
CSE548

Cache Coherence Protocols
Rahul Banerjee
13th Feb 2013



What is Cache Coherence?
● Multiple cores w. caches, each may buffer same data
● Writes to block in one cache may need to be reflected in 

other caches, else caches become architecturally visible
● Example: P1 and P2 read and modify the same block,  

then P3 reads from that block. Which value will it get?
(In the absence of caches, SC answer is "last writer")

● Solution:
○ Track state of every block residing in every cache
○ Enforce SWMR and Data Value invariants by changing state, and 

shuffling data around as necessary
● Two main challenges:

○ Provide total ordering of state change requests/responses
○ Maximize bandwidth among cache controllers for messages and data

● Two solutions:
○ Snooping protocols
○ Ditrectory-based protocols



Cache Block States
● For a given block, we care about these attributes: 

Validity, Dirtiness, Exclusivity, and Ownership
● Commonly-Used states are:

○ Modified: Valid, exclusive, owned and potentially dirty. The only copy
○ Shared: Valid but not exclusive, not dirty, not owned. Other copies
○ Invalid: Either not present, or present and stale, not to be read/written

● Other states are:
○ Owned: Valid, owned and potentially dirty, but not exclusive. RO copy
○ Exclusive: Valid, exclusive, and clean. Only copy. Usually owned.

● Coherence via messages/data:
○ GetM: Precedes a write to a block, to transition from MR to SW
○ GetS: Precedes a read from a block that was previously Invalid.



● Totally-ordered broadcast (all contr recv all messages)
● Only the owner of a block responds to the message
● Two messages complete a transaction

Cache Coherence via Snooping



● Point-to-point ordered network
● Directory owns block (unless it is in M state)
● Messages of three kinds:

○ Request: GetS, GetM and PutM
○ Forwarded: Fwd-GetS, Fwd-GetM, Inv(alidate), and Put-Ack
○ Response: Data and Inv-Ack

● Three messages to complete a transaction

Cache Coherence via Directory Protocols



● Have a "Correctness Substrate" that enforces 
coherence by ensuring safety (all reads/writes coherent) 
and starvation avoidance (via persistent requests)

● Build a "Performance protocol" on top, that sends 
"transient requests" as hints to speed up the common 
case

Cache Coherence via Token Coherence



● How are these protocols verified?
● Does this practically scale to 10s of 1000s of procs?

Questions


