
Cluster	Compu,ng

Big	Data	Parallelism

• Huge	data	set	

• crawled	documents,	web	request	logs,	etc.	

• Natural	parallelism:	

• can	work	on	different	parts	of	data	independently	

• image	processing,	grep,	indexing,	many	more

• What	are	the	issues	that	we	need	to	tackle	in	building	
big	data	analy,cs	systems?

Challenges

• Parallelize	applica,on	

• Where	to	place	input	and	output	data?	

• Where	to	place	computa,on?	

• How	to	communicate	data?		How	to	manage	threads?		How	to	
avoid	network	boIleneck?	

• Balance	computa,ons		

• Handle	failures	of	nodes	during	computa,on	

• Scheduling	several	applica,ons	who	want	to	share	
infrastructure

Goal	of	MapReduce

• To	solve	these	distribu,on/fault-tolerance	issues	once	
in	a	reusable	library	

• To	shield	the	programmer	from	having	to	re-solve	them	for	
each	program	

• To	obtain	adequate	throughput	and	scalability	

• To	provide	the	programmer	with	a	conceptual	
framework	for	designing	their	parallel	program

Map	Reduce

• Overview:	

• Par,,on	large	data	set	into	M	splits	

• Run	map	on	each	par,,on,	which	produces	R	local	
par,,ons;	using	a	par,,on	func,on	R	

• Run	reduce	on	each	intermediate	par,,on,	which	produces	
R	output	files	

• Hidden	intermediate	shuffle	phase

Details

• Input	values:	set	of	key-value	pairs	

• Job	will	read	chunks	of	key-value	pairs	

• “key-value”	pairs	a	good	enough	abstrac,on	

• Map(key,	value):	

• System	will	execute	this	func,on	on	each	key-value	pair	

• Generate	a	set	of	intermediate	key-value	pairs	

• Reduce(key,	values):	

• Intermediate	key-value	pairs	are	sorted	

• Reduce	func,on	is	executed	on	these	intermediate	key-
values

Count	words	in	web-pages

Map(key,	value)	{	
				//	key	is	url	
				//	value	is	the	content	of	the	url	
				For	each	word	W	in	the	content	
								Generate(W,	1);	
}	

Reduce(key,	values)	{	
				//	key	is	word	(W)	
				//	values	are	basically	all	1s	
				Sum	=	Sum	all	1s	in	values	

				//	generate	word-count	pairs	
				Generate	(key,	sum);		
}

Reverse	web-link	graph

Go	to	google	advanced	search:		
"find	pages	that	link	to	the	page:"	cnn.com	

Map(key,	value)	{	
				//	key	=	url	
				//	value	=	content	
				For	each	url,	linking	to	target	
								Generate(output	target,	url);	
}	

Reduce(key,	values)	{	
				//	key	=	target	url	
				//	values	=	all	urls	that	point	to	the	target	url	
				Generate(key,	list	of	values);	
}

• Ques,on:	how	do	we	implement	“join”	in	
MapReduce?	

• Imagine	you	have	a	log	table	L	and	some	other	table	R	that	
contains	say	user	informa,on	

• Perform	Join	(L.uid	==	R.uid)	

• Say	size	of	L	>>	size	of	R	

• Bonus:	consider	real	world	zipf	distribu,ons

Implementa,on

• Depends	on	the	underlying	hardware:	shared	
memory,	message	passing,	NUMA	shared	memory,	
etc.	

• Inside	Google:	

• commodity	worksta,ons	

• commodity	networking	hardware	(1Gbps	at	node	level	and	
much	smaller	bisec,on	bandwidth)	

• cluster	=	100s	or	1000s	of	machines	

• storage	is	through	GFS

Implementa,on

• Par,,on	input	data	into	M	splits	

• starts	up	many	copies	of	the	program	on	a	cluster	

• one	master	and	mul,ple	slaves	

• Map	func,on	invoked	on	key-values	

• Output	is	buffered	in	memory	and	periodically	logged	to	
disk	(local	disk)	

• Reduce	invoca,ons:	par,,on	the	intermediate	key	
space	into	R	pieces	(e.g.,	hash(key)	%	R)	

• R	and	par,,on	func,on	is	specified	by	user

Implementa,on

• Master	keeps	track	of	loca,ons	of	intermediate	keys	

• Reducer	accesses	these	values	through	RPCs	

• reducer	sorts	all	keys	assigned	to	it	

• iterates	over	each	unique	key	and	performs	reduce	over	
associated	values	

• emits	output	values	that	are	appended	to	a	final	output	
file	for	this	reduce	par,,on	(in	GFS)

Role	of	the	Master

• Keeps	state	regarding	the	state	of	each	worker	
machine	(pings	each	machine)	

• Reschedules	work	corresponding	to	failed	machines	

• Orchestrates	the	passing	of	loca,ons	to	reduce	
func,ons

Discussion

• what	are	the	performance	limita,ons	of	map	reduce?	

• what	are	the	constraints	imposed	on	map	and	reduce	
func,ons?	

• how	would	you	like	to	expand	the	capability	of	map	
reduce?

Map	Reduce	Cri,cism

• “Giant	step	backwards”	in	programming	model	

• Sub-op,mal	implementa,on	

• “Not	novel	at	all”	

• Missing	most	of	the	DB	features	

• Incompa,ble	with	all	of	the	DB	tools

Comparison	to	Databases

• Huge	source	of	controversy;	claims:	

• parallel	databases	have	much	more	advanced	data	processing	
support	that	leads	to	much	more	efficiency	

• support	an	index;	selec,on	is	accelerated	

• provides	query	op,miza,on	

• parallel	databases	support	a	much	richer	seman,c	model		

• support	a	scheme;	sharing	across	apps	

• support	SQL,	efficient	joins,	etc.

Where	does	MR	win?

• Scaling	

• Loading	data	into	system	

• Fault	tolerance	(par,al	restarts)	

• Approachability

Piccolo

• MapReduce	restric,ons:	

• just	two	phases	

• map	can	see	only	its	split	

• reduce	sees	just	one	key	at	a	,me	

• Piccolo	programming	model:	

• any	number	of	phases	(determined	by	controller)	

• computa,on	proceeds	in	rounds:	

• example:	page	rank	

• global	key/value	tables	store	intermediate	data

Naive	PageRank

def main():
 for i in range(50):
 launch_jobs(NUM_MACHINES, pr_kernel,

 graph, curr, next)
 swap(curr, next) 
 next.clear()

def pr_kernel(graph, curr, next):
 i = my_instance
 n = len(graph)/NUM_MACHINES
 for s in graph[(i-1)*n:i*n]
 for t in s.out:
 next[t] += curr[s.id] / len(s.out)

Run by a single
controller

Jobs run by
many machines

curr = Table(key=PageID, value=double)
next = Table(key=PageID, value=double)

Controller launches
jobs in parallel

Naïve	PageRank	is	Slow

1

2 3 Graph
A->B,C

…

Ranks
A: 0
…

Graph
B->D
…

Ranks
B: 0
…

Graph
C->E,F

…

Ranks
C: 0
…

get
put

put

put
get

get

PageRank:	Locality
Control table
partitioning

Co-locate tables

Co-locate
execution with
table

curr = Table(…,partitions=100,partition_by=site)
next = Table(…,partitions=100,partition_by=site)
group_tables(curr,next,graph)

def pr_kernel(graph, curr, next):
 for s in graph.get_iterator(my_instance)
 for t in s.out:
 next[t] += curr[s.id] / len(s.out)

def main():
 for i in range(50):
 launch_jobs(curr.num_partitions,
 pr_kernel,
 graph, curr, next,
 locality=curr)
 swap(curr, next)
 next.clear()

PageRank:	Synchroniza,on
curr = Table(…,partition_by=site,accumulate=sum)
next = Table(…,partition_by=site,accumulate=sum)
group_tables(curr,next,graph)

def pr_kernel(graph, curr, next):
 for s in graph.get_iterator(my_instance)
 for t in s.out:
 next.update(t, curr.get(s.id)/len(s.out))

def main():
 for i in range(50):
 handle = launch_jobs(curr.num_partitions,
 pr_kernel,
 graph, curr, next,
 locality=curr)
 barrier(handle)
 swap(curr, next)
 next.clear()

Accumulation
via sum

Update invokes
accumulation function

Explicitly wait between
iterations

Efficient	Synchroniza,on
1

2 3

Graph

A->B,C

…

Ranks

A: 0

…

Graph

B->D

…

Ranks

B: 0

…
Graph

C->E,F

…

Ranks

C: 0

…

put (a=0.3)
put (a=0.2)update (a, 0.2)

update (a, 0.3)

Runtime
computes sum

Workers buffer updates
locally

! Release consistency

PageRank:	Checkpoin,ng
curr = Table(…,partition_by=site,accumulate=sum)
next = Table(…,partition_by=site,accumulate=sum)
group_tables(curr,next)
def pr_kernel(graph, curr, next):
 for node in graph.get_iterator(my_instance)
 for t in s.out:
 next.update(t,curr.get(s.id)/len(s.out))

def main():
 curr, userdata = restore()
 last = userdata.get(‘iter’, 0)
 for i in range(last,50):
 handle = launch_jobs(curr.num_partitions, pr_kernel,
 graph, curr, next,
 locality=curr)
 cp_barrier(handle, tables=(next), userdata={‘iter’:i})
 swap(curr, next)
 next.clear()

Restore previous
computation

User decides which
tables to checkpoint
and when

• How	does	Piccolo	compare	to	MapReduce:	

• in	terms	of	programmability	

• in	terms	of	performance	(stragglers,	load	balance,	etc.)	

• in	terms	of	fault	tolerance

