
Shared Virtual Memory

Context

• Parallel architectures & programming models

• Bus-based shared memory multiprocessors

• h/w support for coherent shared memory

• can run both shared memory & message passing

• scalable to 10’s of nodes

• Distributed memory machines/clusters of workstation

• provides message passing interface

• scalable up to 1000s of nodes

• cheap! economies of scale, commodity shelf h/w

Distributed Shared Memory

• Radical idea: let us not have the hardware
dictate what programming model we can use

• Provide a shared address space abstraction
even on clusters

!

• Is this a good idea? What are the upsides/
downsides of this approach?

How do we provide this
abstraction?

• Operating system support:

• e.g., Ivy, Treadmarks, Munin

• Compiler support (Shasta)

• minimize overhead through compiler analysis

• object granularity as opposed to byte granularity

• notions of immutable data, sharing patterns

• Limited hardware support (Wisconsin Wind
Tunnel, DEC memory channel)

IVY Shared Virtual Memory

• Seminal system that sparked the entire field of DSM
(distributed shared memory)

• Motivations:

• sharing things on a network

• “embassy” system to support a network file system between two
different OSes

• parallel scheme on a cluster

• Focus: parallel computing and not distributed computing

• less emphasis on request-reply, fault-tolerance,
security

Traditional Virtual Memory

• Page Table entry:!
!
!

• If “valid”, translation exists!
• If “not valid”, traps into the kernel, gets the page, re-executes

trapped instruction!
• Check is made for every access; TLB serves as a cache for the

page table entries

CPU
MMU
Cache

DRAM

!
!

Page!
table

Node

!
Virtual!

Memory

physical page # validVirt. page #

Shared Virtual Memory

Shared!
Virtual!

Memory

CPU
MMU
Cache

DRAM

!
!

Page!
table

Node 1

CPU
MMU
Cache

DRAM

!
!

Page!
table

Node N

.!.!.

• Pool of “shared pages”: if not
local, page is not mapped

• Page table entry access bits
!
!

• H/w detects read access to
invalid page
• read faults

• H/w detects writes to mapped
memory with no write access
• write faults

• OS maintains consistency at VM
page level
• copying data
• setting access bits

•physical page # valid•Virt. page # access

Issues

• Programming model (as in coherence,
consistency, etc.)

• Correctness of implementation

• Performance related issues

Programming Model

• Contract between programmer and h/w

• What are the correctness aspects that are
desirable for shared memory programs?

Programming Model

• Contract between programmer and h/w

• Shared memory abstraction typically means
two related concepts:

• Coherence

• Consistency model (e.g., sequential consistency,
linearizability)

!

• What is the difference between coherence
and sequential consistency?

Coherence vs. Consistency

• Coherence: writes are propagated to other
nodes; the writes to a particular memory
location are seen in order

• Consistency:the writes to multiple distinct
memory location or writes from multiple
processors to the same location are seen in a
well-defined order

Sequential Consistency
“The result of any execution is the same as if the operations of
all the processes were executed in some sequential order and
the operations of each individual process appear in this
sequence in the order specified by its program” (Lamport, 1979)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)a

Is this data store sequentially consistent?

1 2

1 2

R(x)a

R(x)b

Sequential Consistency
“The result of any execution is the same as if the operations of
all the processes were executed in some sequential order and
the operations of each individual process appear in this
sequence in the order specified by its program” (Lamport, 1979)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

Is this data store sequentially consistent?

1 2

1 2

R(x)a

R(x)bR(x)a

Other Consistency Models

• Can we have consistency models stronger than
sequential consistency?

!

• How do we weaken sequential consistency?

Weakening Sequential
Consistency: Causal Consistency
Writes that are potentially causally related must be seen by all
processes in the same order. Concurrent writes may be seen in a
different order on different machines. (Hutto and Ahamad, 1990)

Is this data store sequentially consistent?
Causally consistent?

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c

More Weakening: FIFO Consistency
“Writes done by a single process are seen by all other processes in
the order in which they were issued, but writes from different
processes may be seen in a different order by different
processes” (PRAM consistency, Lipton and Sandberg 1988)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c

Is this data store causally consistent?
Is this data store FIFO consistent?

Programming Complexity

Process

!

if then

kill

Process

!

if then

kill

x :=1

(y = 0)

(p2) (p1)

(x = 0)

y :=1

p1 p2

What are the possible outcomes?

Initially,
x = y = 0

• What do you make out of these consistency
models?

Announcements

• Project proposal due on friday

• Updated project list on the project page

• Drop me an email if you would like to chat
about project ideas etc.

Ivy DSM

• Goal: provide sequentially consistent shared
memory

• Baseline Implementation:

• centralized manager

• manager maintains the “owner” and the set of
readers (“copyset”)

Read Faults

• Handler on client:

• asks manager

• manager forwards request to owner

• owner sends the page

• requester sends an ACK to manager

Pseudocode

Read Fault Handler:
!
Lock(Ptable[p].lock);
ask manager for p;
receive p;
send confirmation to manager;
Ptable[p].access = read;
Unlock(Ptable[p].lock);

Read Server:
!
Lock(Ptable[p].lock);
Ptable[p].access = read;
send copy of p;
Unlock(Ptable[p].lock);

Manager:
!
Lock(Info[p].lock);
Info[p].copyset =
 Info[p].copyset U {reqNode};
ask Info[p].owner to send p;
receive confirmation from reqNode;
Unlock(Info[p].lock);

Write Faults

• Handling includes invalidations:

• make request to manager

• copies are invalidated

• manager forwards request to owner

• owner relinquishes page to requester

• requester sends an ACK to the owner

Write Pseudocode

Write Fault Handler:
!
Lock(Ptable[p].lock);
ask manager for p;
receive p;
send confirmation to manager;
Ptable[p].access = write;
Unlock(Ptable[p].lock);

Manager:
!
Lock(Info[p].lock);
Invalid(p, Info[p].copyset);
Info[p].copyset = {};
ask Info[p].owner to send p;
receive confirmation from reqNode;
Unlock(Info[p].lock);

Write Server:
!
Lock(Ptable[p].lock);
Ptable[p].access = nil;
send copy of p;
Unlock(Ptable[p].lock);

Scenarios

• Consider P1 and P2 caching a page with “read”
perms

• What happens if both perform a “write” at the
same time?

Question

• Can the confirmation messages be eliminated?

Scenarios

• Consider P1 is owner of page

• P2 performs a read

• P3 performs a write

• What if manager handles write before read is
complete?

Improved Manager

• Owner serves as the manager for each page

Read Fault Handler:
!
Lock(Ptable[p].lock);
ask manager for p;
receive p;
Ptable[p].access = read;
Unlock(Ptable[p].lock);

Read Server:
!
Lock(Ptable[p].lock);
If I am owner {
 Ptable[p].access = read;
 Ptable[p].copyset =
 Ptable[p].copyset U {reqNode};
 send copy of p;
} else {
 forward request to probable owner;
}
Unlock(Ptable[p].lock);

Performance Questions

• In what situations will IVY perform well?

