
Branch Prediction Strategies

I Predict branches based on static information about branch
opcodes and directions (1, 1a, 3)

I Predict the same outcome as the previous execution (2, 4, 5,
6)

I Use a counter which is incremented/decremented each time
the branch is taken/not taken (7)

I Proposed but not tested: for low-confidence predictions, limit
the progression of instructions through the pipeline



What Makes Branch Prediction Possible?

I There are correlations between outcomes of different branches

I Global prediction: predict the outcome of branch x based on
the outcomes of the previous n branches

I There are also correlations between a branch’s previous and
current outcomes (e.g., loop conditions)

I Per-address prediction: predict the outcome of branch x based
on the outcomes of previous executions of x

I Both types of predictors fail to exploit some of the correlation



Branch Prediction with Perceptrons

I Use a simple neural network to learn the branch outcome as a
function of global history

I Can outperform gshare because the perceptron learns to
ignore parts of the history that are not useful for prediction



Questions

I How much of an effect do small accuracy improvements have
(such as going from 90% to 91% accuracy)?

I Do modern branch predictors actually take advantage of
confidence information?

I Is the perceptron branch predictor actually practical for use in
modern processors?

I What other types of machine learning might be applicable to
branch prediction?


