
Cluster Computing

Big Data Parallelism

• Huge data set

• crawled documents, web request logs, etc.

• Natural parallelism:

• can work on different parts of data independently

• image processing, grep, indexing, many more

• What are the issues that we need to tackle in
building big data analytics systems?

Challenges
• Parallelize application

• Where to place input and output data?

• Where to place computation?

• How to avoid network bottleneck?

• How to write the application? Programmer decides
or can the system figure it out?

• Balance computations

• Handle failures of nodes during computation

• Scheduling several applications who want to share
infrastructure

Map Reduce

• Overview:

• Partition large data set into M splits

• Run map on each partition, which produces R local
partitions; using a partition function R

• Run reduce on each intermediate partition, which
produces R output files

Details
• Input values: set of key-value pairs

• Job will read chunks of key-value pairs

• Are “key-value” pairs a good abstraction?

• Map(key, value):

• System will execute this function on each key-value pair

• Generate a set of intermediate key-value pairs

• Reduce(key, values):

• Intermediate key-value pairs are sorted

• Reduce function is executed on these intermediate key-
values

Example: Simple Math

Given a set of integers, compute the sum of their
square values.
!
e.g., 1 2 3 4 → 1 + 4 + 9 + 16 → 30
!
Map(key, value) {
 Generate (1, value*value)
}
!
Reduce(key, values) {
 Int sum = 0;
 For (all values)
 sum += values[i];
}

Count words in web-pages
Map(key, value) {
 // key is url
 // value is the content of the url
 For each word W in the content
 Generate(W, 1);
}
!
!
Reduce(key, values) {
 // key is word (W)
 // values are basically all 1s
 Sum = Sum all 1s in values
!
 // generate word-count pairs
 Generate (key, sum);
}

Reverse web-link graph

Go to google advanced search:
"find pages that link to the page:" cnn.com
!
Map(key, value) {
 // key = url
 // value = content
 For each url, linking to target
 Generate(output target, url);
}
!
Reduce(key, values) {
 // key = target url
 // values = all urls that point to the target url
 Generate(key, list of values);
}

Implementation

• Depends on the underlying hardware: shared
memory, message passing, NUMA shared
memory, etc.

• Inside Google:

• commodity workstations

• commodity networking hardware (1Gbps at node
level and much smaller bisection bandwidth)

• cluster = 100s or 1000s of machines

• storage is through GFS

Implementation

• Partition input data into M splits

• starts up many copies of the program on a cluster

• one master and multiple slaves

• Map function invoked on key-values

• Output is buffered in memory and periodically
logged to disk (local disk)

• Reduce invocations: partition the intermediate
key space into R pieces (e.g., hash(key) % R)

• R and partition function is specified by user

Implementation

• Master keeps track of locations of
intermediate keys

• Reducer accesses these values through RPCs

• reducer sorts all keys assigned to it

• iterates over each unique key and performs
reduce over associated values

• emits output values that are appended to a final
output file for this reduce partition (in GFS)

Role of the Master

• Keeps state regarding the state of each
worker machine (pings each machine)

• Reschedules work corresponding to failed
machines

• Orchestrates the passing of locations to
reduce functions

Issues

• How should M and R compare to no. of workers?

• What optimizations are possible/required?

Discussion

• what are the performance limitations of map
reduce?

• what are the constraints imposed on map and
reduce functions?

• how would you like to expand the capability of
map reduce?

Piccolo

• MapReduce restrictions:

• just two phases

• map can see only its split

• reduce sees just one key at a time

• Piccolo programming model:

• any number of phases (determined by controller)

• computation proceeds in rounds:

• example: page rank

• global key/value tables store intermediate data

Naive PageRank

!
def main():
 for i in range(50):
 launch_jobs(NUM_MACHINES, pr_kernel,

 graph, curr, next)
 swap(curr, next)  
 next.clear()

def pr_kernel(graph, curr, next):
 i = my_instance
 n = len(graph)/NUM_MACHINES
 for s in graph[(i-1)*n:i*n]
 for t in s.out:
 next[t] += curr[s.id] / len(s.out)

Run by a single
controller

Jobs run by
many machines

curr = Table(key=PageID, value=double)
next = Table(key=PageID, value=double)

Controller launches
jobs in parallel

1

2 3 Graph
A->B,C

…

Ranks
A: 0
…

Graph
B->D

…

Ranks
B: 0
…

Graph
C->E,F

…

Ranks
C: 0
…

get
put

put

put
get

get

Naive PR is Slow

PageRank: Locality
Control table
partitioning

Co-locate tables

Co-locate
execution with
table

curr = Table(…,partitions=100,partition_by=site)
next = Table(…,partitions=100,partition_by=site)
group_tables(curr,next,graph)

def pr_kernel(graph, curr, next):
 for s in graph.get_iterator(my_instance)
 for t in s.out:
 next[t] += curr[s.id] / len(s.out)

def main():
 for i in range(50):

 launch_jobs(curr.num_partitions,
 pr_kernel,
 graph, curr, next,
 locality=curr)
 swap(curr, next)
 next.clear()

PageRank: Synchronization
curr = Table(…,partition_by=site,accumulate=sum)
next = Table(…,partition_by=site,accumulate=sum)
group_tables(curr,next,graph)

!
def pr_kernel(graph, curr, next):
 for s in graph.get_iterator(my_instance)
 for t in s.out:
 next.update(t, curr.get(s.id)/len(s.out))
!
def main():
 for i in range(50):
 handle = launch_jobs(curr.num_partitions,
 pr_kernel,
 graph, curr, next,
 locality=curr)
 barrier(handle)
 swap(curr, next)
 next.clear()

Accumulation
via sum

Update invokes
accumulation function

Explicitly wait between
iterations

Efficient Synchronization
1

2 3

Graph

A->B,C

…

Ranks

A: 0

…

Graph

B->D

…

Ranks

B: 0

…
Graph

C->E,F

…

Ranks

C: 0

…

put (a=0.3)
put (a=0.2)update (a, 0.2)

update (a, 0.3)

Runtime
computes sum

Workers buffer updates
locally

à Release consistency

PageRank: Checkpointing
curr = Table(…,partition_by=site,accumulate=sum)
next = Table(…,partition_by=site,accumulate=sum)
group_tables(curr,next)
def pr_kernel(graph, curr, next):
 for node in graph.get_iterator(my_instance)
 for t in s.out:
 next.update(t,curr.get(s.id)/len(s.out))
!
def main():
 curr, userdata = restore()
 last = userdata.get(‘iter’, 0)
 for i in range(last,50):
 handle = launch_jobs(curr.num_partitions, pr_kernel,
 graph, curr, next,
 locality=curr)
 cp_barrier(handle, tables=(next), userdata={‘iter’:i})
 swap(curr, next)
 next.clear()

Restore previous
computation

User decides which
tables to checkpoint
and when

• How does Piccolo compare to MapReduce:

• in terms of programmability

• in terms of performance (stragglers, load balance,
etc.)

• in terms of fault tolerance

