BigTable Motivation

® Lots of (semi)-structured data at Google

® URLs: contents, crawl metadata, links
® Per-user data: preference settings, recent queries

® Geographic locations: physical entities, roads, satellite
image data

® Scaleis large:

® Billions of URLs, many versions/page
® Hundreds of millions of users, queries/sec

® 100TB+ of satellite image data




Why not use commercial DB?

® Scale is too large for most commercial databases

® Even if it weren’t, cost would be very high

® Building internally means system can be applied across
many projects

® Low-level storage optimizations help performance
significantly

® Much harder to do when running on top of a database layer




Goals

® \Want asynchronous processes to be continuously updating
different pieces of data

® want access to most current data
® Need to support:
® very high read/write rates (million ops/s)
® efficient scans over all or interesting subsets
® efficient joins of large datasets
® (Often want to examine data changes over time

® FE.g., contents of web page over multiple crawls




Building blocks

GFS: stores persistent state

Scheduler: schedules jobs/nodes for tasks
Lock service: master election
MapReduce: data analytics

BigTable: semi-structured data store

Question: how do these pieces fit together?



BigTable Overview

® Data Model, API

® Implementation structure

® Tablets, compactions, locality groups, ...

® Details

® Shared logs, compression, replication, ...




Basic Data Model

® Distributed multi-dimensional sparse map
® (row, column, timestamp) --> cell contents

® Good match for most of Google’s applications

"contents:” "anchor:cnnsi.com” "anchor:my.look.ca”

"com.cnn.www"




® Name is an arbitrary string
® Access todatain arow is atomic

® Row creation is implicit upon storing data

® Rows ordered lexicographically

® Rows close together lexicographically usually on one or a
small number of machines




Tablets

® lLarge tables broken into “tablets” at row boundaries
® Tablet holds contiguous range of rows
® Aim for 100MB to 200MB of data/tablet

® Serving machine responsible for about 100 tablets

® Fast recovery (100 machines each pick up 1 tablet from
failed machine)

® Fine-grained load balancing




|

“contents”

tting

|

"
=)
x
=
g
L

Q
V)
%!
Vp)
)
D
O
(O
_I

TABLETS

cnn.comy/sports. html
Zuppa.com/menu.html

aaa.com
cnn.com
Website.com




Locating Tablets

® Since tablets move around from server to server,
given a row, how do clients find the right machine?

® Need to find tablet whose row range covers the target row
® One approach: could use the BigTable master

® Central server almost certainly would be bottleneck in large
system

® Instead store special tables containing tablet location
info in BigTable cell itself




Locating Tablets

® Approach: 3-level hierarchical lookup scheme for tablets
® |ocationis ip:port of relevant server
® 1stlevel: bootstrapped from lock server, points to METAO
® 2nd level: Uses METAO data to find owner of META1 tablet

® 3rd level: META1 table holds location of tablets of all other tables

UserTable1

Other

METADATA
tablets

Root tablet
Chubby file (1St METADATA tzbie)




Basic Implementation

® \Writes go to log then to in-memory table “memtable”
CEAACINE)

® Periodically move in-memory table to disk

® SSTable is immutable ordered subset of table; range of keys
& subset of their columns

Tablet = all of the SSTables for one key range plus the
memtable

some values maybe stale (due to new writes)




Basic Implementation

® Reads: maintain in-memory map of keys to SSTables

® current version is in exactly one SSTable or memtable

® may have to read many SSTables to get all of the columns
® Compaction:

® SSTables similar to segments in LFS

® need to clean old SSTables to reclaim space

® clean by merging multiple SSTables into new one




® How do you optimize the system outlined above?




Bloom filters

Goal: efficient test for set membership: member(key) -> true/
false

® false ==> definitely not in the set
® true ==> probably is in the set
Generally supports adding elements but not removing them
Basic version: m bit positions, k hash functions
® Forinsert: compute k bit locations, set to 1
® For lookup: compute k locations, check for 1

BigTable: avoid reading SSTables for elements that are not
present; saves many seeks




