
Flash: an efficient and
portable web server

High Level Ideas

• Server performance has several dimensions	

• Lots of different choices on how to express and effect
concurrency in a program	

• Paper argues that event-driven asynchronous I/O has
least overhead and greatest scalability but Unix has
poor support

Model of a TCP Connection

• TCP flows provide reliable in-order delivery	

• Flow control ensures that there is enough buffer
space at the destination	

• Congestion control reacts to packet loss	

• Slow start allows TCP to probe for available
bandwidth starting with a conservative estimate of 1
packet per RTT	

!

• What implications does this have for the design of a
web server?

Model of a Web page

• Body of the page is HTML content	

• Includes links to embedded images and CSS	

• Also includes Javascipt that can execute at the client
and trigger loads of other types of content	

• Embedded HTML in the form of iFrames	

• Server side computation in the form of CGI, PHP, etc.

Model of an HTTP Fetch

• Establish TCP connection	

• Send HTTP get request	

• Server reads requested content from the file system	

• Server performs server-side computation	

• Server sends data to the client	

!

• What implications does this have for performance?
for re-designing HTTP? for the web-server?

Model of a Processor

• Processes incur context switching costs, occupy
memory (for stack frames)	

• User-level threads implemented within a single process;
OS knows only about the process and not the threads
inside of it	

• Kernel threads implemented as OS visible entities;
context switching handled by the kernel	

!

• What are the trade-offs between user-level threads and
kernel threads? What about processes and kernel
threads?

Model of a Disk

• Disks contain tracks (concentric circles) across multiple surfaces
(same track on multiple surfaces form a cylinder)	

• Access costs:	

• Seek to the appropriate cylinder	

• Wait for the appropriate segment to rotate underneath the disk head	

• Performance governed by mechanics ==> improvements are
modest over time	

• single disk read is about a few milliseconds	

• throughput is many tens of mb/s	

!

• What implications does this have for the design of a web server?

Back of the Envelope Calculations

• What would you guess is a typical web page load in
terms of latency?	

• How would you determine the number of “active”
web requests on a server?	

!

• Key distinction: “open loop” vs. “closed loop” systems

HTTP Improvements

• Multiple concurrent connections per client	

• Early browsers: 4 concurrent connections	

• HTTP/1.1 spec: no more than two per hostname	

• browsers ignore this guideline; tend to do ~6 per
hostname and subdomains are separate	

• What implications does this have for TCP?	

• Persistent HTTP connections	

• Single congestion window is learned for the session; avoid
slow start for each 	

• Fewer packets, less memory on server side, lower
overheads

HTTP Improvements

• Pipelining	

• Send multiple back to back requests on a single persistent
connection without waiting for replies	

• Server sends replies in same order as requests	

• Ability to mask the latency of HTTP request/response delay	

• SPDY	

• Experimental session protocol	

• Multiplexes many HTTP sessions on a single TCP
connection; virtualizes many TCPs on a single TCP	

• Eliminates the “in the same order” limitation of pipelining

Issues in Server-side Handling

• Static requests:	

• Read data from file and send into network	

• For small files: advantage in coalescing HTTP header with
the data; some TCP stacks will do this, but for the rest has
to be done manually	

• Needless copy from kernel to user-level, back into kernel;
sendfile() optimizes this

Dynamic Requests

• Need to find or fire up a helper process/thread;
potentially expensive interpreter warmup	

• Don’t want to expose the server itself to the risk of
potentially buggy/blocking CGI environment; need it
to be in separate process	

• Could involve DB access or RPCs to middleware --
typically a multi-tier server environment

Concurrency in a web server

• Why do we want to exploit it?	

• Multi-core: want to be able to exploit multiple CPUs
concurrently	

• Multiple disks: want to be able to exploit multiple disk arms
concurrently	

• Overcoming latency of networks, flow/congestion control	

• Want to be working on a different request while
propagation delay of other requests in flight (or if buffers/
windows are full)

OS Issues

• Potentially blocking system calls	

• Some system calls may, in practice, block the calling execution
context (kernel thread/process)	

• network receive: caller blocks until data is available	

• network send: caller block until send buffer has space available	

• network accept: caller blocks until new connection arrives	

• Potentially high latency system calls: file I/O	

• Core issue: some way to either	

• have multiple contexts so that it’s OK if they are blocked	

• prevent blocking (i.e., use non-blocking calls)

Concurrency Architectures

• Multiple process (MP): pool of idle processes	

• Multiple threads (MT): similar, but pool of idle threads	

• Single process Event Driven (ET)	

• This paper: a hybrid

AMPED

• Approach:	

• Use event driven to process network	

• Use MT or MP to process disk, helper processes, etc.	

• Connect using pipes	

• Benefits:	

• the thing that is likely to capture the most blocking
(networking I/O) is the thing that is lightest-weight	

• have shared-memory, and single thread tweaking it, so avoid
synchronization issues	

• Disadvantages?

Comparison Metrics

• Concurrency/utilization:	

• Not be blocked and utilize all resources efficiently	

• SPED blocks on disk I/O leading to low concurrency (also
bad on multi-cores)	

• Overhead	

• Memory overheads, context switching costs, inter-process
communication, etc. SPED is least overhead	

• Coordination	

• MT/MP models require more effort for application-wide
information gathering	

• Application-wide data structures are difficult in MP

Performance Tricks

• Use caches for as many things as possible:	

• name translation caches	

• response header caches	

• Maintain memory mapped files and send data directly
without requiring copies	

• Use writev() and padding to minimize overheads	

• Test for memory residency before passing task to
helper	

• Pre-created CGI helper applications

Evaluations

• What does the paper do well and what does the
paper not accomplish in the evaluations?

Cachable Experiments

Real Traces

Control Working Set Size

WAN Performance

