad

that we &ady executed the testi that came eanlicr in tbo

sonrce order but we don’t much care about the ones that came

later since we’re now off the trace.

It is not hard to build a n+I-way jump mechanism. The

figwe shows that all we need is a priority encoder and n test

multiplexen. The wide instruction word selects each of the n

tests with n j-bit (where j is log the number of tests) fields.

The fint of the n tests (in sequence order) that wants to jump

off the trace in effect selects the next instruction.

But how do we actually produce the next address? We could

place n+l candidates for the post of next ad&us in full in each

instruction. But even on the ELI using so many instruction
bits for that would seem like overkill. The idea of using the
select bits as part of the next address (as in the rest,&tod

multiway jumps referred to above) seems right, if we can
overcome a small packing problem.

For example, if n-3, and if the current instruction haa l

next instruction address field of, say, OooOOU11, then we have
the following situation:

E CONDITION ADDRESS IF TEST IS
EuQSELEC_TED u8sIIQsUCCEED

0 tart1 00 00000011
1 tost2 01 00000011
2 test3 10 00000011
3 SUCCEED 11 00000011

lBIyym/ I
lhipL~bft3NTING N+I-WAY INDEPENDENT JUMPS

In this scheme WC do not increment a progam counter to get

the next ad&s, though that could be fitted in if thenr were

some advantage in speed for a particular ha&are
implementation.

What happens when we pack fewer than n tests in a cycle?
From the example above, with ~-3, it might seem that we

netd to spend four program memory locations for each set of
target addressw~ But what if we hare straightline code, or

want to do only one or two tests in some cycles (M we surely

will)! Do we have Co w~stc the unused slots? We can avoid

wahg slots if we include a test that always SUCCEEDS and
another that always FAILs. With these tests, we can cawe two
instructions which each want Co pack one test to share an

address slice, or we can pack an instruction that does two tests
with an instruction that wants to do no test. For example,
take two instructions, INSTRl, which wants to do TESTl, and

INSTR2, which wants to do TESTS. We can arrange Co have

them both jump to a label in the address slice 00000011 (and

thus both have 00000011 as their nextaddress field) = follows:

After INSTRl, we jump to either 00 00000011 or to 01
OOOOOOll. As a result, the next address field of INSTRl is

00000011, and the test fields are filled in 1u below.

I!zz CONDITION ADDRESS IF TEST IS
FIELD SELECTED FIRST TO SUCCEED

0 tort1 00 00000011
1 SUCCEED 01 00000011
2 don’t care won’t happen
3 SUCCEED won’t happen

After INSTR2, we jump to either 10

00000011. So it looks like:

OOODDOll or to 11

TEST CONDITION ADDRESS IF TEST IS ----
m SELECTED FIRST TO $UCCEQ

0 FAIL uon't happen
1 FAIL won't happen
2 TEST2 10 00000011
3 SUCCEED 11 00000011

Since we don’t have an incremented pmgram counter and

can rearrange addresses at will, these allocations can be done in

a straightforward matter in a postpass program. A little space

may be wasted at code rejoins, but not much.

Our previous work on 2"-way jumps applies also Co n+l-way
jumps and contains a more complete explanation of these ideaa

Fisher 801.

THE JUMP MECHANISM ON THE ELI-512

The ELI-512 will have an n+l-way jump mechanism like the

one described above. During the time when we are tuning the

machine design and the compiler, we will determine how many

teata are appropriate; it scemS likely that n will be 3, 4, or 5.

We have two instruction-fetch mechanisms under consideration.

Delayed branches are an old microcode instruction-fetch trick
that works particularly well here for (Groas 82, Pattermn 821.

In a delayed-branch mechanism the ad&s of instruction M+k

ia determined by the result of a test in instruction M. The k

instructions betwetn M and M+k are done whether the teat

rueceecla or faila. Using tract scheduling, wt know which way

moot jumps go; ao we can P the gap with instrncCions that

will probably be in the execution stream. The current compiler
ha&la delayed jumps w a matter of course, but we’ve taktn

no measurements on wheCher or how much they slow down the
code.

The alternative is to fetch an entire slice at once. We would

have n+l banks of instruction memory and would fetch all the

ntxt candidate words, using the nextinstruction addreas of an

instruction a soon IU it is selected. Then, when the tests have

270

settled down, the bits coming out of the priority encoder can

multiplex from among the n+l choices. The large words on
the ELI may make this technique difficult.

VL,IW COMPILERS MUST PREDICT MEMORY BANKS

With so many operations packed in each cycle, many of them

will have to be memory references. But (m in any parallel
processing system) we cannot simply issue many references each

cycle; two things will go wrong. Getting the addresses through
some kind of global arbitration system will take a long time.

And the probability of bank conflict will approach 1, requiring

IU to freeze the entire machine most cpcies.

But here we can rely (as usual) on a combination of smart

compiler and static code. We ask our compiler to look at the

code and try to predict what bank the reference is in. When

we can predict the bank, we can use a dedicated address

register to refer to it directly. To make several references each

cycle, we access each of the memory banks’ address registen

individually. No arbitration is necessary, since the paths of the

addre~3 will never cross.

When we mk the compiler which bank a reference is going to

be in, what are the chances of getting an answer? In the static

code we expect to run on a VLIW, very good. Scalars always

have known locations. ‘what about arrays! The same system

that does anti-aliwing can attempt to see which bank a

reference is in. As you’ll recall, loops get unwound to increase

parallelism. In fact, it’s the anti-abasing system that does the

onwinding, since it knows which are induction variables and

which aren’t. (It renames non-induction variables that appear

in successive unwound iterations to avoid unnecessary data-

precedence.) By unrolling so that the array subscripts increase

by a multiple of the number of banks every iteration, the anti-

aliuing system often makes it possible to predict banks.

What about unpredictable references! Two kinds of

unpredictable references muddy up this scheme.

First of all, we might simply have no chance to predict the

bank address of a refennce. For example, we might be chresing

down a pointer and need access to the entire memory address

space. But such accesses are suumed to be in the tiny

minority; all we have to do is be sure they don’t excessively
L&W down the local, predictable acceaau. Our solution is ta

build a shadow memory-access system that takes addresses for
any bank whatsoever and returns the values at those addresses.
This requires our memory banks to be dual-ported and hare

lockout capabilities. The allocation of hardware resowces
should favor predictable access; unpredictable access can be

made slower. And the predictable accesses should have priority

in case of bank ronflict; we can make the machine freeze when

an unpredictable reference doesn’t finish in time. If there are

too many of these references, the machine will perform badly.

But in that case conservative data-precedence would have

destroyed any chance at large amounts of parallelism anyway.

The second problem is that even when we have arrays and

have unrolled the loops properly, we might not be able to

predict the bank location of a subscript. For example the
subscript value might depend on a loop index variable with a

data-dependent starting point. Unknown starting values don’t

ruin our chances of doing predictable references inside the loop.

All we have to do is ask the compiler to set up a kind of pm

loop. The pn-loop looks like the original loop, but it exits

when the unknown variable reaches some known value m&do
the number of banks. Although it may itself be unwound and

compacted, the pre-loop has to use the slow unpredictable

addressing system on the unpredictable references. But it will
execute some short number of cycles compared to the very long

unwound loop. The situation given B banks is illustrated on

the next page.

MEMORY ACCESSING IN THE ELI-512

The current design of the ELI counts on the system outlined

above: bank prediction, precedence for local searches, and prr-

looping. Each of the 8 M-clusters has one memory access port

used for times when the bank is known. We will start one

pipelined access per cycle per M-cluster (which may requhw us
to be able to distinguish among at least 16 physical banks, 2

per module, depending upon the design of the memory). This

will give us a potential data memory access bandwidth of about

400 Mbytes/set. if our cycle time is in the neighborhood of 150

ns. To implement pre-looping, we will have tests for addresses

module the number of banks.

In addition, the ELI will have two access ports that address
memory globally. When they are ready, the results of a global

fetch are put in a local register bank. When a reference is
made to the data, the system freezes if the data isn’t in the

registers, and all the pending global references sneak in while

they have a chance. We expect this state of affairs to he quite

infrequent.

WHAT WE ARE DOING AND NOT DOING

This paper offem solutions to the problems standing in the
way of using Very Long Instruction Word architecturea to

speed up scientific code. These problems include highly parallel
code generation, multiple tests in each cycle, and multiple

memory references in each cycle.

271

(I)

for I = k to n
do (loop body)

(b)

I=k
LOOP: tloop body)

if I >= n &oU, FALLTHROUGH
I := I*1
(loop body)
if I >= n &oto FALLTHROUGH
I := 1*1
(loop body)
If I >= n goto FALLTHROUGH
I := I*1

{loop body)

if I < n got0 LOOP

I=k
PRELOOP: If I = 0 nod(B) goto LOOP

{loop body)
I := 1*1
if I > n eoto FALLTHROUGH
goto PRELOOP

LOOP : {loop body> * deduce I=0
* mod (8)

if I >= n goto FALLTHROUGH
I := 1+1
{loop body)
If I >= n goto FALLTHROUGH
I := I*1
{loop body)
if I >= n goto FALlTHROUCH
I := I*1
<loop body)

if I < n got0 LOOP
FALLTHROUGH:

FALLTHROUGH:

ADDING A PRE-LOOP

Adding a pre-loop to canse unknown bank references to start

the loop with known values, modulo the number of banks. (a)

contains a source loop. Note that we are using FORTRAN
loop style with the test at the end. In (b) the loop is unwound.

In (c) we have added a p-loop that xecutes until I is a known

value modulo the number of banks.

The Bulldog compiler and experiments done oa real code

have demonstrated that a large degree of parallelism exists in

typical scientific code. Given that the e.xist.eace of this

parallelism makes VLIW machines desirable, we are building

one: the ELI-512, a very parallel attached processor with a

SW+ bit instruction word. We expect the ELI to speed up
code by a faetor of 1040 over an equivalent sequential
machine. We will be generating good code for the ELI before

we build it. We are also writing a compiler for the FPS-164, a

much less parallel but otherwise similar ar&itecture.

Our code generators use trace scheduling for locating and

specifying parallelism originating in far removed places in the

code. The n+l-way jump mechanism makes it possible to

schedule enough tests in each cycle without making the
machine too big. Bank prediction, precedence for local
searches, and p-looping make it possible to schedule enough
memory references in each cycle without making the machine

too slow.

Partly to reduce the scope of the project and partly because

of the the nature of VLIWs, we are limiting ourselves in various

ways. ELI will be an attached processor - no I/O, no

compilen, no ELI simulators, no user amenities. Rather we will

choose a sane host. ELI will not be optimized for effcieat

context switch or procedure call. The ELI will be running

computobound scientific code. It is difficult to extend VLIW
parallelism beyond procedure calls: when we want to, we can
expand such calls in line. Any VLIW architecture is likely to
perform badly on dynamic code, including most systems and
general-purpose code and some scientific code. We will be

content to have ELI perform very well on most scientific code.

ACKNOWLEDGEMENTS

Invaluable contribntions to the ELI design and the Bulldog

compiler have been made by John Ruttcnberg, Akxandm

Nicolau, John Ellis, Mark Sidell, John O’Donnell, and Charles
Marshall. Trish Johnson turned scribbling into nice pictures.
Mary-Claire van Leunen edited the paper.

272

IAho 771 A. V. Aho and J. D. Ullman.
Principles o/ Compiler Design.
Addison-Wesley, 1977.

[Dasgupta 791 D;ugupta, S.
The Organization of Microprogram Stores.
ACM Comp. Suru. 1 1(1):3465, Mar. 1979.

[Fisher SO] J. A. Fisher.
An effective packing method for use with

2”-ray jump instruction hardware.
In 13th annual microprogramming workshop,

pagea 84-75. ACM Special Interest Group
on Microprogramming, November 1980.

[Fisher 811 J. A. Fisher.
Trace scheduling: A technique for global

microcode compaction.
IEEE Transactiona on Computcre

c-30(7):47&4QO, July 1981.

[Foster 721 C. C. Foster and E. M. Rirman.
Percolation of code to enhance parallel

dispatching and execution.
IEEE Transadionr on Computers

21(12):1411-1415, December 1972.

[Cmss 821 T. R. Gross and J. L. Hennessy.
Optimizing Delayed Branches.
In 15th annual workshop on

microprogramming, pages 114-120. ACM
Special Interest Group on
Microprogramming, October 1982.

[Hennessy 821 J. Hennessy, N. Jonppi, S. Przbyuki,
C. Rowen, T. Gmss, F. Baakett, aud
J. Gill.

[Jacobs 821

[Nicolau 811

padtta SO]

Referencea

MIPS: A Microprocessor Architecture.
In fSth annual worbhop on

micropropramminp, pages 17-22. ACM
Special Interest Group on
Microprogramming, October 1982.

D. Jacobs, J. Prius, P. Siegel and K. Olson.
Monte carlo techniques in code optimization.
In 15th annual wofhhap on

microprogramming, pages 143-148. ACM
Special Interest Group on
Micropropmming, October 1982.

Alexaudru Nicolau and Joseph A. Fisher.
U&g au oracle to measure parallelism in

siugle instruction stream programa.
In 14th annual microprogramming wkshop,

pagw 171-182. ACM Special lntercst
Group on Microprogramming, October
1981.

D. A. Padua, D. J. Kuck, and D. H. Lark.
High speed multiprocessors and compilation

tduliquu.
IEEE Transactions on Computers

29(9):763-778, September 1980.

[Patterson 791 D. A. Patterson, K. Lea, and R. Tuck.
Towards an efficient machinoindependent

language for microprogramming.
In fdh annual micropropramminp workrhop,

pages 22-35. ACM Special Interest Group
on Microprogramming, 1979.

[Patterson 821 D. A. Patterson and C. H. Sequin.
A VLSI RISC.
Conrpufcr 15(9):&21, SEPT 1982.

[Riaeman 72) E. M. Riseman and C. C. Foster.
The iuhibition of potential parallelism by

conditional jumps.
IEEE l’kansaclions on Computer8

21(12):1405-1411, December 1972.

[Tjaden 70) G. S. Tjaden and M. J. Flynn.
Detection and parallel execution of

independent instructions.
IEEE Transaefions on Computers

19(10):889-895, October 1970.

[Tokoro 781 Tokoro, M. ; Takizuka, T. ; Tamura E. and
Yamaura, I.

Towards an Efficient Machine-Independent
Language for Microprogramming.

In fllh Annual bficroproFammin#
Workuhop, pages 41-50. SIGMICRO, 1978.

permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for dkt
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
pcnnission of the Association for Computing Machinery. To copy
othctwisc. or to republish, requires a fee and/or spccfic petmission.

273

