
Google File System



Google File System

• Google needed a good distributed file system 

• Why not use an existing file system? 

• Different workload and design priorities 

• GFS is designed for Google apps 

• Google apps are designed for GFS!



• What are the applications and the workload 
considerations that drives the design of GFS?



Google Workload

• Hundreds of web-crawling application 

• Files: few million of 100MB+ files 

• Reads: small random reads and large streaming 
reads 

• Writes: 

• many files written once, read sequentially 

• random writes non-existent, mostly appends



• What are the design choices made by GFS?



• Discussion: Identify one thing that you would 
improve about GFS and suggest an alternative 
design



GFS Design Decisions

• Files stored as chunks (fixed size: 64MB) 

• Reliability through replication 

• each chunk replicated over 3+ chunkservers 

• Simple master to coordinate access, keep 
metadata 

• No data caching!  Why? 

• Familiar interface, but customize the API 

• focus on Google apps; add snapshot and record 
append operations



GFS Architecture

• What are the implications of this design?



Key Design Choices

• Shadow masters 

• Minimize master involvement 

• Never move data through it (only metadata) 

• Cache metadata at clients 

• Large chunk size 

• Master delegates authority to primary replicas in 
data mutations



Metadata

• Global metadata is stored on the master 

• File and chunk namespaces 

• Mapping from files to chunks 

• Locations of each chunk’s replicas 

• All in memory (64B/chunk) 

• Few million files ==> can fit all in memory



Durability

• Master has an operation log for persistent 
logging of critical metadata updates 

• each log write is 2PC to multiple remote machines 

• replicated transactional redo log 

• group commit to reduce the overhead 

• checkpoint all (log) state periodically; essentially 
mmap file to avoid parsing 

• checkpoint: switch to new log and copy snapshot in 
background



Mutable Operations
• Mutation is write or 

append 

• Goal: minimize master 
involvement 

• Lease mechanism 

• Master picks one replica as 
primary; gives it a lease  

• Primary defines a serial 
order of mutations 

• Data flow decoupled from 
control flow



Write Operations

• Application originates write request 

• GFS client translates request from (fname, 
data) --> (fname, chunk-index) sends it to 
master 

• Master responds with chunk handle and 
(primary+secondary) replica locations 

• Client pushes write data to all locations; data 
is stored in chunkservers’ internal buffers 

• Client sends write command to primary



Write Operations (contd.)
• Primary determines serial order for data 

instances stored in its buffer and writes the 
instances in that order to the chunk 

• Primary sends serial order to the secondaries 
and tells them to perform the write 

• Secondaries respond to the primary 

• Primary responds back to client 

• Note: if write fails at one of the 
chunkservers, client is informed and retries 
the write



Life without random writes
• E.g., results of a previous search: 

www.page1.com -> www.my.blogspot.com 
www.page2.com -> www.my.blogspot.com 

• Let’s say new results: page2 no longer has the link, but there is a 
new page, page3: 

www.page1.com -> www.my.blogspot.com 
www.page3.com -> www.my.blogspot.com 

• Option: delete the old record (page2), and insert a new record 
(page3). This is cumbersome! 

• requires locking; just way too complex. 

• better: delete the old file, create a new file where this 
program (run on more than one machines) can append new 
records to the file “atomically”

http://www.page1.com
http://www.my.blogspot.com
http://www.page2.com
http://www.my.blogspot.com
http://www.page1.com
http://www.my.blogspot.com
http://www.page3.com
http://www.my.blogspot.com


Atomic Record Append

• GFS client contacts the primary 

• Primary chooses and returns the offset 

• Client appends the data to each replica at 
least once 

• No need for a distributed lock manager; actual 
write can be an idempotent RPC (like in NFS)



BigTable Motivation

• Lots of (semi)-structured data at Google 

• URLs: contents, crawl metadata, links 

• Per-user data: preference settings, recent queries 

• Geographic locations: physical entities, roads, 
satellite image data 

• Scale is large: 

• Billions of URLs, many versions/page 

• Hundreds of millions of users, queries/sec 

• 100TB+ of satellite image data



Why not use commercial DB?

• Scale is too large for most commercial 
databases 

• Even if it weren’t, cost would be very high 

• Building internally means system can be applied 
across many projects 

• Low-level storage optimizations help 
performance significantly 

• Much harder to do when running on top of a 
database layer



Goals

• Want asynchronous processes to be continuously 
updating different pieces of data 

• want access to most current data 

• Need to support: 

• very high read/write rates (million ops/s) 

• efficient scans over all or interesting subsets 

• efficient joins of large datasets 

• Often want to examine data changes over time 

• E.g., contents of web page over multiple crawls



Building blocks

• GFS: stores persistent state 

• Scheduler: schedules jobs involved in BigTable 
serving 

• Lock service: master election 

• MapReduce: data analytics 

• BigTable: semi-structured data store 

!

• Question: how do these pieces fit together?



BigTable Overview

• Data Model, API 

• Implementation structure 

• Tablets, compactions, locality groups, ... 

• Details 

• Shared logs, compression, replication, ...



Basic Data Model
• Distributed multi-dimensional sparse map 

• (row, column, timestamp) --> cell contents 

• Good match for most of Google’s 
applications



Rows

• Name is an arbitrary string 

• Access to data in a row is atomic 

• Row creation is implicit upon storing data 

• Rows ordered lexicographically 

• Rows close together lexicographically usually on one 
or a small number of machines



Tablets

• Large tables broken into “tablets” at row 
boundaries 

• Tablet holds contiguous range of rows 

• Aim for 100MB to 200MB of data/tablet 

• Serving machine responsible for about 100 
tablets 

• Fast recovery (100 machines each pick up 1 tablet 
from failed machine) 

• Fine-grained load balancing



Tablets & Splitting



Locating Tablets
• Approach: 3-level hierarchical lookup scheme for tablets 

• Location is ip:port of relevant server 

• 1st level: bootstrapped from lock server, points to META0 

• 2nd level: Uses META0 data to find owner of META1 tablet 

• 3rd level: META1 table holds location of tablets of all other tables



Basic Implementation

• Writes go to log then to in-memory table 
“memtable” (key, value) 

• Periodically move in-memory table to disk 

• SSTable is immutable ordered subset of table; 
range of keys & subset of their columns 

• Tablet = all of the SSTables for one key range plus 
the memtable 

• some values maybe stale (due to new writes)



Basic Implementation

• Reads: maintain in-memory map of keys to SSTables 

• current version is in exactly one SSTable or memtable 

• reading based on timestamp requires multiple reads 

• may also have to read many SSTables to get all of the 
columns 

• Compaction: 

• SSTables similar to segments in LFS 

• need to clean old SSTables to reclaim space 

• clean by merging multiple SSTables into new one



Bloom filters
• Goal: efficient test for set membership: member(key) 

-> true/false 

• false ==> definitely not in the set 

• true ==> probably is in the set 

• Generally supports adding elements but not removing 
them 

• Basic version: m bit positions, k hash functions 

• For insert: compute k bit locations, set to 1 

• For lookup: compute k locations, check for 1 

• BigTable: avoid reading SSTables for elements that 
are not present; saves many seeks


