Paxos

The Part-Time Parliament

- Parliament determines laws by passing sequence of numbered decrees
- Legislators can leave and enter the chamber at arbitrary times
- No centralized record of approved decreesinstead, each legislator carries a ledger

Government 101

- No two ledgers contain contradictory information
- If a majority of legislators were in the Chamber and no one entered or left the Chamber for a sufficiently long time, then
 - □ any decree proposed by a legislator would eventually be passed
 - □ any passed decree would appear on the ledger of every legislator

Government 102

- Paxos legislature is non-partisan, progressive, and well-intentioned
- Legislators only care that something is agreed to, not what is agreed to
- We'll take care of Byzantine legislators later

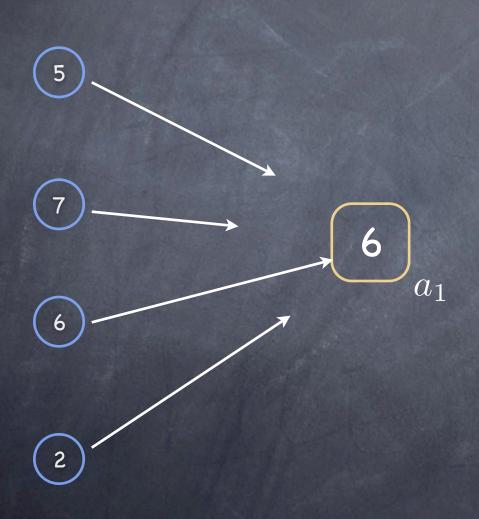
Back to the future

- A set of processes that can propose values
- Processes can crash and recover
- Processes have access to stable storage
- Asynchronous communication via messages
- Messages can be lost and duplicated, but not corrupted

The Game: Consensus

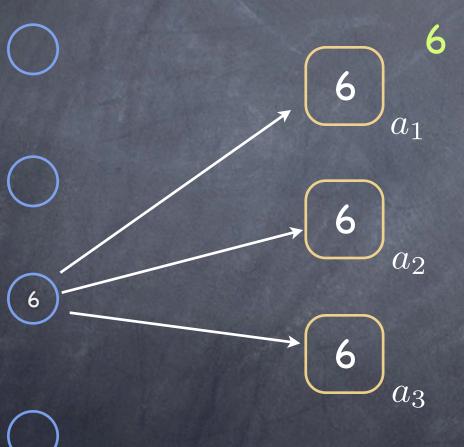
SAFETY

- Only a value that has been proposed can be chosen
- Only a single value is chosen
- A process never learns that a value has been chosen unless it has been


LIVENESS

- Some proposed value is eventually chosen
- 1 If a value is chosen, a process eventually learns it

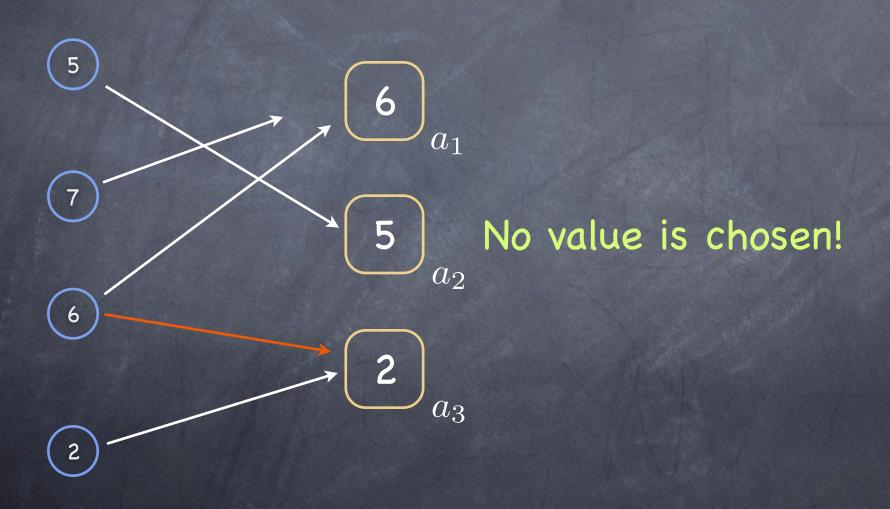
The Players


- Proposers
- Acceptors
- Learners

Choosing a value

Use a single acceptor

What if the acceptor fails?


6 is chosen!

- Choose only when a "large enough" set of acceptors accepts
- Using a majority set guarantees that at most one value is chosen

Accepting a value

- Suppose only one value is proposed by a single proposer.
- That value should be chosen!
- First requirement:
 - P1: An acceptor must accept the first proposal that it receives
- ...but what if we have multiple proposers, each proposing a different value?

P1 + multiple proposers

Handling multiple proposals

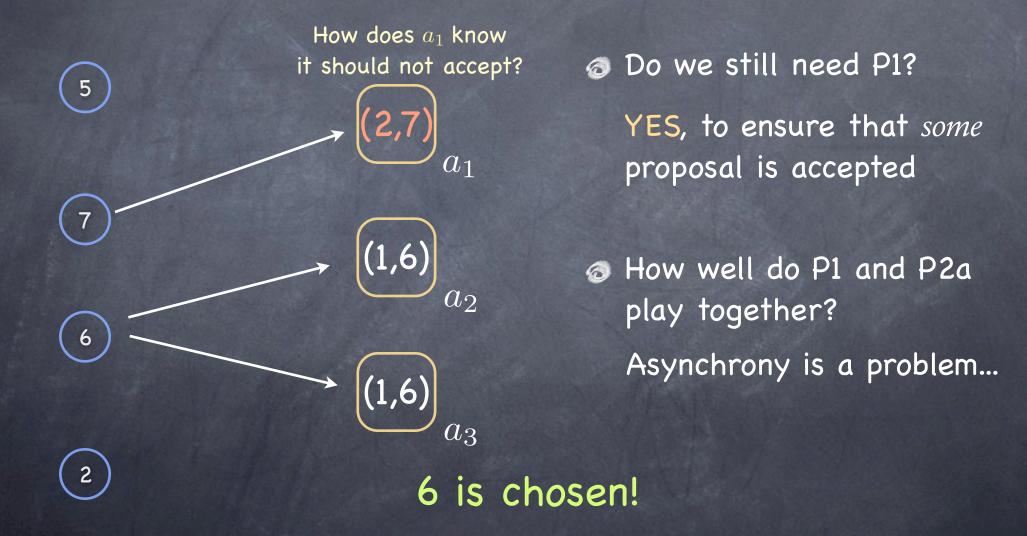
- Acceptors must accept more than one proposal
- To keep track of different proposals, assign a natural number to each proposal
 - \square A proposal is then a pair (psn, value)
 - \square Different proposals have different psn
 - ☐ A proposal is chosen when it has been accepted by a majority of acceptors
 - ☐ A value is chosen when a single proposal with that value has been chosen

Choosing a unique value

"Any acceptor can accept as many proposals as he wants, so long as they all propose the same value"

Leslie Lamport

P2. If a proposal with value ν is chosen, then every higher-numbered proposal that is chosen has value ν


It's up to the Acceptors!

P2. If a proposal with value ν is chosen, then every higher-numbered proposal that is chosen has value ν

We strengthen it to:

P2a. If a proposal with value ν is chosen, then every higher-numbered proposal accepted by any acceptor has value ν

What about P1?

It's up to the Proposers!

® Recall P2a:

P2a. If a proposal with value ν is chosen, then every higher-numbered proposal accepted by any acceptor has value ν

We strengthen it to:

P2b. If a proposal with value ν is chosen, then every higher-numbered proposal issued by any proposer has value ν

What to propose

P2b: If a proposal with value ν is chosen, then every highernumbered proposal issued by any proposer has value ν

Suppose p wants to issue a proposal numbered n.

- - \square If a proposal numbered n' < n has been chosen, then it has been accepted by a majority set S
 - □ Any majority set S' must intersect S
 - If p can find one S' in which no acceptors has accepted a proposal numbered n' < n, then no such proposal can have yet been chosen!
 - \square If no such S', a proposal numbered n' < n may have been chosen...
 - ☐ Then what?

What to propose

P2b: If a proposal with value ν is chosen, then every highernumbered proposal issued by any proposer has value ν

Suppose p wants to issue a proposal numbered n.

- The second of the proposal of the proposal numbered n' < n has been chosen then p can propose any value!

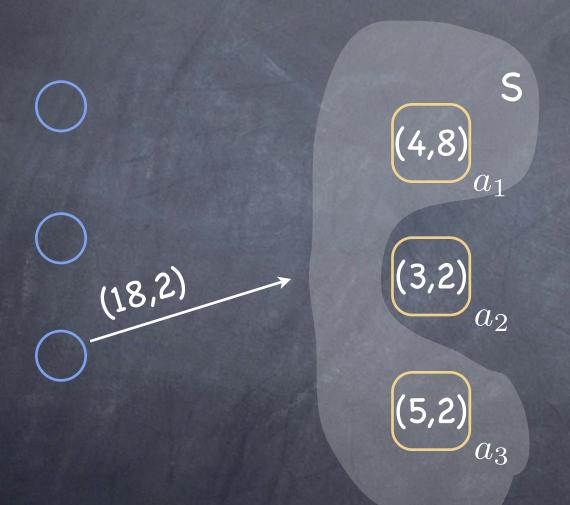
What to propose

P2b: If a proposal with value ν is chosen, then every highernumbered proposal issued by any proposer has value ν

Suppose p wants to issue a proposal numbered n.

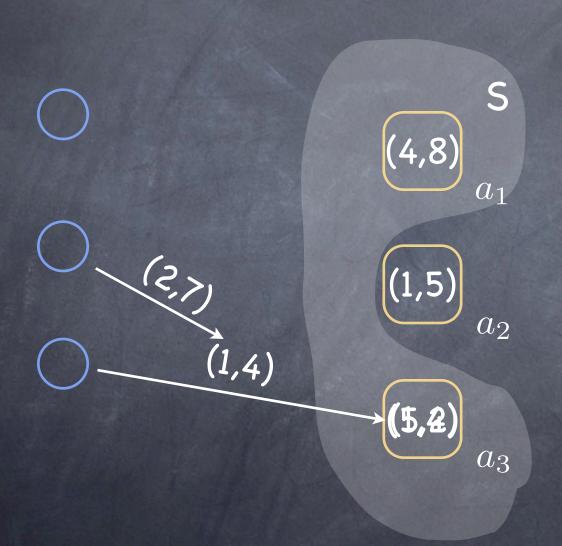
- If p can be certain that no proposal numbered n' < n has been chosen then p can propose any value!
- - ☐ What about using induction...
 - $_{\square}$ Say proposal numbered m with value u is chosen: some majority-set C of acceptors has accepted it
 - \square Suppose every proposal issued with number m...n-1 has value v
 - Consider proposal n: since every majority set S' intersects with C and ever proposal accepted by any acceptor with sequence number in m...n-1 has value v, then

It's up to an invariant!


P2b: If a proposal with value ν is chosen, then every highernumbered proposal issued by any proposer has value ν

Achieved by enforcing the following invariant

P2c: For any ν and n, if a proposal with value ν and number n is issued, then there is a set S consisting of a majority of acceptors such that either:


- $\ \square$ no acceptor in S has accepted any proposal numbered less than n, or
- $\ \ \ \ \ \nu$ is the value of the highest-numbered proposal among all proposals numbered less than n accepted by the acceptors in S

P2c in action

v is the value of the highest-numbered proposal among all proposals numbered less than n and accepted by the acceptors in S

P2c in action

No acceptor in S
has accepted any
proposal numbered
less than n

The invariant is violated

Future telling?

- Avoid predicting the future by extracting a promise from a majority of acceptors not to subsequently accept any proposals numbered less than n

The proposer's protocol (I)

- A proposer chooses a new proposal number n and sends a request to each member of some set of acceptors, asking it to respond with:
 - a. A promise never again to accept a proposal numbered less than n, and
 - b. The accepted proposal with highest number less than n if any.

... call this a prepare request with number n

The proposer's protocol (II)

- If the proposer receives a response from a majority of acceptors, then it can issue a proposal with number n and value ν , where ν is
 - a. the value of the highest-numbered proposal among the responses, or
 - b. is any value selected by the proposer if responders returned no proposals

A proposes issues a proposal by sending, to some set of acceptors, a request that the proposal be accepted.

... call this an accept request.

The acceptor's protocol

- An acceptor receives prepare and accept requests from proposers.
 - □ It can always respond to a prepare request
 - ☐ It can respond to an accept request, accepting the proposal, iff it has not promised not to, e.g.

Pla: An acceptor can accept a proposal numbered n iff it has not responded to a prepare request having number greater than n

...which subsumes P1.

Small optimizations

If an acceptor receives a prepare request r numbered n when it has already responded to a prepare request for n' > n, then the acceptor can simply ignore r.

...so an acceptor needs only remember the highest numbered proposal it has accepted and the number of the highest-numbered prepare request to which it has responded.

Choosing a value: Phase 1

- If an acceptor a receives $\langle prepare, n' \rangle$, where n' > n of any $\langle prepare, n \rangle$ to which it has responded, then it responds to $\langle prepare, n' \rangle$ with
 - \square a promise not to accept any more proposals numbered less than n'
 - □ the highest numbered proposal (if any) that it has accepted

Choosing a value: Phase 2

- If the proposer receives a response to $\langle prepare, n \rangle$ from a majority of acceptors, then it sends to each $\langle accept, n, v \rangle$, where v is either
 - □ the value of the highest numbered proposal among the responses
 - □ any value if the responses reported no proposals
- If an acceptor receives $\langle accept, n, v \rangle$, it accepts the proposal unless it has in the meantime responded to $\langle prepare, n' \rangle$, where n' > n

Learning chosen values (I)

Once a value is chosen, learners should find out about it. Many strategies are possible:

- i. Each acceptor informs each learner whenever it accepts a proposal.
- ii. Acceptors inform a distinguished learner, who informs the other learners
- iii. Something in between (a set of notquite-as-distinguished learners)

Questions

What are the liveness properties of Paxos?

Question

What do you do when nodes fail?

Question

Are there any advantages/disadvantages to having a designated leader?

Question

What are the costs to using Paxos? Is it practical?

Implementing State Machine Replication

- Implement a sequence of separate instances of consensus, where the value chosen by the ith instance is the ith message in the sequence.
- Each server assumes all three roles in each instance of the algorithm.
- Assume that the set of servers is fixed

The role of the leader

- In normal operation, elect a single server to be a leader. The leader acts as the distinguished proposer in all instances of the consensus algorithm.
 - ☐ Clients send commands to the leader, which decides where in the sequence each command should appear.
 - \square If the leader, for example, decides that a client command is the k^{th} command, it tries to have the command chosen as the value in the k^{th} instance of consensus.

A new leader λ is elected...

- Since λ is a learner in all instances of consensus, it should know most of the commands that have already been chosen. For example, it might know commands 1-10, 13, and 15.
 - ☐ It executes phase 1 of instances 11, 12, and 14 and of all instances 16 and larger.
 - ☐ This might leave, say, 14 and 16 constrained and 11, 12 and all commands after 16 unconstrained.
 - \square λ then executes phase 2 of 14 and 16, thereby choosing the commands numbered 14 and 16

Stop-gap measures

- All replicas can execute commands 1-10, but not 13-16
 because 11 and 12 haven't yet been chosen.
- δ λ can either take the next two commands requested by clients to be commands 11 and 12, or can propose immediately that 11 and 12 be no-op commands.
- Once consensus is achieved, all replicas can execute all commands through 16.

To infinity, and beyond

- - \square λ just sends a message with a sufficiently high proposal number for all instances
 - □ An acceptor replies non trivially only for instances for which it has already accepted a value