
BigTable	Mo8va8on

• Lots	of	(semi)-structured	data	at	Google	

• URLs:	contents,	crawl	metadata,	links	

• Per-user	data:	preference	senngs,	recent	queries	

• Geographic	loca8ons:	physical	en88es,	roads,	satellite	
image	data	

• Scale	is	large:	

• Billions	of	URLs,	many	versions/page	

• Hundreds	of	millions	of	users,	queries/sec	

• 100TB+	of	satellite	image	data



Why	not	use	commercial	DB?

• Scale	is	too	large	for	most	commercial	databases	

• Even	if	it	weren’t,	cost	would	be	very	high	

• Building	internally	means	system	can	be	applied	across	
many	projects	

• Low-level	storage	op8miza8ons	help	performance	
significantly	

• Much	harder	to	do	when	running	on	top	of	a	database	layer



Goals

• Want	asynchronous	processes	to	be	con8nuously	upda8ng	
different	pieces	of	data	

• want	access	to	most	current	data	

• Need	to	support:	

• very	high	read/write	rates	(million	ops/s)	

• efficient	scans	over	all	or	interes8ng	subsets	

• efficient	joins	of	large	datasets	

• Open	want	to	examine	data	changes	over	8me	

• E.g.,	contents	of	web	page	over	mul8ple	crawls



Building	blocks

• GFS:	stores	persistent	state	

• Scheduler:	schedules	jobs/nodes	for	tasks	

• Lock	service:	master	elec8on	

• MapReduce:	data	analy8cs	

• BigTable:	semi-structured	data	store	

• Ques8on:	how	do	these	pieces	fit	together?



BigTable	Overview

• Data	Model,	API	

• Implementa8on	structure	

• Tablets,	compac8ons,	locality	groups,	...	

• Details	

• Shared	logs,	compression,	replica8on,	...



Basic	Data	Model

• Distributed	mul8-dimensional	sparse	map	

• (row,	column,	8mestamp)	-->	cell	contents	

• Good	match	for	most	of	Google’s	applica8ons



Rows

• Name	is	an	arbitrary	string	

• Access	to	data	in	a	row	is	atomic	

• Row	crea8on	is	implicit	upon	storing	data	

• Rows	ordered	lexicographically	

• Rows	close	together	lexicographically	usually	on	one	or	a	
small	number	of	machines



Tablets

• Large	tables	broken	into	“tablets”	at	row	boundaries	

• Tablet	holds	con8guous	range	of	rows	

• Aim	for	100MB	to	200MB	of	data/tablet	

• Serving	machine	responsible	for	about	100	tablets	

• Fast	recovery	(100	machines	each	pick	up	1	tablet	from	
failed	machine)	

• Fine-grained	load	balancing



Tablets	&	Splinng



Loca8ng	Tablets

• Since	tablets	move	around	from	server	to	server,	
given	a	row,	how	do	clients	find	the	right	machine?	

• Need	to	find	tablet	whose	row	range	covers	the	target	row	

• One	approach:	could	use	the	BigTable	master	

• Central	server	almost	certainly	would	be	boMleneck	in	large	
system	

• Instead	store	special	tables	containing	tablet	loca8on	
info	in	BigTable	cell	itself



Loca8ng	Tablets

• Approach:	3-level	hierarchical	lookup	scheme	for	tablets	

• Loca8on	is	ip:port	of	relevant	server	

• 1st	level:	bootstrapped	from	lock	server,	points	to	META0	

• 2nd	level:	Uses	META0	data	to	find	owner	of	META1	tablet	

• 3rd	level:	META1	table	holds	loca8on	of	tablets	of	all	other	tables



Basic	Implementa8on

• Writes	go	to	log	then	to	in-memory	table	“memtable”	
(key,	value)	

• Periodically	move	in-memory	table	to	disk	

• SSTable	is	immutable	ordered	subset	of	table;	range	of	keys	
&	subset	of	their	columns	

• Tablet	=	all	of	the	SSTables	for	one	key	range	plus	the	
memtable	

• some	values	maybe	stale	(due	to	new	writes)



Basic	Implementa8on

• Reads:	maintain	in-memory	map	of	keys	to	SSTables	

• current	version	is	in	exactly	one	SSTable	or	memtable	

• may	have	to	read	many	SSTables	to	get	all	of	the	columns	

• Compac8on:	

• SSTables	similar	to	segments	in	LFS	

• need	to	clean	old	SSTables	to	reclaim	space	

• clean	by	merging	mul8ple	SSTables	into	new	one



• How	do	you	op8mize	the	system	outlined	above?



Bloom	filters

• Goal:	efficient	test	for	set	membership:	member(key)	->	true/
false	

• false	==>	definitely	not	in	the	set	

• true	==>	probably	is	in	the	set	

• Generally	supports	adding	elements	but	not	removing	them	

• Basic	version:	m	bit	posi8ons,	k	hash	func8ons	

• For	insert:	compute	k	bit	loca8ons,	set	to	1	

• For	lookup:	compute	k	loca8ons,	check	for	1	

• BigTable:	avoid	reading	SSTables	for	elements	that	are	not	
present;	saves	many	seeks


