CSE548 — Lecture 5 Highlights
VLIW



VLIW background

* Microprogramming
— Implementing complex operations for control units in CPUs (think of
steps in the execution of an instruction)

— Vertical programming vs. horizontal programming

* VLIW
— Descends from horizontal microprogramming

— Long instructions : specifies multiple operations that can be
performed simultaneously

* Principles:
— Compiler plays key role in detecting ILP

— Architecture should provide features that assist the compiler in
determining the most common ways of exploiting ILP

— Architecture should provide mechanisms to communicate the
parallelism detected by the compiler to the underlying hardware



VLIW benefits

* Why were people interested in VLIW up to the mi-90s?

— Hardware of in-order statically scheduled processors is
much simple and O3

* Smaller hardware footprint, faster clock cycles

— Compiler-based exploitation of ILP should be favorable

* Compiler looks at the whole program rather than the
comparatively small instruction window

— Not as restrictive as SIMD vector machines

* The challenge:

— Single long instruction op need to be performed without
hazards within the same cycle

— Requires static scheduling... Not good because of branch
prediction and various latencies from mem-ops



VLIW and the ELI-512

Trace scheduling:
— Compaction of long streams of code
— Control speculation: pick a stream with highest probability of execution

— Post-processor inserts new code at the stream exits and entrances for
recovery

Jump mechanism:
— nindependent tests results in n+1 possible jumping location
— Delayed-branch mechanism
Memory accessing:
— Bank prediction, precedence of local searches, pre-looping
Problems:

— Adding enough test instructions without making the machine too big

— Put enough memory references in each instruction without making the
machine too slow



Grid Processor Architectures

Array of ALUs, with limited control, connected by a thin operand network

Block atomic execution model
— Map large instruction blocks to nodes

— Eliminates the need for a centralized instruction issue window, or register
renaming table, fewer register file R&W

— Converts the conventional broadcast bypass network into a routed point to
point network

Compiler does the work of statically scheduling

— BUT instructions are issued dynamically with the execution order determined
by the availability of input operands

Hyperblock control:
— Predication: execute-all approach; special instruction (cmove)
— Early exits: branch from the middle of a block
— Block commit: all stores and output reg values have been committed

Results: high IPC (1-9)
Problems: memory access, frame management,



