
Google File System

Google File System

• Google needed a good distributed file system

• Why not use an existing file system?

• Different workload and design priorities

• GFS is designed for Google apps

• Google apps are designed for GFS!

• What are the applications and the workload
considerations that drives the design of GFS?

Google Workload

• Hundreds of web-crawling application

• Files: few million of 100MB+ files

• Reads: small random reads and large streaming
reads

• Writes:

• many files written once, read sequentially

• random writes non-existent, mostly appends

• What are the design choices made by GFS?

• Discussion: Identify one thing that you would
improve about GFS and suggest an alternative
design

GFS Design Decisions

• Files stored as chunks (fixed size: 64MB)

• Reliability through replication

• each chunk replicated over 3+ chunkservers

• Simple master to coordinate access, keep
metadata

• No data caching! Why?

• Familiar interface, but customize the API

• focus on Google apps; add snapshot and record
append operations

GFS Architecture

• What are the implications of this design?

Key Design Choices

• Shadow masters

• Minimize master involvement

• Never move data through it (only metadata)

• Cache metadata at clients

• Large chunk size

• Master delegates authority to primary replicas in
data mutations

Metadata

• Global metadata is stored on the master

• File and chunk namespaces

• Mapping from files to chunks

• Locations of each chunk’s replicas

• All in memory (64B/chunk)

• Few million files ==> can fit all in memory

Durability

• Master has an operation log for persistent
logging of critical metadata updates

• each log write is 2PC to multiple remote machines

• replicated transactional redo log

• group commit to reduce the overhead

• checkpoint all (log) state periodically; essentially
mmap file to avoid parsing

• checkpoint: switch to new log and copy snapshot in
background

Mutable Operations
• Mutation is write or

append

• Goal: minimize master
involvement

• Lease mechanism

• Master picks one replica as
primary; gives it a lease

• Primary defines a serial
order of mutations

• Data flow decoupled from
control flow

Write Operations

• Application originates write request

• GFS client translates request from (fname,
data) --> (fname, chunk-index) sends it to
master

• Master responds with chunk handle and
(primary+secondary) replica locations

• Client pushes write data to all locations; data
is stored in chunkservers’ internal buffers

• Client sends write command to primary

Write Operations (contd.)
• Primary determines serial order for data

instances stored in its buffer and writes the
instances in that order to the chunk

• Primary sends serial order to the secondaries
and tells them to perform the write

• Secondaries respond to the primary

• Primary responds back to client

• Note: if write fails at one of the
chunkservers, client is informed and retries
the write

Life without random writes
• E.g., results of a previous search:

www.page1.com -> www.my.blogspot.com
www.page2.com -> www.my.blogspot.com

• Let’s say new results: page2 no longer has the link, but there is a
new page, page3:

www.page1.com -> www.my.blogspot.com
www.page3.com -> www.my.blogspot.com

• Option: delete the old record (page2), and insert a new record
(page3). This is cumbersome!

• requires locking; just way too complex.

• better: delete the old file, create a new file where this
program (run on more than one machines) can append new
records to the file “atomically”

http://www.page1.com
http://www.my.blogspot.com
http://www.page2.com
http://www.my.blogspot.com
http://www.page1.com
http://www.my.blogspot.com
http://www.page3.com
http://www.my.blogspot.com

Atomic Record Append

• GFS client contacts the primary

• Primary chooses and returns the offset

• Client appends the data to each replica at
least once

• No need for a distributed lock manager; actual
write can be an idempotent RPC (like in NFS)

BigTable Motivation

• Lots of (semi)-structured data at Google

• URLs: contents, crawl metadata, links

• Per-user data: preference settings, recent queries

• Geographic locations: physical entities, roads,
satellite image data

• Scale is large:

• Billions of URLs, many versions/page

• Hundreds of millions of users, queries/sec

• 100TB+ of satellite image data

Why not use commercial DB?

• Scale is too large for most commercial
databases

• Even if it weren’t, cost would be very high

• Building internally means system can be applied
across many projects

• Low-level storage optimizations help
performance significantly

• Much harder to do when running on top of a
database layer

Goals

• Want asynchronous processes to be continuously
updating different pieces of data

• want access to most current data

• Need to support:

• very high read/write rates (million ops/s)

• efficient scans over all or interesting subsets

• efficient joins of large datasets

• Often want to examine data changes over time

• E.g., contents of web page over multiple crawls

Building blocks

• GFS: stores persistent state

• Scheduler: schedules jobs involved in BigTable
serving

• Lock service: master election

• MapReduce: data analytics

• BigTable: semi-structured data store

!

• Question: how do these pieces fit together?

BigTable Overview

• Data Model, API

• Implementation structure

• Tablets, compactions, locality groups, ...

• Details

• Shared logs, compression, replication, ...

Basic Data Model
• Distributed multi-dimensional sparse map

• (row, column, timestamp) --> cell contents

• Good match for most of Google’s
applications

Rows

• Name is an arbitrary string

• Access to data in a row is atomic

• Row creation is implicit upon storing data

• Rows ordered lexicographically

• Rows close together lexicographically usually on one
or a small number of machines

Tablets

• Large tables broken into “tablets” at row
boundaries

• Tablet holds contiguous range of rows

• Aim for 100MB to 200MB of data/tablet

• Serving machine responsible for about 100
tablets

• Fast recovery (100 machines each pick up 1 tablet
from failed machine)

• Fine-grained load balancing

Tablets & Splitting

Locating Tablets
• Approach: 3-level hierarchical lookup scheme for tablets

• Location is ip:port of relevant server

• 1st level: bootstrapped from lock server, points to META0

• 2nd level: Uses META0 data to find owner of META1 tablet

• 3rd level: META1 table holds location of tablets of all other tables

Basic Implementation

• Writes go to log then to in-memory table
“memtable” (key, value)

• Periodically move in-memory table to disk

• SSTable is immutable ordered subset of table;
range of keys & subset of their columns

• Tablet = all of the SSTables for one key range plus
the memtable

• some values maybe stale (due to new writes)

Basic Implementation

• Reads: maintain in-memory map of keys to SSTables

• current version is in exactly one SSTable or memtable

• reading based on timestamp requires multiple reads

• may also have to read many SSTables to get all of the
columns

• Compaction:

• SSTables similar to segments in LFS

• need to clean old SSTables to reclaim space

• clean by merging multiple SSTables into new one

Bloom filters
• Goal: efficient test for set membership: member(key)

-> true/false

• false ==> definitely not in the set

• true ==> probably is in the set

• Generally supports adding elements but not removing
them

• Basic version: m bit positions, k hash functions

• For insert: compute k bit locations, set to 1

• For lookup: compute k locations, check for 1

• BigTable: avoid reading SSTables for elements that
are not present; saves many seeks

