
Virtual Machines

Background

• IBM sold expensive mainframes to large organizations

• Some wanted to run different OSes at the same time
(because applications were developed on old OSes)

• Solution: IBM developed virtual machine monitor (VMM) or
hypervisor (circa 1974)

• Monitor sits between one or more OSes and HW

• Gives the illusion that each OS controls the HW

• Monitor multiplexes running OSes

• A level of indirection: apps assume separate CPU, unlimited
memory; now another layer to provide similar illusion to OS

Today’s World

• Why VMMs now? Are there new reasons for using
VMMs?

Resurgence in VMs

• Sparked by work on Disco (system from Stanford/
Rosenblum)

• Resulted in VMware -- now a market leader in
virtualization

Outline

• Disco project

• Design space for virtualization

• Xen project

Virtualizing CPU

• Basic technique: limited direct execution

• Ideal case:

• VMM jumps to first instruction of the OS and let the OS
run

• Generalize a context switch on processes to machine
switch

• save the entire machine state of one OS including
registers, PC, and privileged hardware state

• restore the target OS state

• Guest OS cannot run privileged instructions (like TLB ops);
VMM must intercept these ops and emulate them

System Call Primer

• Consider: open(char*path, int flags, mode_t mode)

open:
push dword mode
push dword flags
push dword path
mov eax, 5
push eax
int 80h

• Process code, hardware, and OS cooperate to
implement the interface

• Trap: switches to kernel mode, jumps to OS trap
handler; trap handlers registered by OS at startup

Virtualized Platform

• Application remains the same

• Trap handler is inside the VMM; executed in kernel mode

• What should the VMM do?

• does not know the details of the guest OSes

• but knows where the OS’s trap handler is

• (when the guest OS attempted to install trap handlers, VMM
intercepts the call and records the information)

• so jump into OS; which executes the actual handler, performs
another privileged instruction (iret on x86), bounces back into
VMM

• VMM performs a real return from trap and returns to app

Execution Privileges

• OS cannot be in kernel mode

• Disco project: MIPS hardware had a supervisor mode

• kernel > supervisor > user

• supervisor can access little more memory than user, but
cannot execute privileged instructions

• No extra mode:

• run OS in user mode and use memory protection (page
tables and TLBs) to protect OS data structures
appropriately

• x86 has 4 protection rings, so extra mode is available

Virtualizing Memory

• Normally:

• each program has a private address space

• OS virtualizes memory for its processes

• Now:

• multiple OSes can share the actual physical memory and
must do so transparently

• So we have virtual memory (VM), physical memory (PM),
and machine memory (MM)

• OS maps virtual to physical addresses via its per-process
page tables, VMM maps the resulting physical address to
machine memory via its per-OS page tables

Address Translation Primer

• Assume a system with software-managed Translation
Lookaside Buffer (TLB)

• TLB maps virtual address to physical address for each
instruction

• TLB miss: trap into the OS which looks up page tables and
installs translation and retries instruction

• Consider virtualized system:

• Application traps into VMM; VMM jumps to OS trap handler

• OS tries to install (VM, PM) in TLB, but this traps

• VMM installs (VM, MM), returns to OS and then App

• VMM maintains (PM, MM) mappings and even does paging

Information Gap

• VMM often doesn’t know what the OS is doing

• For example, if OS has nothing else to run:

• go into an idle loop and spin waiting for the next interrupt

• Another example:

• most OSes zero pages before giving to processes for
security

• VMM also has to the do the same, resulting in double work!

• One option is inference of OS behavior, another is
paravirtualization

Announcements

• Project timeline:

• Proposal (feb 17th)

• Intermediate report (feb 28th)

• Class presentation (march 10/11th)

• Final project (march 17th)

Virtual Machines Recap

• System manager is no longer the OS; it is the VMM or
the hypervisor

• OS no longer runs in privileged mode

• OS thinks it is running in most privileged mode:

• virtualization transparently provided by VMM

• CPU is virtualized just as with processes

• Memory is virtualized using clever handling of page tables

• VMM interposes on system calls, execution of privileged
instructions by OS

• What are the design goals in building a virtualization
solution?

Design Space

App is not
modified

App is
modified

OS is not
modified

Disco
(VMWare) ---

OS is
modified Xen Denali

Why is “paravirtualization” needed?
What are the issues regarding which solution is better?

Xen

• Key idea: change the machine-OS interface to make
VMs simpler and higher performance

• Pros: better performance on x86, some simplifications in VM
implementation, OS might want to know that it is virtualized

• Cons: must modify the guest OS

• Aims for performance isolation

Xen & Paravirtualization

• VM-style virtualization on an uncooperative architecture

• Support full-featured multi-user multi-application OSes

• contrast with Denali: thin OSes for lightweight services

• OSes are ported to a new “x86-xeno” architecture

• call to Xen for privileged operations

• porting requires source code

• Retain compatibility with OS API

• Must virtualize application visible architecture features

Performance

Fully virtualizing the MMU

• Constraints:

• Hardware-based TLB

• No tags on TLB

• Use shadow page tables

• Guest OS maintains “virtual to physical mem” map

• VMM maintains “virtual to machine mem” map

• Guest reads of page table is free

• Guest writes need switching to VMM

• Accessed/dirty bits require upcalls into OS

Paravirtualizing the MMU

• Paravirtualization obviates the need for shadows

• modify the guest OS to handle sparse memory maps

• Guest OSes allocate and manage their own PTs

• map Xen into top 64 MB in all address spaces

• Updates to page tables must be passed to Xen for
validation (use batching)

• Validation rules:

• only map a page if owned by the requesting guest OS

• only map a page containing PTEs for read-only access

• Xen tracks page ownership and current use

Memory Benchmarks

I/O Virtualization

• Need to minimize cost of transferring bulk data via
Xen

• copying costs time

• copying pollutes caches

• copying requires intermediate memory

• Device classes

• network

• disk

• graphics

I/O Virtualization

• Xen uses rings of buffer descriptors

• descriptors are small, cheap to copy and validate

• descriptors refer to bulk data

• no need to map or copy the data into Xen’s address space

• exception: checking network packet headers prior to TX

• Use zero-copy DMA to transfer bulk data between
hardware and guest OS

• net TX: DMA packet payload separately from header

• net RX: page-flip receive buffers into guest address space

TCP Results

Other Nice Ideas

• Domain 0:

• run the VMM management at user level

• easier to debug

• Network and disk are virtual devices

• virtual block devices: similar to SCSI disks

• model each guest OS has a virtual network interface
connected to a virtual firewall router

