Cluster Computing

Big Data Parallelism

e Huge data set

e crawled documents, web request logs, etc.

Challenges

* Parallelize application
e Where to place input and output data?
e Where to place computation?
e How to avoid network bottleneck?

e How to write the application? Programmer decides
aueclidn the Svaten Ligure L oUls

Map Reduce

e QOverview:
e Partition large data set into M splits

¢ Run map on each partition, which produces R local

Details

e Input values: set of key-value pairs
e Job will read chunks of key-value pairs

e Are "key-value" pairs a good abstraction?

e Map(key, value):

e System will execute this function on each key-value pair

Example: Simple Math

Given a set of integers, compute the sum of their
square values.

eg.,1234—-1+4+9+16 — 30

Map(key, value) {
geneY"aTe (1, value*value)

-

Count words in web-pages

Map(key, value) {
// ke?/ is url
// value is the content of the url

For each word W in the content
Generate(W, 1);

Reverse web-link graph

Go to google advanced search:
"find pages that link to the page:" cnn.com

Map(key, value) {
// key = url
// value = content
For each url, linking to target

- (@enerartel(ouTtpuT TargetTt
r et A e v Rt By iy o v

Implementation

e Depends on the underlying hardware: shared
memory, message passing, NUMA shared
memory, etc.

e Inside Google:

Elascclitioibaonislclions

Implementation

e Partition input data into M splits
e starts up many copies of the program on a cluster
e one master and multiple slaves
e Map function invoked on key-values

~* Oufput is buffered in memory and periodically

Implementation

e Master keeps track of locations of
infermediate keys

e Reducer accesses these values through RPCs

e reducer sorts all keys assigned to it

Role of the Master

e Keeps state regarding the state of each
worker machine (pings each machine)

TP

e Reschedules work corresponding to failed

Issues

Discussion

e what are the performance limitations of map
reduce?

- * what are the constraints imposed on map and

Piccolo

e MapReduce restrictions:
e just two phases
* map can see only its split
e reduce sees just one key at a time
- ¢ Piccolo

programming model:

Naive PageRank

curr = Table(key=PagelD, value=double)
next = Table(key=PagelD, value=double)

def pr_kernel(graph, curr, next):
| = my_instance
n = len(graph)/NUM_MACHINES
for s in graph[(i-1)*n:i*n]
for t in s.out:
next[t] += curr][s.id] / len(s.out)

Jobs run by
many machines

Controller launches

def main(): «— jobs in parallel

for i in range(50):
Run by a single
controller

launch_jobs(NUM_MACHINES, pr_kernel,
graph, curr, next)

swap(curr, next)

next.clear()

Naive PR is Slow

PageRank: Locality

curr = Table(...,partitions=100,partition_by=site)
next = Table(...,partitions=100,partition_by=site)
group_tables(curr,next,graph) <

Control table
partitioning

Co-locate tables

def pr_kernel(graph, curr, next):
for s in graph.get_iterator(my_instance)
for tin s.out:
next[t] += curr[s.id] / len(s.out)

def main():
for i in range(50):
launch_jobs(curr.num_partitions,

pr_kernel,
graph, curr, next, Co-locate
locality=curr) < execution with

swap(curr, next) table

next.clear()

PageRank: Synchronization

curr = Table(...,partition_by=site,accumulate=sum) Accumulation

next = Table(...,partition_by=site,accumulate=sum) /Vid sum
group_tables(curr,next,graph)

def pr_kernel(graph, curr, next): UpdCI’re invokes

for t in s.out:
next.update(t, curr.get(s.id)/len(s.out))

for s in graph.get_iterator(my_instance) /qccumuld’rion function

def main():
for i in range(50):
handle = launch_jobs(curr.num_partitions,
pr_kernel,
graph, curr, next,
locality=curr)
barrier(handle) «—

swap(curr, next) — Explicitly wait between
next.clear() . .
Iterations

Efficient Synchronization

' a Runtime
A->B,C
Workers buffer updates
locally

—> Release consistency

RANKS
B: O
rap

B->D

update (a, 0.3)

o update (a, 0.2)

rap
C->E'F a e

PageRank: Checkpointing

curr = Table(...,partition_by=site,accumulate=sum)
next = Table(...,partition_by=site,accumulate=sum)
group_tables(curr,next)
def pr_kerr_lel(graph, curr, next): | Restore previous
for node in graph.get_iterator(my_instance) .
for t in s.out: computation

next.update(t,curr.get(s.id)/len(s.out))

def main(): User decides which

curr, userdata = restore() tables to checkpoint
last = userdata.get(‘iter’, O) and when
for i in range(last,50):
handle = launch_jobs(curr.num_partitions, pr_kernel,
graph, curr, next,
locality=curr)
cp_barrier(handle, tables=(next), userdata={‘iter’:i})
swap(curr, next)
next.clear()

e How does Piccolo compare to MapReduce:

e in terms of programmability

