
!

Experience with Processes
and Monitors in Mesa

!

!

Arvind Krishnamurthy

Background

• Focus of this paper: light-weight processes (threads)
and how they synchronize with each other	

!

• History:	

• Xerox Alto: first personal computer	

• Pilot is the OS for its successor (Xerox Star)	

• Advent of things like server machines and networking
introduced applications that are highly concurrent	

• Single user system	

• Safety was to come from language

Background

• Large system, many programmers, many applications	

• Module-based programming with information hiding	

!

• They were starting “from scratch”	

• They could integrate the hardware, the runtime software,
and the language with each other

• Discuss:	

• what you liked about the paper?	

• what you disliked?	

• what did not make sense or what was not clear?

Programming model

• Two choices for programming concurrency:	

• Shared memory	

• Message passing	

!

• What are their strengths/weaknesses?	

!

• Needham & Lauer claimed the two models are duals	

• Mesa uses shared memory model because it fits as a
language construct more naturally

Synchronizing Processes

• Goal: mutual exclusion	

!

• An option: non-preemptive scheduler	

• Process owns the processor till it yields	

• What are the downsides of using a non-preemptive
scheduler?	

!

• Another option: simple locking (e.g., semaphores)	

• How does it compare to monitors?

Mesa Language Constructs

• Light weight processes	

• Monitors	

• Condition variables

Light weight Processes

• Easy forking and synchronization	

• Shared address space	

• Fast performance for creation, switching, and
synchronization	

• Low storage overheads	

• Mesa is a single user system; what would change if it
were to be used in a multi-user system?	

• Dangling references similar to those of pointers	

• How can you prevent these dangling references?

Monitors

• Monitor lock for synchronization	

• Tied to module structure of the language; makes it clear
what is being monitored	

• Language automatically acquires and releases the lock	

• Tied to a particular invariant, which helps users think
about the program

Modules and Monitors

• Three types of procedures in a monitor module:	

• entry (acquires and releases lock)	

• internal (no locking done): can’t be called from outside the
module	

• external (no locking done): externally callable	

• Allows grouping of related things into a module	

• Allows doing some of the work outside the monitor
lock	

• Allows controlled release and reacquisition of
monitor lock

Condition Variables

• Notify semantics options:	

• Cede lock to waking process	

• Notifier keeps lock, waking process gets put in front of
monitor queue	

• Notifier keeps lock, wakes process with no guarantees	

!

• What are the strengths/weaknesses of the different
options?

Notification in Mesa

• It is a “hint”. Notifying process keeps the lock/control	

• Other related aspects of notify:	

• Timeouts	

• Broadcasts: why is this useful?	

• Aborts:	

• Request to abort; allows the target process to reach a
wait or monitor exit and then it voluntarily aborts	

• No need to re-establish the invariant, as compared to just
killing the process outright

Deadlocks

• Typical deadlock scenarios:	

• Recursion on the same module	

• Enter multiple monitors in different orders	

• Process 1 obtains monitor A followed by B; Process 2
obtains monitor B followed by A	

• Enter multiple monitors in the same order, but wait inside the
second monitor does not release the lock of the first monitor	

• General problem with modular systems and
synchronization	

• Synchronization requires global knowledge about locks, which
violates the information hiding paradigm

Other Issues

• Lock granularity	

• introduced monitored records so that the same monitor
code could handle multiple instances of something in parallel	

• Interrupts: interrupt handler can’t block waiting	

• Introduced naked notifies: notifies done without holding the
monitor lock	

• What is the problem with naked notifies?	

• How can this be addressed?

Priority, locks, scheduling

• There are subtle interactions between priorities and
scheduling and holding locks	

!

• Mars Pathfinder:	

• Success story for the first few days	

• Landed with fancy airbags, released a “rover”, shot some
spectacular photos of the Mars landscape	

• Few days later after it started collecting meteorological data,
system started resetting itself periodically

Priority Inversion

• “Information bus” is a shared memory region shared
across the following processes:	

• Bus manager (high priority process)	

• Meteorological data gatherer (low priority)	

• Reset if Bus Manager hasn’t run for a while	

• Protected by a lock	

• If Bus Manager is scheduled by context-switching out the
data gatherer, it will sleep for a bit, let the data gatherer run,
which will release the lock in a short while

Priority Inversion

• Another thread: communications task	

• Medium priority, long running task	

• Sometimes the communications task would get scheduled
instead of the data gatherer	

• Neither the lower priority data gatherer nor the higher
priority bus manager would run	

!

• Works in pairs, but not all three together. Resulted in
periodic resets	

• How do we fix this problem?

Other Issues

• Exceptions	

• Must restore monitor invariant as you unwind the stack	

• The idea that you just kill a process and release the locks is
naive	

• Entry procedures that have an exception, but no exception
handler do not release the monitor lock	

• This ensures deadlock and a trip into the debugger, but at
least it maintains the invariant

Performance

• Context switch is very fast	

• Two procedure calls	

• Ended up not mattering much!	

• Ran only on uniprocessor systems	

• Concurrency mostly used for clean structuring purposes	

• Procedure calls: 30 instructions	

• Is this a reasonable number? 	

• Process creation is about 1100 instructions	

• Good enough; “fast fork” implemented later keeps around a
pool of available processes

Key Features of the Paper

• Describes the experiences designers had with
designing, building, and using a large system that relies
on lightweight processes	

• Describes various subtle issues of implementing
monitors	

• Discusses the performance and overheads of various
primitives

Discussion

• What about distributed memory systems or clusters?
What is a good programming model for concurrency
in such systems?	

!

• What other issues come up for multi-core systems?
Is the Mesa model appropriate for multi-cores?	

!

• What are the key differences between Mesa and its
modern counterparts?

