Clocks, Event Ordering, and Global Predicate Computation

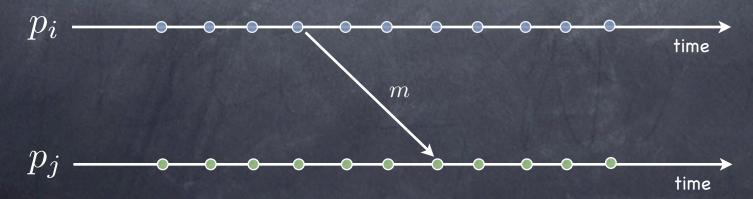
Events and Histories

- Processes execute sequences of events
- Events can be of 3 types: local, send, and receive
- $m{o}$ e_p^i is the i-th event of process p
- The local history h_p of process p is the sequence of events executed by process p

Ordering events

- Observation 1:
 - Events in a local history are totally ordered

- Observation 2:



Happened-before (Lamport[1978])

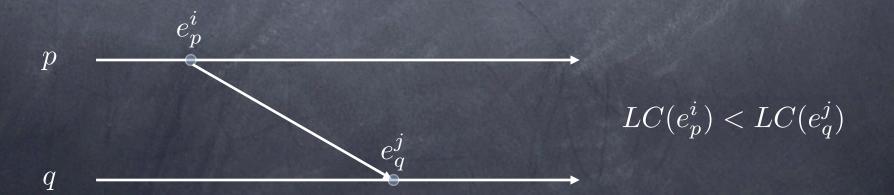
A binary relation →defined over events

- 1. If $e_i^k, e_i^l \in h_i$ and k < l, then $e_i^k \rightarrow e_i^l$
- 2. if $e_i = send(m)$ and $e_j = receive(m)$, then $e_i \rightarrow e_j$
- 3. if $e \rightarrow e'$ and $e' \rightarrow e''$ then $e \rightarrow e''$

Lamport Clocks

Each process maintains a local variable LC $LC(e) \equiv ext{value of } LC ext{ for event } e$

$$p \xrightarrow{e_p^i \qquad e_p^{i+1}} LC(e_p^i) < LC(e_p^{i+1})$$



Increment Rules

$$p \xrightarrow{e_p^i \qquad e_p^{i+1}}$$

$$LC(e_p^{i+1}) = LC(e_p^i) + 1$$

$$p \xrightarrow{e_p^i \qquad e_q^j}$$

$$LC(e_q^j) = max(LC(e_q^{j-1}), LC(e_p^i)) + 1$$

Timestamp m with TS(m) = LC(send(m))

Discussion

- What are the strengths of Lamport clocks?
- What are the limitations of Lamport clocks?
- What model assumptions are too constraining in Lamport's clock paper?

Example of Global Predicate

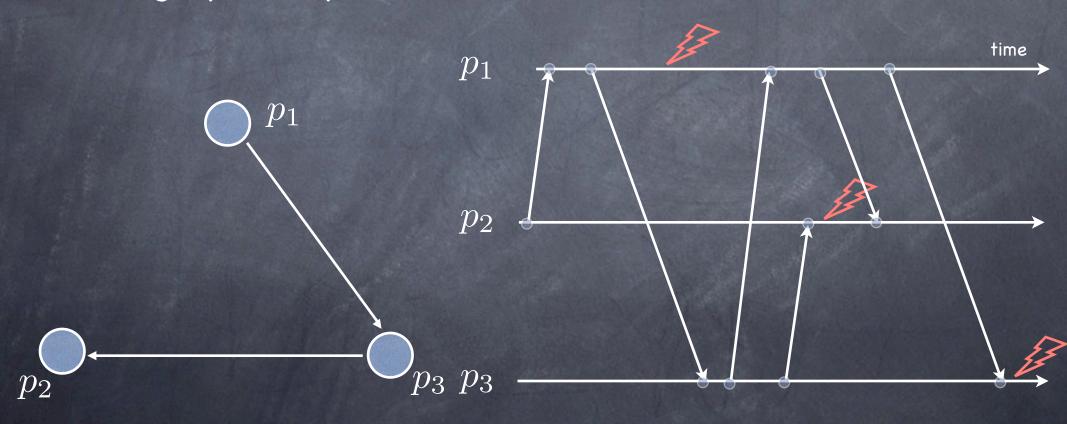
- Setting: Locks in distributed system
 - Objects locked by nodes and moved to the node that is currently modifying it
 - Nodes requesting the object/lock, send a message to the current node locking it and blocks for a response
- How do we detect deadlocks in this scenario?

Global States & Clocks

- Need to reason about global states of a distributed system
- Global state: processor state + communication channel state
- Consistent global state: causal dependencies are captured
- Use virtual clocks to reason about the timing relationships between events on different nodes

Space-Time diagrams

A graphic representation of a distributed execution



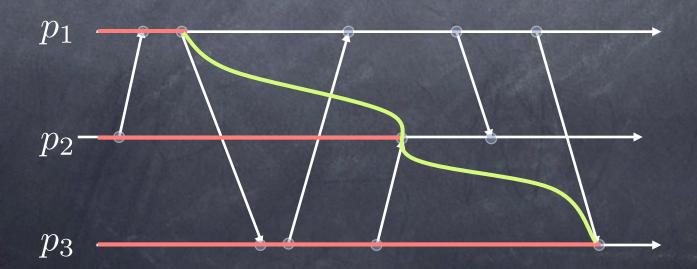
H and → impose a partial order

Cuts

A cut C is a subset of the global history of H

The frontier of C is the set of events

$$e_1^{c_1}, e_2^{c_2}, \dots e_n^{c_n}$$



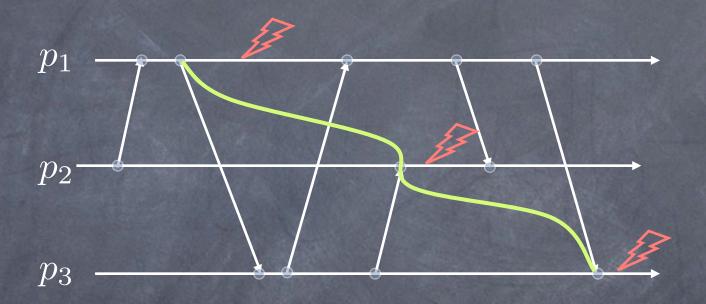
Consistent cuts and consistent global states

A cut is consistent if

$$\forall e_i, e_j : e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$$

A consistent global state is one corresponding to a consistent cut

What p_0 sees



Not a consistent global state: the cut contains the event corresponding to the receipt of the last message by p_3 but not the corresponding send event

Global Consistent States

© Can we use Lamport Clocks as part of a mechanism to get globally consistent states?

Global Snapshot

- Develop a simple global snapshot protocol
- Refine protocol as we relax assumptions
- Record:
 - □ processor states
 - nu channel states
- Assumptions:
 - □ FIFO channels
 - $\ \square$ Each m timestamped with with T(send(m))

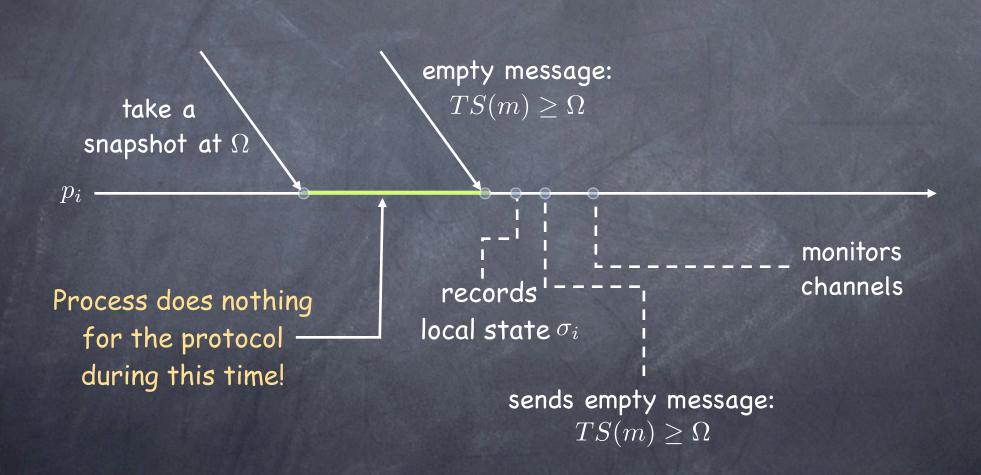
Snapshot I

- i. p_0 selects t_{ss}
- ii. p_0 sends "take a snapshot at t_{ss} " to all processes
- iii. when clock of p_i reads t_{ss} then p
 - a. records its local state σ_i
 - b. sends an empty message along its outgoing channels
 - c. starts recording messages received on each of incoming channels
 - d. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Snapshot II

- $m{o}$ processor p_0 selects Ω
- p_0 sends "take a snapshot at Ω'' to all processes; it waits for all of them to reply and then sets its logical clock to Ω
- - \square records its local state σ_i
 - □ sends an empty message along its outgoing channels
 - starts recording messages received on each incoming channel
 - \square stops recording a channel when receives first message with timestamp greater than or equal to Ω

Relaxing synchrony



Snapshot III

- **10** when p_i receives "take a snapshot" for the first time from p_j :
 - \square records its local state σ_i
 - sends "take a snapshot" along its outgoing channels
 - \square sets channel from p_i to empty
 - starts recording messages received over each of its other incoming channels
- **6** when p_i receives "take a snapshot" beyond the first time from p_k :
 - $lue{}$ stops recording channel from p_k
- when p_i has received "take a snapshot" on all channels, it sends collected state to p_0 and stops.

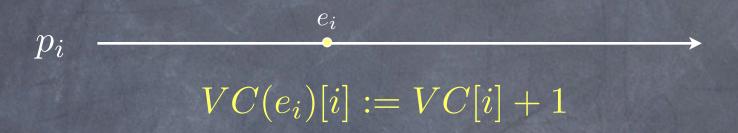
Same problem, different approach

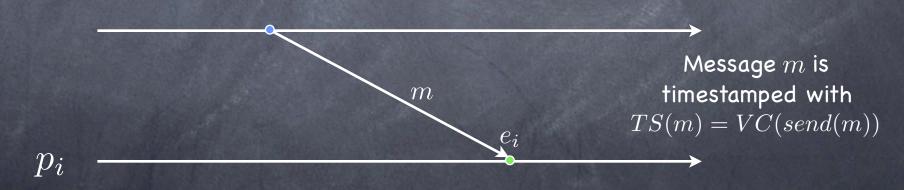
- Monitor process does not query explicitly
- Instead, it passively collects information and uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.

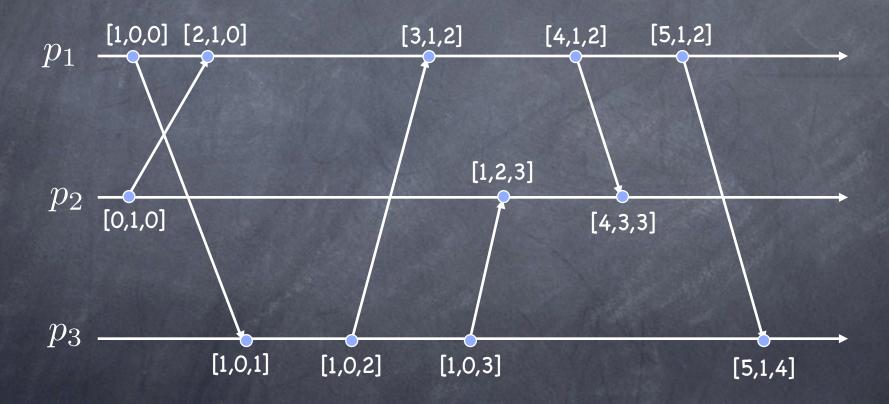
Update rules



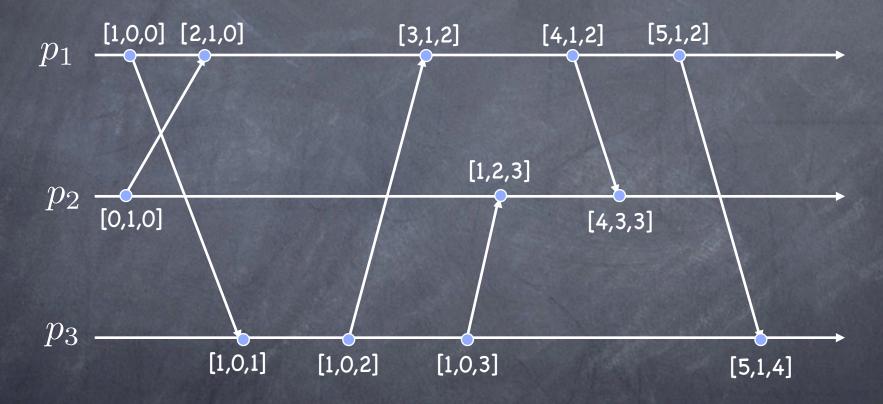


$$VC(e_i) := max(VC, TS(m))$$
$$VC(e_i)[i] := VC[i] + 1$$

Example



Operational interpretation



 $VC(e_i)[i]$ = no. of events executed by p_i up to and including e_i

 $VC(e_i)[j]$ = no. of events executed by p_j that happen before e_i of p_i

VC properties: event ordering

Given two vectors V and V', less than is defined as:

$$V < V' \equiv (V \neq V') \land (\forall k : 1 \le k \le n : V[k] \le V'[k])$$

- **Strong Clock Condition:** $e \rightarrow e' \equiv VC(e) < VC(e')$
- Simple Strong Clock Condition: Given e_i of p_i and e_j of p_j , where $i \neq j$ $e_i \rightarrow e_j \equiv VC(e_i)[i] \leq VC(e_j)[i]$
- Goncurrency
 Given e_i of p_i and e_j of p_j , where $i \neq j$ $e_i \parallel e_j \equiv (VC(e_i)[i] > VC(e_j)[i]) \land (VC(e_j)[j] > VC(e_i)[j])$

The protocol

- p_0 maintains an array $D[1,\ldots,n]$ of counters
- $D[i] = TS(m_i)[i]$ where m_i is the last message delivered from p_i

Rule: Deliver m from p_j as soon as both of the following conditions are satisfied:

$$D[j] = TS(m)[j] - 1$$

$$D[k] \ge TS(m)[k], \forall k \ne j$$

Summary

- Lamport clocks and vector clocks provide us with good tools to reason about timing of events in a distributed system
- Global snapshot algorithm provides us with an efficient mechanism for obtaining consistent global states