Cluster Computing

Big Data Parallelism

® Huge data set

® crawled documents, web request logs, etc.

Challenges

® Parallelize application
® Where to place input and output data?
® Where to place computation?

® How to communicate data? How to manage threads? How to
avoid network bottleneck?

Goal of MapReduce

® To solve these distribution/fault-tolerance issues once
in a reusable library

® To shield the programmer from having to re-solve them for
each program

Map Reduce

® Overview:

® Partition large data set into M splits

® Run map on each partition, which produces R local

Details

® Input values: set of key-value pairs

® Job will read chunks of key-value pairs

® “key-value” pairs a good enough abstraction

® Map(key, value):

® System will execute this function on each key-value pair

Count words in web-pages

Map(key, value) {
// key is url
// value is the content of the url
For each word W in the content
Generate(W, 1);

Reverse web-link graph

Go to google advanced search:
"find pages that link to the page:" cnn.com

Map(key, value) {

// key = url
// value = content
For each url, linking to target

® Question: how do we implement “join” in
MapReduce?

® Imagine you have a log table L and some other table R that

Implementation

® Depends on the underlying hardware: shared
memory, message passing, NUMA shared memory,
etc.

Inside Google:

Implementation

® Partition input data into M splits
® starts up many copies of the program on a cluster
® one master and multiple slaves

® Map function invoked on key-values

[] [] []
(0 buirered in memoao aNd Dbe
RAN A= J NS Ls A - L <n - | UN | A

Implementation

® Master keeps track of locations of intermediate keys

® Reducer accesses these values through RPCs

® reducer sorts all keys assigned to it

Role of the Master

® Keeps state regarding the state of each worker
machine (pings each machine)

Discussion

® what are the performance limitations of map reduce?

® what are the constraints imposed on map and reduce

Map Reduce Criticism

® “Giant step backwards” in programming model

® Sub-optimal implementation

Comparison to Databases

® Huge source of controversy; claims:

® parallel databases have much more advanced data processing
support that leads to much more efficiency

® support an index; selection is accelerated

Where does MR win?

® Scaling

- ® Loading data into system

Piccolo

® MapReduce restrictions:

® just two phases

® map can see only its split

® reduce sees just one key at a time

Naive PageRank

curr = Table(key=PagelD, value=double)
next = Table(key=PagelD, value=double)

def pr_kernel(graph, curr, next):
| = my_instance
n = len(graph)/NUM_MACHINES
for s in graph[(i-1)*n:i*n]
for t in s.out:
next[t] += curr[s.id] / len(s.out)

Jobs run by
many machines

Controller launches

def main(): /iobs in parallel

for i in range(50):
Run by a single
controller

launch_jobs(NUM_MACHINES, pr_kernel,
graph, curr, next)

swap(curr, next)

next.clear()

Naive PageRank is Slow

=
B->D A: O ‘
out
get

get

- put

Ranks
C:O0
Graph
C->E,F a

B: O

Graph
A->B,C

PageRank: Locality

curr = Table(...,partitions=100,partition_by=site)
next = Table(...,partitions=100,partition_by=site)
group_tables(curr,next,graph) <

Control table
partitioning

Co-locate tables

def pr_kernel(graph, curr, next):
for s in graph.get_iterator(my_instance)
for tin s.out:
next[t] += curr[s.id] / len(s.out)

def main():
for i in range(50):
launch_jobs(curr.num_partitions,

pr_kernel,
graph, curr, next, Co-locate
locality=curr) < execution with

swap(curr, next) table

next.clear()

PageRank: Synchronization

curr = Table(...,partition_by=site,accumulate=sum) Accumulation

next = Table(...,partition_by=site,accumulate=sum) « vid sum
group_tables(curr,next,graph)

def pr_kernel(graph, curr, next): Updd're invokes

for s in graph.get_iterator(my_instance) accumulation function
for tin s.out:

next.update(t, curr.get(s.id)/len(s.out))

def main():
for i in range(50):
handle = launch_jobs(curr.num_partitions,
pr_kernel,
graph, curr, next,
locality=curr)
barrier(handle)

swap(curr, next)
next.clear() Iterations

— Explicitly wait between

Efficient Synchronization

Runtime

Workers buffer updates

locally
— Release consistency

Ranks
B:
Graph :
50 3
oo o B-

update (a, 0.3)
Rco'”gs update (a, 0.2)

o)
P
>D

PageRank: Checkpointing

curr = Table(...,partition_by=site,accumulate=sum)
next = Table(...,partition_by=site,accumulate=sum)
group_tables(curr,next)
def pr_kernel(graph, curr, next): Restore previous
for node in graph.get_iterator(my_instance)
for tin s.out:
next.update(t,curr.get(s.id)/len(s.out))

computation

User decides which
def main():

curr, userdata = restore()
last = userdata.get(‘iter’, 0) and when
for i in range(last,50):
handle = launch_jobs(curr.num_partitions, pr_kernel,
graph, curr, next,
locality=curr)
cp_barrier(handle, tables=(next), userdata={"iter’:i})
swap(curr, next)
next.clear()

tables to checkpoint

® How does Piccolo compare to MapReduce:

