
Cluster Computing



Big Data Parallelism

• Huge data set 

• crawled documents, web request logs, etc. 

• Natural parallelism: 

• can work on different parts of data independently 

• image processing, grep, indexing, many more



• What are the issues that we need to tackle in 
building big data analytics systems?



Challenges
• Parallelize application 

• Where to place input and output data? 

• Where to place computation? 

• How to avoid network bottleneck? 

• How to write the application? Programmer decides 
or can the system figure it out? 

• Balance computations  

• Handle failures of nodes during computation 

• Scheduling several applications who want to share 
infrastructure



Map Reduce

• Overview: 

• Partition large data set into M splits 

• Run map on each partition, which produces R local 
partitions; using a partition function R 

• Run reduce on each intermediate partition, which 
produces R output files



Details
• Input values: set of key-value pairs 

• Job will read chunks of key-value pairs 

• Are “key-value” pairs a good abstraction? 

• Map(key, value): 

• System will execute this function on each key-value pair 

• Generate a set of intermediate key-value pairs 

• Reduce(key, values): 

• Intermediate key-value pairs are sorted 

• Reduce function is executed on these intermediate key-
values



Example: Simple Math

Given a set of integers, compute the sum of their 
square values. 
!
e.g., 1 2 3 4 → 1 + 4 + 9 + 16 → 30 
!
Map(key, value) { 
    Generate (1, value*value) 
} 
!
Reduce(key, values) { 
    Int sum = 0; 
    For (all values) 
        sum += values[i]; 
} 



Count words in web-pages
Map(key, value) { 
    // key is url 
    // value is the content of the url 
    For each word W in the content 
        Generate(W, 1); 
} 
!
!
Reduce(key, values) { 
    // key is word (W) 
    // values are basically all 1s 
    Sum = Sum all 1s in values 
!
    // generate word-count pairs 
    Generate (key, sum);  
}



Reverse web-link graph

Go to google advanced search:  
"find pages that link to the page:" cnn.com 
!
Map(key, value) { 
    // key = url 
    // value = content 
    For each url, linking to target 
        Generate(output target, url); 
} 
!
Reduce(key, values) { 
    // key = target url 
    // values = all urls that point to the target url 
    Generate(key, list of values); 
}



Implementation

• Depends on the underlying hardware: shared 
memory, message passing, NUMA shared 
memory, etc. 

• Inside Google: 

• commodity workstations 

• commodity networking hardware (1Gbps at node 
level and much smaller bisection bandwidth) 

• cluster = 100s or 1000s of machines 

• storage is through GFS



Implementation

• Partition input data into M splits 

• starts up many copies of the program on a cluster 

• one master and multiple slaves 

• Map function invoked on key-values 

• Output is buffered in memory and periodically 
logged to disk (local disk) 

• Reduce invocations: partition the intermediate 
key space into R pieces (e.g., hash(key) % R) 

• R and partition function is specified by user



Implementation

• Master keeps track of locations of 
intermediate keys 

• Reducer accesses these values through RPCs 

• reducer sorts all keys assigned to it 

• iterates over each unique key and performs 
reduce over associated values 

• emits output values that are appended to a final 
output file for this reduce partition (in GFS)



Role of the Master

• Keeps state regarding the state of each 
worker machine (pings each machine) 

• Reschedules work corresponding to failed 
machines 

• Orchestrates the passing of locations to 
reduce functions



Issues

• How should M and R compare to no. of workers? 

• What optimizations are possible/required?



Discussion

• what are the performance limitations of map 
reduce? 

• what are the constraints imposed on map and 
reduce functions? 

• how would you like to expand the capability of 
map reduce?



Piccolo

• MapReduce restrictions: 

• just two phases 

• map can see only its split 

• reduce sees just one key at a time 

• Piccolo programming model: 

• any number of phases (determined by controller) 

• computation proceeds in rounds: 

• example: page rank 

• global key/value tables store intermediate data



Naive PageRank

!
def main(): 
   for i in range(50):  
      launch_jobs(NUM_MACHINES, pr_kernel, 

 
 
 
 
  graph, curr, next) 
      swap(curr, next)  
      next.clear()

def pr_kernel(graph, curr, next): 
   i = my_instance 
   n = len(graph)/NUM_MACHINES 
   for s in graph[(i-1)*n:i*n] 
      for t in s.out: 
         next[t] += curr[s.id] / len(s.out)

Run by a single  
controller

Jobs run by 
many machines

curr = Table(key=PageID, value=double) 
next = Table(key=PageID, value=double)

Controller launches 
jobs in parallel
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Naive PR is Slow



PageRank: Locality
Control table 
partitioning

Co-locate tables

Co-locate 
execution with 
table

curr = Table(…,partitions=100,partition_by=site) 
next = Table(…,partitions=100,partition_by=site) 
group_tables(curr,next,graph) 
  
def pr_kernel(graph, curr, next): 
   for s in graph.get_iterator(my_instance) 
      for t in s.out: 
         next[t] += curr[s.id] / len(s.out) 
  
def main(): 
   for i in range(50): 
  
      launch_jobs(curr.num_partitions, 
                    pr_kernel, 
                    graph, curr, next, 
                    locality=curr) 
      swap(curr, next) 
      next.clear() 

 
 

  



PageRank: Synchronization
curr = Table(…,partition_by=site,accumulate=sum) 
next = Table(…,partition_by=site,accumulate=sum) 
group_tables(curr,next,graph)
  
!
def pr_kernel(graph, curr, next): 
   for s in graph.get_iterator(my_instance) 
      for t in s.out: 
         next.update(t, curr.get(s.id)/len(s.out)) 
!
def main(): 
   for i in range(50):  
      handle = launch_jobs(curr.num_partitions, 
                             pr_kernel,  
                             graph, curr, next, 
                             locality=curr) 
      barrier(handle) 
      swap(curr, next) 
      next.clear()

Accumulation 
via sum

Update invokes 
accumulation function

Explicitly wait between 
iterations



Efficient Synchronization
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Runtime 
computes sum

Workers buffer updates 
locally  

à Release consistency



PageRank: Checkpointing
curr = Table(…,partition_by=site,accumulate=sum) 
next = Table(…,partition_by=site,accumulate=sum) 
group_tables(curr,next) 
def pr_kernel(graph, curr, next): 
   for node in graph.get_iterator(my_instance) 
      for t in s.out: 
         next.update(t,curr.get(s.id)/len(s.out)) 
!
def main(): 
   curr, userdata = restore() 
   last = userdata.get(‘iter’, 0) 
   for i in range(last,50):  
      handle = launch_jobs(curr.num_partitions, pr_kernel,  
                             graph, curr, next, 
                             locality=curr) 
      cp_barrier(handle, tables=(next), userdata={‘iter’:i}) 
      swap(curr, next) 
      next.clear()

Restore previous 
computation

User decides which 
tables to checkpoint 
and when



• How does Piccolo compare to MapReduce: 

• in terms of programmability 

• in terms of performance (stragglers, load balance, 
etc.) 

• in terms of fault tolerance


