
Distributed	Hash	Tables

What	is	a	DHT?

• Hash	Table	
• data	structure	that	maps	“keys”	to	“values”	

• essen=al	building	block	in	so?ware	systems	

• Distributed	Hash	Table	(DHT)		
• similar,	but	spread	across	many	hosts	

• Interface		
• insert(key,	value)	

• lookup(key)

How	do	DHTs	work?

Every	DHT	node	supports	a	single	opera=on:	

• Given	key	as	input;	route	messages	to	node	holding	
key	

• DHTs	are	content-addressable

DHT: basic idea

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

Neighboring nodes are “connected” at the application-level

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

Operation: take key as input; route messages to node
holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

insert(K1,V1)

Operation: take key as input; route messages to node
holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

insert(K1,V1)

DHT: basic idea

Operation: take key as input; route messages to node
holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

(K1,V1)

DHT: basic idea

Operation: take key as input; route messages to node
holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

retrieve (K1)

DHT: basic idea

Operation: take key as input; route messages to node
holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

• For	what	seKngs	do	DHTs	make	sense?	

• Why	would	you	want	DHTs?

Fundamental	Design	Idea	I
• Consistent	Hashing	

• Map	keys	and	nodes	to	an	identifier	space;	implicit	
assignment	of	responsibility

Identifiers
A C DB

Key

Mapping performed using hash functions (e.g., SHA-1)

11111111110000000000

• What is the advantage of consistent hashing?

Fundamental	Design	Idea	II
• Prefix	/	Hypercube	rou=ng

Source

Destination

State	Assignment	in	Chord

• Nodes	are	randomly	chosen	points	on	a	clock-wise	ring	
of	values	

• Each	node	stores	the	id	space	(values)	between	itself	
and	its	predecessor	

 d(100, 111) = 3

000

101

100

011

010

001

110

111

Chord Topology and Route Selection

• Neighbor	selec=on:	ith	neighbor	at	2i	distance	

• Route	selec=on:	pick	neighbor	closest	to	des=na=on

000

101

100

011

010

001

110

111 d(000, 001) = 1

 d(000, 010) = 2

 d(000, 001) = 4

110

How to design a DHT?

• State	Assignment:	
• what	“(key,	value)	tables”	does	a	node	store?	

• Network	Topology:		
• how	does	a	node	select	its	neighbors?	

• Rou=ng	Algorithm:		
• which	neighbor	to	pick	while	rou=ng	to	a	des=na=on?	

• Various	DHT	algorithms	make	different	choices	
• CAN,	Chord,	Pastry,	Tapestry,	Plaxton,	Viceroy,	Kademlia,	Skipnet,	

Symphony,	Koorde,	Apocrypha,	Land,	ORDI	…	

Issues

• How	do	you	characterize	the	performance	of	DHTs?

Issues

• How	do	you	improve	the	performance	of	DHTs?

Issues

• What	are	the	fault	tolerance/correctness	issues?	

• how	do	you	improve	fault-tolerance	or	reliability?

Issues

• What	are	the	security	issues?	

• how	do	you	improve	security?

Issues

• What	are	the	load	balance	issues?	

• how	do	you	improve	load	balance?

Dynamo

• Real	DHT	(1-hop)	used	inside	datacenters	

• E.g.,	shopping	cart	at	Amazon	

• More	available	than	Spanner	etc.	

• Less	consistent	than	Spanner	

• Influen=al	—	inspired	Cassandra

Context

• SLA:	99.9th	delay	latency	<	300ms	

• constant	failures	

• always	writeable

Quorums

• Sloppy	quorum:	first	N	reachable	nodes	a?er	the	
home	node	on	a	DHT	

• Quorum	rule:	R	+	W	>	N	

• allows	you	to	op=mize	for	the	common	case

Eventual	Consistency

• accept	writes	at	any	replica	

• allow	divergent	replicas	

• allow	reds	to	see	stale	or	conflic=ng	data	

• resolve	mul=ple	versions	when	failures	go	away	

• latest	version	if	no	conflic=ng	updates	

• if	conflicts,	reader	must	merge	and	then	write

More	Details

• Coordinator:	successor	of	key	on	a	ring	

• Coordinator	forwards	ops	to	N	other	nodes	on	the	
ring	

• Each	opera=on	is	tagged	with	the	coordinator	
=mestamp	

• Values	have	an	associated	“vector	clock”	of	
coordinator	=mestamps	

• Gets	return	mul=ple	values	along	with	the	vector	
clocks	of	values	

• Client	resolves	conflicts	and	stores	the	resolved	value

