
Distributed Transactions

Preliminaries
Last topic: transactions in a single machine

This topic: transactions across machines

Distribution typically addresses two needs:

Split the work across multiple nodes

Provide more reliability by replication

Focus of 2PC and 3PC is the first reason:
splitting the work across multiple nodes

Failures

What are the different classes/types of
failures in a distributed system?

What guarantees should we aim to provide in
building fault-tolerant distributed systems?

Model

For each distributed transaction T:

one coordinator

a set of participants

Coordinator knows participants; participants
don’t necessarily know each other

Each process has access to a Distributed
Transaction Log (DT Log) on stable storage

The setup

Each process has an input value :

 Yes, No

!

Each process has output value :

 Commit, Abort

votei

decisioni

decisioni ∈ { }

pi

pi

votei ∈ { }

Example

Transfer money from account X on one
machine to account Y on another machine

Atomic Commit Specification
AC-1: All processes that reach a decision reach the
same one.

AC-2: A process cannot reverse its decision after it has
reached one.

AC-3: The Commit decision can only be reached if all
processes vote Yes.

AC-4: If there are no failures and all processes vote
Yes, then the decision will be Commit.

AC-5: If all failures are repaired and there are no
more failures, then all processes will eventually decide.

2-Phase Commit
cCoordinator

I. sends VOTE-REQ to all participants

piParticipant

II. sends to Coordinator

 if = NO then

 := ABORT

halt

2-Phase Commit

votei

decidei

cCoordinator

I. sends VOTE-REQ to all participants

votei

piParticipant

III. if (all votes YES) then

 := COMMIT

send COMMIT to all

else

 := ABORT

send ABORT to all who voted YES

halt

II. sends to Coordinator

 if = NO then

 := ABORT

halt

2-Phase Commit

votei

decidei

decidec

decidec

cCoordinator

I. sends VOTE-REQ to all participants

votei

piParticipant

III. if (all votes YES) then

 := COMMIT

send COMMIT to all

else

 := ABORT

send ABORT to all who voted YES

halt

II. sends to Coordinator

 if = NO then

 := ABORT

halt

2-Phase Commit

votei

decidei

pi

decidec

decidec

decidei

decidei

cCoordinator Participant

I. sends VOTE-REQ to all participants

votei

IV. if received COMMIT then

:= COMMIT

else

:= ABORT

halt

How do we deal with different failures?

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 Coordinator is waiting
for vote from participants

pi

Step 4 (who voted YES) is waiting
for COMMIT or ABORT

pi

Termination protocols

I. Wait for coordinator to recover

It always works, since the coordinator is
never uncertain

may block recovering process unnecessarily

II. Ask other participants

Logging actions
1. When sends VOTE-REQ, it writes START-2PC to its DT

Log

2. When is ready to vote YES,

 writes YES to DT Log

 sends YES to (writes also list of participants)

3. When is ready to vote NO, it writes ABORT to DT Log

4. When is ready to decide COMMIT, it writes COMMIT
to DT Log before sending COMMIT to participants

5. When is ready to decide ABORT, it writes ABORT to DT
Log

6. After receives decision value, it writes it to DT Log

pi

c

c pi

pi

pi

pi

pi

c

c

 recovers
if DT Log contains START-2PC,
then :

if DT Log contains a decision
value, then decide accordingly

else decide ABORT

otherwise, is a participant:

if DT Log contains a decision
value, then decide accordingly

else if it does not contain a
Yes vote, decide ABORT

else (Yes but no decision)
run a termination protocol

p

p = c

p

1. When coordinator sends VOTE-REQ,

 it writes START-2PC to its DT Log

2. When participant is ready to vote

 Yes, writes Yes to DT Log before

 sending yes to coordinator (writes

 also list of participants)

 When participant is ready to vote No,

 it writes ABORT to DT Log

3. When coordinator is ready to decide

 COMMIT, it writes COMMIT to DT Log

 before sending COMMIT to participants

 When coordinator is ready to decide

 ABORT, it writes ABORT to DT Log

4. After participant receives decision

 value, it writes it to DT Log

What are the strengths/weaknesses of 2PC?

Key Insight for 3-PC

Cannot abort unless we know that no one has
committed

We need an algorithm that lets us infer the
state of failed nodes

Introduce an additional state that helps us
in our reasoning

But start with the assumption that there
are no communication failures

3-Phase Commit
Two approaches:

1. Focus only on site failures

Non-blocking, unless all sites fails

Timeout site at the other end failed

Communication failures can produce
inconsistencies

2. Tolerate both site and communication
failures

partial failures can still cause blocking,
but less often than in 2PC

≡

Blocking and uncertainty

Why does uncertainty lead to blocking?

An uncertain process does not know
whether it can safely decide COMMIT or
ABORT because some of the processes it
cannot reach could have decided either

Non-blocking Property

If any operational process is uncertain, then
no process has decided COMMIT

C

2PC Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT In U, both A and C are
reachable!

pi

C

2PC Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT

pi

PC

In state PC

a process knows that it

will commit unless it fails

Coordinator Failure

Elect new coordinator and have it collect the
state of the system

If any node is committed, then send commit
messages to all other nodes

If all nodes are uncertain, what should we
do?

3PC: The Protocol

I. sends VOTE-REQ to all participants.

II. When receives a VOTE-REQ, it responds by sending a vote to
if = No, then := ABORT and halts.

III. collects votes from all.
if all votes are Yes, then sends PRECOMMIT to all
else := ABORT; sends ABORT to all who voted Yes halts

IV. if receives PRECOMMIT then it sends ACK to

V. collects ACKs from all.
When all ACKs have been received, := COMMIT;
 sends COMMIT to all.

VI. When receives COMMIT, sets := COMMIT and halts.

Dale Skeen (1982)

c

pi

votei decidei

c

c

decidec

c

c

pi

pi

decidec

c

pi pi decidei

c

Termination protocol:
Process states

At any time while running 3 PC, each participant
can be in exactly one of these 4 states:

!

Aborted Not voted, voted NO, received ABORT

Uncertain Voted YES, not received PRECOMMIT

Committable Received PRECOMMIT, not COMMIT

Committed Received COMMIT

Not all states
are compatible

Aborted Uncertain Committable Committed

Aborted Y Y N N

Uncertain Y Y Y N

Committable N Y Y Y

Committed N N Y Y

Failures

Things to worry about:

timeouts: participant failure/coordinator
failure

recovering participant

total failures

Timeout Actions
Processes are waiting on steps 2, 3, 4, 5, and 6

Step 3 Coordinator is waiting for
vote from participants

Step 4 waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Timeout Actions
Processes are waiting on steps 2, 3, 4, 5, and 6

Step 3 Coordinator is waiting for
vote from participants

Step 4 waits for PRECOMMIT Step 5 Coordinator waits for ACKs

Step 6 waits for COMMIT

Step 2 is waiting for VOTE-REQ
from coordinator

pi

pi

pi

Exactly as in 2PC Exactly as in 2PC

Coordinator sends COMMITRun some Termination protocol

Participant knows what is going to
receive…

but NB property can be violated!Run some Termination protocol

Termination protocol
When times out, it
starts an election protocol
to elect a new
coordinator

The new coordinator
sends STATE-REQ to all
processes that
participated in the
election

The new coordinator
collects the states and
follows a termination rule

TR1. if some process decided ABORT, then?

!
TR2. if some process decided COMMIT,
then?

!
TR3. if all processes that reported state

 are uncertain, then?

!
TR4. if some process is committable, but

 none committed, then?

pi

Termination protocol
When times out, it
starts an election protocol
to elect a new
coordinator

The new coordinator
sends STATE-REQ to all
processes that
participated in the
election

The new coordinator
collects the states and
follows a termination rule

TR1. if some process decided ABORT, then

 decide ABORT

 send ABORT to all

 halt

TR2. if some process decided COMMIT, then

 decide COMMIT

 send COMMIT to all

 halt

TR3. if all processes that reported state

 are uncertain, then

 decide ABORT

 send ABORT to all

 halt

TR4. if some process is committable, but

 none committed, then

 send PRECOMMIT to uncertain processes

 wait for ACKs

 send COMMIT to all

 halt

pi

Discussion

What are the strengths/weaknesses of 3PC?

